首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 568 毫秒
1.
2.
Shiga toxin (Stx) genes in Stx producing Escherichia coli (STEC) are encoded in prophages of the lambda family, such as H-19B. The subpopulation of STEC lysogens with induced prophages has been postulated to contribute significantly to Stx production and release. To study induced STEC, we developed a selectable in vivo expression technology, SIVET, a reporter system adapted from the RIVET system. The SIVET lysogen has a defective H-19B prophage encoding the TnpR resolvase gene downstream of the phage PR promoter and a cat gene with an inserted tet gene flanked by targets for the TnpR resolvase. Expression of resolvase results in excision of tet, restoring a functional cat gene; induced lysogens survive and are chloramphenicol resistant. Using SIVET we show that: (i) approximately 0.005% of the H-19B lysogens are spontaneously induced per generation during growth in LB. (ii) Variations in cellular physiology (e.g. RecA protein) rather than in levels of expressed repressor explain why members of a lysogen population are spontaneously induced. (iii) A greater fraction of lysogens with stx encoding prophages are induced compared to lysogens with non-Stx encoding prophages, suggesting increased sensitivity to inducing signal(s) has been selected in Stx encoding prophages. (iv) Only a small fraction of the lysogens in a culture spontaneously induce and when the lysogen carries two lambdoid prophages with different repressor/operators, 933W and H-19B, usually both prophages in the same cell are induced.  相似文献   

3.
4.
Shiga toxins 1 and 2 (Stx1 and Stx2) are encoded by prophages lysogenized in enterohemorrhagic Escherichia coli (EHEC) O157:H7 strains. Lytic growth of the phage particles carrying the stx1 genes (stx1A and stx1B) of the EHEC O157:H7 strain RIMD 0509952, which was derived from the Sakai outbreak in 1996 in Japan, was induced after treatment with mitomycin C, but the plaque formation of the phage was not detected. We have determined the complete nucleotide sequence of the prophage VT1-Sakai. The integration site of the prophage was identified within the yehV gene at 47.7 min on the chromosome. The stx1 genes were downstream of the Q gene in the prophage genome, suggesting that their expression was regulated by the Q protein, the regulator of the late gene expression of the phage, which is similar to that of the stx1 or stx2 genes carried by the lambdoid phages reported previously. The sequences of the N gene and its recognition sites, nutL and nutR, were not homologous to those of the phages carrying the stx genes thus far reported, but they were very similar to those of bacteriophage phi21. The sequences of the repressor proteins, CI and Cro, that regulate expression of the early genes had low similarities with those of the known repressors of other phages, and their operator sequences were different from any sequence reported. These data suggest that multiple genetic recombination among bacteriophages with different immunities took place to generate the prophage VT1-Sakai. Comparison between the sequences of VT1-Sakai and lambda suggests that the ancestor of VT1-Sakai was produced by illegitimate excision, like lambda gal and bio phages.  相似文献   

5.
Shiga toxins (Stx) are the main virulence factors associated with a form of Escherichia coli known as Shiga toxin-producing E. coli (STEC). They are encoded in temperate lambdoid phages located on the chromosome of STEC. STEC strains can carry more than one prophage. Consequently, toxin and phage production might be influenced by the presence of more than one Stx prophage on the bacterial chromosome. To examine the effect of the number of prophages on Stx production, we produced E. coli K-12 strains carrying either one Stx2 prophage or two different Stx2 prophages. We used recombinant phages in which an antibiotic resistance gene (aph, cat, or tet) was incorporated in the middle of the Shiga toxin operon. Shiga toxin was quantified by immunoassay and by cytotoxicity assay on Vero cells (50% cytotoxic dose). When two prophages were inserted in the host chromosome, Shiga toxin production and the rate of lytic cycle activation fell. The cI repressor seems to be involved in incorporation of the second prophage. Incorporation and establishment of the lysogenic state of the two prophages, which lowers toxin production, could be regulated by the CI repressors of both prophages operating in trans. Although the sequences of the cI genes of the phages studied differed, the CI protein conformation was conserved. Results indicate that the presence of more than one prophage in the host chromosome could be regarded as a mechanism to allow genetic retention in the cell, by reducing the activation of lytic cycle and hence the pathogenicity of the strains.  相似文献   

6.
7.
8.
Many species of bacteria harbor multiple prophages in their genomes. Prophages often carry genes that confer a selective advantage to the bacterium, typically during host colonization. Prophages can convert to infectious viruses through a process known as induction, which is relevant to the spread of bacterial virulence genes. The paradigm of prophage induction, as set by the phage Lambda model, sees the process initiated by the RecA-stimulated self-proteolysis of the phage repressor. Here we show that a large family of lambdoid prophages found in Salmonella genomes employs an alternative induction strategy. The repressors of these phages are not cleaved upon induction; rather, they are inactivated by the binding of small antirepressor proteins. Formation of the complex causes the repressor to dissociate from DNA. The antirepressor genes lie outside the immunity region and are under direct control of the LexA repressor, thus plugging prophage induction directly into the SOS response. GfoA and GfhA, the antirepressors of Salmonella prophages Gifsy-1 and Gifsy-3, each target both of these phages' repressors, GfoR and GfhR, even though the latter proteins recognize different operator sites and the two phages are heteroimmune. In contrast, the Gifsy-2 phage repressor, GtgR, is insensitive to GfoA and GfhA, but is inactivated by an antirepressor from the unrelated Fels-1 prophage (FsoA). This response is all the more surprising as FsoA is under the control of the Fels-1 repressor, not LexA, and plays no apparent role in Fels-1 induction, which occurs via a Lambda CI-like repressor cleavage mechanism. The ability of antirepressors to recognize non-cognate repressors allows coordination of induction of multiple prophages in polylysogenic strains. Identification of non-cleavable gfoR/gtgR homologues in a large variety of bacterial genomes (including most Escherichia coli genomes in the DNA database) suggests that antirepression-mediated induction is far more common than previously recognized.  相似文献   

9.
10.
11.
12.
In many pathogenic bacteria, genes that encode virulence factors are located in the genomes of prophages. Clearly bacteriophages are important vectors for disseminating virulence genes, but, in addition, do phage regulatory circuits contribute to expression of these genes? Phages of the lambda family that have genes encoding Shiga toxin are found in certain pathogenic Escherichia coli (known as Shiga toxin producing E. coli) and the filamentous phage CTXphi, that carries genes encoding cholera toxin (CTX), is found in Vibrio cholerae. Both the lambda and CTXphi phages have repressor systems that maintain their respective prophages in a quiescent state, and in both types of prophages this repressed state is abolished when the host cell SOS response is activated. In the lambda type of prophages, only binding of the phage-encoded repressor is involved in repression and this repressor ultimately controls Shiga toxin production and/or release. In the CTXphi prophage, binding of LexA, the bacterial regulator of SOS, in addition to binding of the repressor is involved in repression; the repressor has only limited control over CTX production and has no influence on its release.  相似文献   

13.
14.
In this study, we have investigated the ability of detoxified Shiga toxin (Stx)-converting bacteriophages Phi3538 (Deltastx(2)::cat) (H. Schmidt et al., Appl. Environ. Microbiol. 65:3855-3861, 1999) and H-19B::Tn10d-bla (D. W. Acheson et al., Infect. Immun. 66:4496-4498, 1998) to lysogenize enteropathogenic Escherichia coli (EPEC) strains in vivo. We were able to transduce the porcine EPEC strain 1390 (O45) with Phi3538 (Deltastx(2)::cat) in porcine ligated ileal loops but not the human EPEC prototype strain E2348/69 (O127). Neither strain 1390 nor strain E2348/69 was lysogenized under these in vivo conditions when E. coli K-12 containing H-19B::Tn10d-bla was used as the stx1 phage donor. The repeated success in the in vivo transduction of an Stx2-encoding phage to a porcine EPEC strain in pig loops was in contrast to failures in the in vitro trials with these and other EPEC strains. These results indicate that in vivo conditions are more effective for transduction of Stx2-encoding phages than in vitro conditions.  相似文献   

15.
Shiga toxin-producing Escherichia coli (STEC) is an emergent pathogen characterized by the expression of Shiga toxins, which are encoded in the genomes of lambdoid phages. These phages are infectious for other members of the Enterobacteriaceae and establish lysogeny when they integrate into the host chromosome. Five insertion sites, used mainly by these prophages, have been described to date. In the present study, the insertion of stx(2) prophages in these sites was analyzed in 168 STEC strains isolated from cattle. Additionally, insertion sites were determined for stx(2) phages which (i) converted diverse laboratory host strains, (ii) coexisted with another stx(2) prophage, and (iii) infected a recombinant host strain lacking the most commonly used insertion site. Results show that depending on the host strain, phages preferentially use one insertion site. For the most part, yehV is occupied in STEC strains while wrbA is preferentially selected by the same stx phages in E. coli laboratory strains. If this primary insertion site is unavailable, then a secondary insertion site is selected. It can be concluded that insertion site occupancy by stx phages depends on the host strain and on the availability of the preferred locus in the host strain.  相似文献   

16.
The horizontal transfer and acquisition of virulence genes via mobile genetic elements have been a major driving force in the evolution of Salmonella pathogenicity. Serovars of Salmonella enterica carry variable assortments of phage-encoded virulence genes, suggesting that temperate phages play a pivotal role in this process. Epidemic isolates of S. enterica serovar Typhimurium are consistently lysogenic for two lambdoid phages, Gifsy-1 and Gifsy-2, carrying known virulence genes. Other serovars of S. enterica, including serovars Dublin, Gallinarum, Enteritidis, and Hadar, carry distinct prophages with similarity to the Gifsy phages. In this study, we analyzed Gifsy-related loci from S. enterica serovar Abortusovis, a pathogen associated exclusively with ovine infection. A cryptic prophage, closely related to serovar Typhimurium phage Gifsy-2, was identified. This element, named Gifsy-2AO, was shown to contribute to serovar Abortusovis systemic infection in lambs. Sequence analysis of the prophage b region showed a large deletion which covers genes encoding phage tail fiber proteins and putative virulence factors, including type III secreted effector protein SseI (GtgB, SrfH). This deletion was identified in most of the serovar Abortusovis isolates tested and might be dependent on the replicative transposition of an adjacent insertion sequence, IS1414, previously identified in pathogenic Escherichia coli strains. IS1414 encodes heat-stable toxin EAST1 (astA) and showed multiple genomic copies in isolates of serovar Abortusovis. To our knowledge, this is the first evidence of intergeneric transfer of virulence genes via insertion sequence elements in Salmonella. The acquisition of IS1414 (EAST1) and its frequent transposition within the chromosome might improve the fitness of serovar Abortusovis within its narrow ecological niche.  相似文献   

17.
18.
Bacteriophages (or phages) play major roles in the evolution of bacterial pathogens via horizontal gene transfer. Multiple phages are often integrated in a host chromosome as prophages, not only carrying various novel virulence-related genetic determinants into host bacteria but also providing various possibilities for prophage-prophage interactions in bacterial cells. In particular, Escherichia coli strains such as Shiga toxin (Stx)-producing E. coli (STEC) and enteropathogenic E. coli (EPEC) strains have acquired more than 10 prophages (up to 21 prophages), many of which encode type III secretion system (T3SS) effector gene clusters. In these strains, some prophages are present at a single locus in tandem, which is usually interpreted as the integration of phages that use the same attachment (att) sequence. Here, we present phages integrating into T3SS effector gene cluster-associated loci in prophages, which are widely distributed in STEC and EPEC. Some of the phages integrated into prophages are Stx-encoding phages (Stx phages) and have induced the duplication of Stx phages in a single cell. The identified attB sequences in prophage genomes are apparently derived from host chromosomes. In addition, two or three different attB sequences are present in some prophages, which results in the generation of prophage clusters in various complex configurations. These phages integrating into prophages represent a medically and biologically important type of inter-phage interaction that promotes the accumulation of T3SS effector genes in STEC and EPEC, the duplication of Stx phages in STEC, and the conversion of EPEC to STEC and that may be distributed in other types of E. coli strains as well as other prophage-rich bacterial species.  相似文献   

19.
[目的]对8株源自大肠杆菌O157编码Stx2毒素的噬菌体生物学特性进行研究.[方法]丝裂霉素C诱导8株大肠杆菌O157菌株释放噬菌体,采用PCR作初步鉴定,分离、纯化噬菌体基因组,随机引物法地高辛(DIG)标记stx2基因片段作为探针,对纯化的噬菌体采用Southernblot进行Stx2噬菌体再次鉴定,透射电子显微镜观察纯化的8株Stx2噬菌体的形态特征,通过限制性内切酶图谱分析,确定噬菌体的核酸类型和基因组大小、以及限制性内切酶酶切片段多态性,并分析噬菌体的蛋白质组成特征.[结果]Southern blot证实分离的8株噬菌体为Stx2噬菌体,电镜下观察的各株Stx2噬菌体形态一致,头部均为正六边形,尾部很短,属于短尾噬菌体科,各株噬菌体之间存在相同的蛋白结构模式,基因组为双链DNA,限制性内切酶片段长度表现出一定的多态性,噬菌体的基因组大小从48.0-65.3 kb不等.[结论]来源不同菌株的8株编码Stx2噬菌体均为短尾噬菌体,其蛋白结构模式一致,但基因组具有不同组成.  相似文献   

20.
The Shiga-like toxin 1-converting bacteriophage H-19B was recently shown to carry the structural genes for the toxin and was shown to have DNA sequence homology with phage lambda. We present evidence that the linear genome of bacteriophage H-19B has cohesive termini which become covalently associated during prophage integration. Integration occurs through a site on a 4-kilobase-pair EcoRI fragment located near the center of the bacteriophage chromosome. The relationship between bacteriophages H-19B and lambda was examined by Southern hybridization. Homologous regions were mapped on the respective chromosomes which corresponded to the regions of the J gene, the int-xis area, and the O and P genes of phage lambda. The H-19B tox genes were mapped to the right of the O and P gene homology, which was far away from the phage attachment site. We concluded that H-19B is a lambdoid bacteriophage. Unlike other toxin-converting bacteriophages, the toxin genes were not located adjacent to the phage attachment site. It appeared that the Shiga-like toxin 1 genes were not picked up by a simple imprecise prophage excision. H-19B could, however, have acquired chromosomally located toxin genes by a series of events involving deletion and duplication followed by aberrant excision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号