首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to develop liposomes for use in an immunoassay system, the preparation of immune liposomes and their characterization have been investigated. Liposomes have potential use in extremely sensitive analytical immunoassays, in addition to serving as an attractive drug delivery system. This liposome immunoassay system is based on membrane immunochemistry and an enzymatic reaction. An intense yellow color, easily detectable with the naked eye, was produced quite rapidly by the lysis of bovine serum albumin (BSA)-labeled, alkaline phosphatase-entrapped liposomes in the presence of anti-BSA rabbit serum and active complement under alkaline conditions. Sensitive detection is possible because of the antigen-antibody complex reaction, which leads to liposome lysis and an enzymatic reaction. The liposome immunoassay method offers a rapid, simple, and sensitive testing procedure which can quantitatively and qualitatively determine the presence or absence of antigenic materials and antibodies.  相似文献   

2.
Introduction of macromolecules into mammalian cells by cell fusion   总被引:2,自引:0,他引:2  
Proteins with molecular weights of up to 500K can be enclosed in erythrocyte ghosts by exposing the ghosts to hypotonic solution containing these proteins. The proteins can then be introduced into recipient cells by fusing the ghosts with the cells using HVJ, PEG, or influenza virus. Some applications of this method are described. By an improved method, 15 kbp DNA and IgM (900 kDa) can be entrapped in erythrocyte membranes and these are then treated with liposomes containing gangliosides and HVJ. These treated membranes containing large macromolecules fuse with almost 100% of the recipient cells used. Naked liposomes infrequently fuse with cultured cells, so introduction of their contents into cells is very inefficient. However, liposomes constituted from lipid and glycoproteins (HN and F) of HVJ (Sendai virus), by removing a nonionic detergent, fuse with cells about 200 times more efficiently than naked liposomes. Naked liposomes can fuse with specific cells, such as cells infected with subacute sclerosing panencephalitis virus or with human immunodeficiency virus. Plasmid DNA and mRNA of up to about 40 kbp can be entrapped efficiently in liposomes associated with gangliosides formed by reverse-phase evaporation, and then reacted with HVJ. The contents of the resulting liposomes with HVJ can be introduced efficiently into cultured cells in a suspended or plated state, and nearly all the cells then express the gene transiently. This procedure is also effective for obtaining stable transformants of many kinds of cultured cells.  相似文献   

3.
A novel method is described for the preparation of sterile submicron unilamellar liposomes. The method is based on the lyophilization of double emulsions containing disaccharides as lyoprotectants in both the inner and outer aqueous phase. Using various phospholipids or mixtures of lipids as emulsifiers, the double emulsions can be prepared by a two-step emulsification, including hydrophilic agents in the inner aqueous phase or lipophilic agents in the oil phase. Then, the double emulsions are lyophilized after sterilization by passing them through a 0.22-microm pore filter. Rehydration of the lyophilized products results in liposomes with a relatively high encapsulation efficiency (for calcein, 87%; 5-fluorouracil, 19%; flurbiprofen, 93%) and a size below 200 nm measured by the dynamic light scattering technique (DLS) and the atomic force microscopy (AFM). The liposomes were found to be unilamellar from freeze-fracture electron micrographs and X-ray diffraction patterns. In addition, the liposomes can be reconstituted just before use by rehydration of the lyophilized products which are relatively stable. Thus, this reproducible and simple technique can be used to prepare sterilized, submicron unilamellar liposomes with a relatively high encapsulation efficiency, and excellent stability during long-term storage.  相似文献   

4.
A novel method is described for the preparation of sterile submicron unilamellar liposomes. The method is based on the lyophilization of double emulsions containing disaccharides as lyoprotectants in both the inner and outer aqueous phase. Using various phospholipids or mixtures of lipids as emulsifiers, the double emulsions can be prepared by a two-step emulsification, including hydrophilic agents in the inner aqueous phase or lipophilic agents in the oil phase. Then, the double emulsions are lyophilized after sterilization by passing them through a 0.22-μm pore filter. Rehydration of the lyophilized products results in liposomes with a relatively high encapsulation efficiency (for calcein, 87%; 5-fluorouracil, 19%; flurbiprofen, 93%) and a size below 200 nm measured by the dynamic light scattering technique (DLS) and the atomic force microscopy (AFM). The liposomes were found to be unilamellar from freeze-fracture electron micrographs and X-ray diffraction patterns. In addition, the liposomes can be reconstituted just before use by rehydration of the lyophilized products which are relatively stable. Thus, this reproducible and simple technique can be used to prepare sterilized, submicron unilamellar liposomes with a relatively high encapsulation efficiency, and excellent stability during long-term storage.  相似文献   

5.
We describe a method by which horseradish peroxidase may be attached covalently to the surface of liposomes under conditions which permit minimal non-covalent association of the enzyme with the lipids. The coupling method adopted does not allow the formation of homopolymers of liposomes or peroxidase. For phosphatidylethanolamine/phosphatidylcholine and stearylamine/phosphatidylcholine vesicles, minimal disruption of vesicular structure is observed, whilst for phosphatidylserine vesicles, the lipid-protein complex appears to form structures much smaller than 25 nm in diameter. Stearylamine/phosphatidylcholine vesicles have been shown to retain entrapped inulin, and activity measurements for the peroxidase suggest that it is located exclusively on the external surface of the liposome membrane. Peroxidase can be localized histochemically which has permitted the morphological study of the coated liposomes and their interactions with cells.  相似文献   

6.
A modified ethanol injection method for liposomes containing soybean phosphatidylcholine (SPC), cholesterol (Ch), β-sitosterol β-D-glucoside (Sit-G) and oleic acid (OA) was developed, that can produce homogeneous unilamellar liposomes without the use of sonication and dialysis. In this method, water is poured into a concentrated lipid-ethanol solution and then ethanol is removed in an evaporator. Dilution with water causes spontaneous formation of small and homogenous unilamellar vesicles from micellar aggregate. The size of liposomes can be controlled by the ratio of ethanol to water. OA and Sit-G were distributed at the surface of liposomes and were recognized by Concanavalin A, respectively. This easy and quick method for preparation of liposomes may be applicable in many areas.  相似文献   

7.
We describe a method to obtain giant liposomes (diameter 10-100 microm) in solutions of high ionic strength to perform a membrane-binding assay under physiological conditions. Using electroformation on ITO electrodes, we formed surface-attached giant liposomes in solutions of glycerol in a flow chamber and then introduced solutions of high ionic strength (up to 2 M KCl) into this chamber. The ionic solution exchanged with the isoosmolar glycerol solution inside and outside the liposomes. An initial mismatch in index of refraction between the inside and outside of liposomes allowed for the observation of solution replacement. Ions and small polar molecules exchanged into and out of surface-attached liposomes within minutes. In contrast, liposomes formed in solutions of macromolecules retained molecules larger than 4 kDa, allowing for encapsulation of these molecules for hours or days even if the solution outside the liposomes was exchanged. We propose that solutes entered liposomes through lipid tubules that attach liposomes to the film of lipids on the surface of the ITO electrode. The method presented here makes it straightforward to perform flow-through binding assays on giant liposomes under conditions of physiological ionic strength. We performed a membrane-binding assay for annexin V, a calcium-dependent protein that binds to phosphatidylserine (PS). The binding of annexin V depended on the concentration of PS and decreased as ionic strength increased to physiological levels.  相似文献   

8.
We describe a method to obtain giant liposomes (diameter 10-100 μm) in solutions of high ionic strength to perform a membrane-binding assay under physiological conditions. Using electroformation on ITO electrodes, we formed surface-attached giant liposomes in solutions of glycerol in a flow chamber and then introduced solutions of high ionic strength (up to 2 M KCl) into this chamber. The ionic solution exchanged with the isoosmolar glycerol solution inside and outside the liposomes. An initial mismatch in index of refraction between the inside and outside of liposomes allowed for the observation of solution replacement. Ions and small polar molecules exchanged into and out of surface-attached liposomes within minutes. In contrast, liposomes formed in solutions of macromolecules retained molecules larger than 4 kDa, allowing for encapsulation of these molecules for hours or days even if the solution outside the liposomes was exchanged. We propose that solutes entered liposomes through lipid tubules that attach liposomes to the film of lipids on the surface of the ITO electrode. The method presented here makes it straightforward to perform flow-through binding assays on giant liposomes under conditions of physiological ionic strength. We performed a membrane-binding assay for annexin V, a calcium-dependent protein that binds to phosphatidylserine (PS). The binding of annexin V depended on the concentration of PS and decreased as ionic strength increased to physiological levels.  相似文献   

9.
A method to correct stent related complications non-invasively, is the local delivery of therapeutic agents. Different drugs have been delivered on stents, after being either dispersed or encapsulated in polymeric materials, and placed on stents to form drug-eluting-stents (DE-stents). Investigation of possibility to cover polymer - coated metallic stents, with liposomal drugs, for preparation of novel DE-liposome-coated-stents, has been initiated few years ago. In this context our research has been focused on answering the following questions: (i) Can liposomes be applied as coatings on polymer covered stents? (ii) Can drug release from liposome coated-stents be controlled? And: (iii) how is haemo-compatibility of stents affected? The results of the experiments carried out demonstrate that liposomal formulations of drugs can be used as coating systems of polymer covered stents for achieving sustained release of drugs at the site of interest. By modifying liposome characteristics, different amounts of drugs may be placed on the stents and their release rates can be adjusted for maximum therapeutic benefit. Finally, haemocompatibility of stents is highly improved (mainly in terms of cell adhesion and activation of coagulation system), when stents are coated with heparin-encapsulating -DRV liposomes.  相似文献   

10.
Because of the sustained interest in liposomes as immunogens and vehicles for drug delivery, the present investigation was designed to reevaluate the iodoacetyl group as a means of binding sulfhydryl-containing substances to liposomes in thioether linkage, and to develop an alternative method by which liposomes with bound ligand can be conveniently and rapidly separated from free ligand. For the purpose of the first goal, we synthesized a homologous series of dimyristoylphosphatidylethanolamine (DMPE) derivatives in which the iodoacetyl (IA) function was separated from the phospholipid amino group by either 0, 1, or 2 aminoethylthioacetyl (AETA) spacers. Results show that liposomes prepared with IA-DMPE can not bind 125I-radiolabeled rabbit IgG which had been thiolated by reaction with S-acetylmercaptosuccinic anhydride. Significant IgG attachment was, however, obtained with liposomes containing either IA-AETA-DMPE or IA-(AETA)2-DMPE, and the amount bound was directly related to spacer length. In contrast, spacer length had no effect on the covalent binding of a low molecular weight hapten, N-dinitrophenylcysteine. Other parameters (incubation time, IgG concentration, density of IA-(AETA)2-DMPE, sulfhydryl inhibitors) were also examined. To achieve the second objective, biotinyl-(AETA)2-DMPE was incorporated into the same liposomal bilayers that contained the iodoacetylated derivatives. Thus, liposomes with bound ligand could be readily precipitated by avidin, and washed free of unreacted IgG by low speed centrifugation. Comparative experiments with liposomes containing biotinyl-DMPE revealed that spacer length also had a pronounced effect on the avidin precipitability of liposomes in the presence of proteins that may be non-covalently absorbed or covalently bound to the model membrane surface.  相似文献   

11.
The inverted emulsion method is used to prepare giant liposomes by pushing water-in-oil droplets through the oil/water interface into an aqueous medium. Due to the high encapsulation efficiency of proteins under physiological conditions and the simplicity of the protocol, it has been widely used to prepare various cell models. However, the lamellarity of liposomes prepared by this method has not been evaluated quantitatively. Here, we prepared liposomes that were partially stained with a fluorescent dye, and analyzed their fluorescence intensity under an epifluorescence microscope. The fluorescence intensities of the membranes of individual liposomes were plotted against their diameter. The plots showed discrete distributions, which were classified into several groups. The group with the lowest fluorescence intensity was determined to be unilamellar by monitoring the exchangeability of the inner and the outer solutions of the liposomes in the presence of the pore-forming toxin α-hemolysin. Increasing the lipid concentration dissolved in oil increased the number of liposomes ∼100 times. However, almost all the liposomes were unilamellar even at saturating lipid concentrations. We also investigated the effects of lipid composition and liposome content, such as highly concentrated actin filaments and Xenopus egg extracts, on the lamellarity of the liposomes. Remarkably, over 90% of the liposomes were unilamellar under all conditions examined. We conclude that the inverted emulsion method can be used to efficiently prepare giant unilamellar liposomes and is useful for designing cell models.  相似文献   

12.
In marine fish larviculture the live feed organisms are often enriched in order to enhance their nutritional value. One of the challenges is to enhance the phospholipids (PL) content, and another is to enhance the content of specific water soluble nutrients, like free amino acids (FAA). There are a few studies where this has been achieved by the use of liposomes. The aim of this study was to develop a simple method for mass-production of liposomes within a size range of 1-5 mum a size range suitable to feed live food organisms. Furthermore, the liposomes should have a high FAA concentration and be stable under conditions typical for short-time enrichment of live feed organisms. The method used in the present study is based on a combination of a reverse-phase evaporation method for preparing liposomes and re-hydration of freeze-dried, empty liposomes. The liposomal membrane was made of soy phosphatydilcholine and was loaded with a highly concentrated free amino acids solution. Most of the liposomes produced were 2-8 mum in diameter and the FAA encapsulation efficiency was 42.6%. Two experiments simulating 2 hr of live food enrichment were used to evaluate the liposomes. The results showed the liposome did not disintegrate or aggregate when suspended in seawater and that only 9% of the FAA content of the liposomes was lost after 2 hr suspension. The developed method was easy and reliable, producing tens of grams of liposomes per batch.  相似文献   

13.
Cationic liposomes can be designed and developed in order to be an efficient gene delivery system for mammalian cells. Dendritic cell (DC) vaccines can be used to treat cancer, as cationic liposomes can deliver tumor antigens to cells while cells remain active. However, most methods used for liposome production are not able to reproduce in large scale the physicochemical and biological properties of liposomes produced in laboratory scale. In this context, ethanol injection method achieved promising results, although requiring post-treatment for size reduction and/or to remove residual ethanol. Thus, the purpose of this study was to generate cationic liposomes suitable for gene therapies via ethanol injection method in only one step (VEI) and compared to those submitted to a size reduction processes by microfluidization (MFV). For this, the method to produce cationic liposomes composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and 1,2-dioleoylphosphatidylethanolamine (DOPE) was optimized using a statistical design approach. As a result, the size of VEI decreased from 290?nm to 110?nm and the polydispersity from 0.54 to 0.17. In the case of MFV, size decreased from 128?nm to 107?nm and polydispersity from 0.40 to 0.18. ST and MFV before and after optimization were also characterized in terms of morphology by transmission electron microscopy (TEM) and structure by differential scanning calorimetry (DSC). Finally, to show their potential in gene/immune therapies applications, DCs were stimulated by such liposomes. Cells internalized liposomes, increasing expression of the costimulatory molecule CD86 and inducing T lymphocyte proliferation.  相似文献   

14.
Nanoparticle-supported liposomes can be a promising platform for drug delivery, vaccine development, and biomedical imaging. Single-walled carbon nanohorns are a relatively new carbon nanomaterial, and they could be used as carriers of drug and imaging reagents. Assembling lipids around carbon nanohorns would confer this nanomaterial much broader applications such as vaccine development and targeted drug delivery by embedding a target protein or immunogenic protein into the lipid bilayer structure. Here, we show the assembly of functionalized single-walled carbon nanohorns (-CH(2)-CH(2)-COOH(x), ~100 nm) with positively charged lipids through a freeze and thaw cycle. The assembled complex particles can be readily separated from individual nanohorns or liposomes under specific centrifugation conditions. The results from transmission electronic microscopy, flow cytometry through nitrobenzoxadiazole labeled lipids, and zeta potential analysis clearly show that the nanohorns are encapsulated by liposomes with a median size of ca. 120 nm.  相似文献   

15.
Liposomes loaded with monospecific antibodies against cyclic nucleotide phosphodiesterase (PDE) act on the extracellularly recorded receptor potential of the isolated frog retina irrigated with physiological saline, like PDE inhibitors. The response amplitude rises consideraly, especially with weak stimuli, and its duration increases sharply. Purely lipid liposomes without antibodies, liposomes with control immunoglobulins, and anti-PDE antibodies without liposomes have no such action. The effect is quickly reversible on rinsing, which is evidence against the possibility that liposomes may act by introducing anti-PDE antibodies into the cell. The increase in the response can be explained only partially by the increase in extracellular resistance in the layer of rods and cones under the influence of liposomes. It is suggested that specific adsorption of liposomes on the surface of the rods and cones by an as yet unknown method modifies the properties of the intracellular mechsnism of excitation transmission and (or) of the ionic channels of the plasma membrane.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 17, No. 2, pp. 245–250, March–April, 1985.  相似文献   

16.
The behavior of phosphatidylethanolamine (PE) liposomes has been studied as a function of temperature, pH, ionic strength, lipid concentration, liposome size, and divalent cation concentration by differential scanning calorimetry (DSC), by light scattering, by assays measuring liposomal lipid mixing, contents mixing, and contents leakage, and by a new fluorometric assay for hexagonal (HII) transitions. Liposomes were either small or large unilamellar, or multilamellar. Stable (impermeable, nonaggregating) liposomes of egg PE (EPE) could be formed in isotonic saline (NaCl) only at high pH (greater than 8) or at lower pH in the presence of low ionic strength saline (less than 50 mOsm). Bilayer to hexagonal (HII) phase transitions and gel to liquid-crystalline transitions of centrifuged multilamellar liposomes were both detectable by DSC only at pH 7.4 and below. The HII transition temperature increased, and the transition enthalpy decreased, as the pH was raised above 7.4, and it disappeared above pH 8.3 where PE is sufficiently negatively charged. HII transitions could be detected at high pH following the addition of Ca2+ or Mg2+. No changes in light scattering and no lipid mixing, mixing of contents, or leakage of contents were noted for EPE liposomes under nonaggregating conditions (pH 9.2 and 100 mM Na+ or pH 7.4 and 5 mM Na+) as the temperature was raised through the HII transition region. However, when aggregation of the liposomes was induced by addition of Ca2+ or Mg2+, or by increasing [Na+], it produced sharp increases in light scattering and in leakage of contents and also changes in fluorescent probe behavior in the region of the HII transition temperature (TH). Lipid mixing and contents mixing were also observed below TH under conditions where liposomes were induced to aggregate, but without any appreciable leakage of contents. We conclude that HII transitions do not occur in liposomes under conditions where intermembrane contacts do not take place. Moreover, fusion of PE liposomes at a temperature below TH can be triggered by H+, Na+, Ca2+, or Mg2+ or by centrifugation under conditions that induce membrane contact. There was no evidence for the participation of HII transitions in these fusion events.  相似文献   

17.
18.
Abstract

Oxidative processes that may occur when susceptible materials like phospholipids are processed and stored should be avoided because they can lead to undesired byproducts. Our attention was focused on the formation of hydroperoxides of conjugated dienes of the esterified polyunsaturated fatty acids that are present in phospholipids. The method used for the evaluation of lipid peroxidation was based on the determination of the “oxidation index”, calculated from UV absorbance. The investigated products were phospholipids of different origin and purity, with and without antioxidants; their autooxidation process was evaluated in the presence of air and under nitrogen. A comparison of the behavior of the various tested products, under the different experimental conditions, indicate how important it is to acquire informations on the autooxidation process for a correct preparation of cosmetic, dermatological or other formulations containing liposomes.  相似文献   

19.
The inverted emulsion method is used to prepare giant liposomes by pushing water-in-oil droplets through the oil/water interface into an aqueous medium. Due to the high encapsulation efficiency of proteins under physiological conditions and the simplicity of the protocol, it has been widely used to prepare various cell models. However, the lamellarity of liposomes prepared by this method has not been evaluated quantitatively. Here, we prepared liposomes that were partially stained with a fluorescent dye, and analyzed their fluorescence intensity under an epifluorescence microscope. The fluorescence intensities of the membranes of individual liposomes were plotted against their diameter. The plots showed discrete distributions, which were classified into several groups. The group with the lowest fluorescence intensity was determined to be unilamellar by monitoring the exchangeability of the inner and the outer solutions of the liposomes in the presence of the pore-forming toxin α-hemolysin. Increasing the lipid concentration dissolved in oil increased the number of liposomes ∼100 times. However, almost all the liposomes were unilamellar even at saturating lipid concentrations. We also investigated the effects of lipid composition and liposome content, such as highly concentrated actin filaments and Xenopus egg extracts, on the lamellarity of the liposomes. Remarkably, over 90% of the liposomes were unilamellar under all conditions examined. We conclude that the inverted emulsion method can be used to efficiently prepare giant unilamellar liposomes and is useful for designing cell models.  相似文献   

20.
Plasmid DNA pRc/CMV HBS (5.6 kb) (100 microg) encoding the S (small) region of hepatitis B surface antigen was incorporated by the dehydration-rehydration method into liposomes composed of 16 micromol egg phosphatidylcholine (PC), 8 micromol dioleoylphosphatidylcholine (DOPE) and 1, 2-diodeoyl-3-(trimethylammonium)propane (DOTAP) (cationic liposomes) or phosphatidylglycerol (anionic liposomes) in a variety of molar ratios. The method, entailing mixing of small unilamellar vesicles (SUV) with the DNA, followed by dehydration and rehydration, yielded incorporation values of 95-97 and 48-54% of the DNA used, respectively. Mixing of preformed cationic liposomes with 100 microg plasmid DNA also led to high complexation values of 73-97%. As expected, the association of DNA with preformed anionic liposomes was low (9%). Further work with cationic PC/DOPE/DOTAP liposomes attempted to establish differences in the nature of DNA association with the vesicles after complexation and the constructs generated by the process of dehydration/rehydration. Several lines of evidence obtained from studies on vesicle size and zeta-potential, fluorescent microscopy and gel electrophoresis in the presence of the anion sodium dodecyl sulphate (SDS) indicate that, under the conditions employed, interaction of DNA with preformed cationic SUV as above, or with cationic SUV made of DOPE and DOTAP (1:1 molar ratio; ESCORT Transfection Reagent), leads to the formation of large complexes with externally bound DNA. For instance, such DNA is accessible to and can be dissociated by competing anionic SDS molecules. However, dehydration of the DNA-SUV complexes and subsequent rehydration, generates submicron size liposomes incorporating most of the DNA in a fashion that prevents DNA displacement through anion competition. It is suggested that, in this case, DNA is entrapped within the aqueous compartments, in between bilayers, presumably bound to the cationic charges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号