首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transient receptor potential (TRP) channels are a family of cation channels involved in diverse cellular functions. They are composed of a transmembrane domain of six putative transmembrane segments flanked by large N- and C-terminal cytoplasmic domains. The melastatin subfamily (TRPM) channels have N-terminal domains of approximately 700 amino acids with four regions of shared homology and C-terminal domains containing the conserved TRP domain followed by a coiled-coil region. Here we investigated the effects of N- and C-terminal deletions on the cold and menthol receptor, TRPM8, expressed heterologously in Sf21 insect cells. Patch-clamp electrophysiology was used to study channel activity and revealed that only deletion of the first 39 amino acids was tolerated by the channel. Further N-terminal truncation or any C-terminal deletions prevented proper TRPM8 function. Confocal microscopy with immunofluorescence revealed that amino acids 40-86 are required for localization to the plasma membrane. Furthermore, analysis of deletion mutant oligomerization shows that the transmembrane domain is sufficient for TPRM8 assembly into tetramers. TRPM8 channels with C-terminal deletions tetramerize and localize properly but are inactive, indicating that although not essential for tetramerization and localization, the C terminus is critical for proper function of the channel sensor and/or gate.  相似文献   

2.
Sodium channels consist of a pore-forming alpha subunit and auxiliary beta 1 and beta 2 subunits. The subunit beta 1 alters the kinetics and voltage-dependence of sodium channels expressed in Xenopus oocytes or mammalian cells. Functional modulation in oocytes depends on specific regions in the N-terminal extracellular domain of beta 1, but does not require the intracellular C-terminal domain. Functional modulation is qualitatively different in mammalian cells, and thus could involve different molecular mechanisms. As a first step toward testing this hypothesis, we examined modulation of brain Na(V)1.2a sodium channel alpha subunits expressed in Chinese hamster lung cells by a mutant beta1 construct with 34 amino acids deleted from the C-terminus. This deletion mutation did not modulate sodium channel function in this cell system. Co-immunoprecipitation data suggest that this loss of functional modulation was caused by inefficient association of the mutant beta 1 with alpha, despite high levels of expression of the mutant protein. In Xenopus oocytes, injection of approximately 10,000 times more mutant beta 1 RNA was required to achieve the level of functional modulation observed with injection of full-length beta 1. Together, these findings suggest that the C-terminal cytoplasmic domain of beta 1 is an important determinant of beta1 binding to the sodium channel alpha subunit in both mammalian cells and Xenopus oocytes.  相似文献   

3.
C V Altamirano  O Lockridge 《Biochemistry》1999,38(40):13414-13422
Human butyrylcholinesterase (BChE) in serum is composed predominantly of tetramers. The tetramerization domain of each subunit is contained within 40 C-terminal residues. To identify key residues within this domain participating in tetramer stabilization, the interaction between C-terminal 46 residue peptides was quantitated in the yeast two-hybrid system. The wild-type peptide interacted strongly with another wild-type peptide in the yeast two-hybrid system. The C571A mutant peptides interacted to a similar degree as the wild-type. However, the mutant in which seven conserved aromatic residues (Trp 543, Phe 547, Trp 550, Tyr 553, Trp 557, Phe 561, and Tyr 564) and C571 were altered to alanines showed only 12% of the interaction seen with the wild-type peptide. The seven mutations (aromatics-off) were incorporated into the complete BChE molecule, with or without the C571A mutation, and expressed in 293T and CHO-K1 cells. Expression of wild-type BChE in these cell lines yielded 10% tetramers. The aromatics-off mutant formed dimers and monomers but no tetramers. The aromatics-off/C571A mutant yielded only monomers. Addition of poly-L-proline to culture medium, or coexpression with the N-terminus of COLQ including the proline-rich attachment domain (Q(N)PRAD), increased the amount of tetrameric wild-type BChE from 10 to 70%, but had no effect on the G534stop (lacking 41 C-terminal residues) and the aromatics-off mutants. Recombinant BChE produced by coexpression with Q(N)PRAD was purified by column chromatography. The purified tetramers contained the FLAG-tagged Q(N)PRAD peptide. These observations suggest that the stabilization of BChE tetramers is mediated through the interaction of the seven conserved aromatic residues and that poly-L-proline and PRAD act through these aromatic residues to induce tetramerization.  相似文献   

4.
P Daram  S Urbach  F Gaymard  H Sentenac    I Chérel 《The EMBO journal》1997,16(12):3455-3463
All plant channels identified so far show high conservation throughout the polypeptide sequence except in the ankyrin domain which is present only in those closely related to AKT1. In this study, the architecture of the AKT1 protein has been investigated. AKT1 polypeptides expressed in the baculovirus/Sf9 cells system were found to assemble into tetramers as observed with animal Shaker-like potassium channel subunits. The AKT1 C-terminal intracytoplasmic region (downstream from the transmembrane domain) alone formed tetrameric structures when expressed in Sf9 cells, revealing a tetramerization process different from that of Shaker channels. Tests of subfragments from this sequence in the two-hybrid system detected two kinds of interaction. The first, involving two identical segments (amino acids 371-516), would form a contact between subunits, probably via their putative cyclic nucleotide-binding domains. The second interaction was found between the last 81 amino acids of the protein and a region lying between the channel hydrophobic core and the putative cyclic nucleotide-binding domain. As the interacting regions are highly conserved in all known plant potassium channels, the structural organization of AKT1 is likely to extend to these channels. The significance of this model with respect to animal cyclic nucleotide-gated channels is also discussed.  相似文献   

5.
The auxiliary beta subunit importantly regulates voltage-dependent Ca(2+) channel activity through an interaction with the AID domain, a binding site located in the cytoplasmic I-II linker of the ion-conducting alpha(1) subunit. In the present study, we used two synthetic peptides corresponding to partial sequences of the I-II linker of alpha(1A) (AID(A)-peptides) as tools to disrupt the alpha(1)-beta interaction. In vitro binding experiments confirmed that these peptides exhibit a reasonable affinity to the neuronal beta(3) subunit to serve this purpose, although they failed to prevent immunoprecipitation of native N- and P/Q-type channels by anti-beta(3) antibodies. Together, our results (i) provide evidence for the reversibility of channel subunit association suggesting that the disruption of the alpha(1)-beta interaction may be a possible mechanism for Ca(2+) channel regulation in vivo, and (ii) support a model whereby the alpha(1)-beta association is based on multiple interaction sites.  相似文献   

6.
Highly purified L-type Ca(2+) channel complexes containing all five subunits (alpha(1), alpha(2), beta, gamma, and delta) and complexes of alpha(1)-beta subunits were obtained from skeletal muscle triad membranes by three-step purification and by 1% Triton X-100 treatment, respectively. Their structures and the subunit arrangements were analyzed by electron microscopy. Projection images of negatively stained Ca(2+) channels and alpha(1)-beta complexes were aligned, classified and averaged. The alpha(1)-beta complex showed a hollow trapezoid shape of 12 nm height. In top view, four asymmetric domains surrounded a central depression predicted to form the channel pore. The complete Ca(2+) channel complex exhibited the cylindrical shape of 20 nm in height binding a spherical domain on one edge. Further image analysis of higher complexes of the Ca(2+) channel using a monoclonal antibody against the beta subunit showed that the alpha(1)-beta complex forms the non-decorated side of the cylinder, which can traverse the membrane from outside the cell to the cytoplasm. Based on these results, we propose that the Ca(2+) channel exhibits an asymmetric arrangement of auxiliary subunits.  相似文献   

7.
The small GTPase Rem is a potent negative regulator of high voltage-activated Ca(2+) channels and a known interacting partner for Ca(2+) channel accessory beta subunits. The mechanism for Rem-mediated channel inhibition remains controversial, although it has been proposed that Ca(V)beta association is required. Previous work has shown that a C-terminal truncation of Rem (Rem-(1-265)) displays reduced in vivo binding to membrane-localized beta 2a and lacks channel regulatory function. In this paper, we describe a role for the Rem C terminus in plasma membrane localization through association with phosphatidylinositol lipids. Moreover, Rem-(1-265) can associate with beta 2a in vitro and beta 1b in vivo, suggesting that the C terminus does not directly participate in Ca(V)beta association. Despite demonstrated beta 1b binding, Rem-(1-265) was not capable of regulating a Ca(V)1.2-beta 1b channel complex, indicating that beta subunit binding is not sufficient for channel regulation. However, fusion of the CAAX domain from K-Ras4B or H-Ras to the Rem-(1-265) C terminus restored membrane localization and Ca(2+) channel regulation, suggesting that beta binding and membrane localization are independent events required for channel inhibition.  相似文献   

8.
Voltage-gated potassium channels are formed by the tetramerization of their alpha subunits, in a process that is controlled by their conserved N-terminal T1 domains. The crystal structures of Shaker and Shaw T1 domains reveal interesting differences in structures that are contained within a highly conserved BTB/POZ domain fold. The most surprising difference is that the Shaw T1 domain contains an intersubunit Zn2+ ion that is lacking in the Shaker T1 domain. The Zn2+ coordination motif is conserved in other non-Shaker channels making this the most distinctive difference between these channels and Shaker. In this study we show that Zn2+ is an important co-factor for the tetramerization of isolated Shaw and Shal T1 domains. Addition of Zn2+ increases the amount of tetramer formed, whereas chelation of Zn2+ with phenanthroline blocks tetramerization and causes assembled tetramers to disassemble. Within an intact cell, full-length Shal subunits containing Zn2+ site mutations also fail to form functional channels, with the majority of the protein found to remain monomeric by size exclusion chromatography. Therefore, zinc-mediated tetramerization also is a physiologically important event for full-length functional channel formation.  相似文献   

9.
The beta(2) subunit of the large conductance Ca(2+)- and voltage-activated K(+) channel (BK(Ca)) modulates a number of channel functions, such as the apparent Ca(2+)/voltage sensitivity, pharmacological and kinetic properties of the channel. In addition, the N terminus of the beta(2) subunit acts as an inactivating particle that produces a relatively fast inactivation of the ionic conductance. Applying voltage clamp fluorometry to fluorescently labeled human BK(Ca) channels (hSlo), we have investigated the mechanisms of operation of the beta(2) subunit. We found that the leftward shift on the voltage axis of channel activation curves (G(V)) produced by coexpression with beta(2) subunits is associated with a shift in the same direction of the fluorescence vs. voltage curves (F(V)), which are reporting the voltage dependence of the main voltage-sensing region of hSlo (S4-transmembrane domain). In addition, we investigated the inactivating mechanism of the beta(2) subunits by comparing its properties with the ones of the typical N-type inactivation process of Shaker channel. While fluorescence recordings from the inactivated Shaker channels revealed the immobilization of the S4 segments in the active conformation, we did not observe a similar feature in BK(Ca) channels coexpressed with the beta(2) subunit. The experimental observations are consistent with the view that the beta(2) subunit of BK(Ca) channels facilitates channel activation by changing the voltage sensor equilibrium and that the beta(2)-induced inactivation process does not follow a typical N-type mechanism.  相似文献   

10.
High conductance, calcium- and voltage-activated potassium (BK) channels are widely expressed in mammals. In some tissues, the biophysical properties of BK channels are highly affected by coexpression of regulatory (beta) subunits. beta1 and beta2 subunits increase apparent channel calcium sensitivity. The beta1 subunit also decreases the voltage sensitivity of the channel and the beta2 subunit produces an N-type inactivation of BK currents. We further characterized the effects of the beta1 and beta2 subunits on the calcium and voltage sensitivity of the channel, analyzing the data in the context of an allosteric model for BK channel activation by calcium and voltage (Horrigan and Aldrich, 2002). In this study, we used a beta2 subunit without its N-type inactivation domain (beta2IR). The results indicate that the beta2IR subunit, like the beta1 subunit, has a small effect on the calcium binding affinity of the channel. Unlike the beta1 subunit, the beta2IR subunit also has no effect on the voltage sensitivity of the channel. The limiting voltage dependence for steady-state channel activation, unrelated to voltage sensor movements, is unaffected by any of the studied beta subunits. The same is observed for the limiting voltage dependence of the deactivation time constant. Thus, the beta1 subunit must affect the voltage sensitivity by altering the function of the voltage sensors of the channel. Both beta subunits reduce the intrinsic equilibrium constant for channel opening (L0). In the allosteric activation model, the reduction of the voltage dependence for the activation of the voltage sensors accounts for most of the macroscopic steady-state effects of the beta1 subunit, including the increase of the apparent calcium sensitivity of the BK channel. All allosteric coupling factors need to be increased in order to explain the observed effects when the alpha subunit is coexpressed with the beta2IR subunit.  相似文献   

11.
The cytoplasmic beta subunit of voltage-dependent calcium channels modulates channel properties in a subtype-specific manner and is important in channel targeting. A high affinity interaction site between the alpha1 interaction domain (AID) in the I-II cytoplasmic loop of alpha1 and the beta interaction domain (BID) of the beta subunit is highly conserved among subunit subtypes. We describe a new subtype-specific interaction (Ss1) between the amino-terminal cytoplasmic domain of alpha1A (BI-2) and the carboxyl terminus of beta4. Like the interaction identified previously () between the carboxyl termini of alpha1A and beta4 (Ss2), the affinity of this interaction is lower than AID-BID, suggesting that these are secondary interactions. Ss1 and Ss2 involve overlapping sites on beta4 and are competitive, but neither inhibits the interaction with AID. The interaction with the amino terminus of alpha1 is isoform-dependent, suggesting a role in the specificity of alpha1-beta pairing. Coexpression of beta4 in Xenopus oocytes produces a reduced hyperpolarizing shift in the I-V curve of the alpha1A channel compared with beta3 (not exhibiting this interaction). Replacing the amino terminus of alpha1A with that of alpha1C abolishes this difference. Our data contribute to our understanding of the molecular organization of calcium channels, providing a functional basis for variation in subunit composition of native P/Q-type channels.  相似文献   

12.
To interpret the recent atomic structures of the Kv (voltage-dependent potassium) channel T1 domain in a functional context, we must understand both how the T1 domain is integrated into the full-length functional channel protein and what functional roles the T1 domain governs. The T1 domain clearly plays a role in restricting Kv channel subunit heteromultimerization. However, the importance of T1 tetramerization for the assembly and retention of quarternary structure within full-length channels has remained controversial. Here we describe a set of mutations that disrupt both T1 assembly and the formation of functional channels and show that these mutations produce elevated levels of the subunit monomer that becomes subject to degradation within the cell. In addition, our experiments reveal that the T1 domain lends stability to the full-length channel structure, because channels lacking the T1 containing N terminus are more easily denatured to monomers. The integration of the T1 domain ultrastructure into the full-length channel was probed by proteolytic mapping with immobilized trypsin. Trypsin cleavage yields an N-terminal fragment that is further digested to a tetrameric domain, which remains reactive with antisera to T1, and that is similar in size to the T1 domain used for crystallographic studies. The trypsin-sensitive linkages retaining the T1 domain are cleaved somewhat slowly over hours. Therefore, they seem to be intermediate in trypsin resistance between the rapidly cleaved extracellular linker between the first and second transmembrane domains, and the highly resistant T1 core, and are likely to be partially structured or contain dynamic structure. Our experiments suggest that tetrameric atomic models obtained for the T1 domain do reflect a structure that the T1 domain sequence forms early in channel assembly to drive subunit protein tetramerization and that this structure is retained as an integrated stabilizing structural element within the full-length functional channel.  相似文献   

13.
KcsA is a prokaryotic potassium channel formed by the assembly of four identical subunits around a central aqueous pore. Although the high-resolution X-ray structure of the transmembrane portion of KcsA is known [Doyle, D. A., Morais, C. J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon, R. (1998) Science 280, 69-77], the identification of the molecular determinant(s) involved in promoting subunit tetramerization remains to be determined. Here, C-terminal deletion channel mutants, KcsA Delta125-160 and Delta120-160, as well as 1-125 KcsA obtained from chymotrypsin cleavage of full-length 1-160 KcsA, have been used to evaluate the role of the C-terminal segment on the stability and tetrameric assembly of the channel protein. We found that the lack of the cytoplasmic C-terminal domain of KcsA, and most critically the 120-124 sequence stretch, impairs tetrameric assembly of channel subunits in a heterologous E. coli expression system. Molecular modeling of KcsA predicts that, indeed, such sequence stretch provides intersubunit interaction sites by hydrogen bonding to amino acid residues in N- and C-terminal segments of adjacent subunits. However, once the KcsA tetramer is assembled, its remarkable in vitro stability to detergent or to heat-induced dissociation into subunits is not greatly influenced by whether the entire C-terminal domain continues being part of the protein. Finally and most interestingly, it is observed that, even in the absence of the C-terminal domain involved in tetramerization, reconstitution into membrane lipids promotes in vitro KcsA tetramerization very efficiently, an event which is likely mediated by allowing proper hydrophobic interactions involving intramembrane protein domains.  相似文献   

14.
Cyclic nucleotide-gated channels are tetramers composed of homologous alpha and beta subunits. C-terminal truncation mutants of the alpha and beta subunits of the retinal rod channel were expressed in Xenopus oocytes, and analyzed for cGMP- and cAMP-induced currents (single-channel records and macroscopic currents). When the alpha subunit truncated downstream of the cGMP-binding site (alpha D608stop) is co-injected with truncated beta subunits, the heteromeric channels present a drastic increase of cAMP sensitivity. A partial effect is observed with heteromeric alpha R656stop-containing channels, while alpha K665stop-containing channels behave like alpha wt/beta wt. The three truncated alpha subunits have wild-type activity when expressed alone. Heteromeric channels composed of alpha wt or truncated alpha subunits and chimeric beta subunits containing the pore domain of the alpha subunit have the same cAMP sensitivity as alpha-only channels. The results disclose the key role of two domains distinct from the nucleotide binding site in the gating of heteromeric channels by cAMP: the pore of the beta subunit, which has an activating effect, and a conserved domain situated downstream of the cGMP-binding site in the alpha subunit (I609-K665), which inhibits this effect.  相似文献   

15.
Native cardiac and skeletal muscle Na channels are complexes of alpha and beta 1 subunits. While structural correlates for activation, inactivation, and permeation have been identified in the alpha subunit and the expression of alpha alone produces functional channels, beta 1- deficient rat skeletal muscle (mu 1) and brain Na channels expressed in Xenopus oocytes do not gate normally. In contrast, the requirement of a beta 1 subunit for normal function of Na channels cloned from rat heart or human heart (hH1) has been disputed. Coinjection of rat brain beta 1 subunit cRNA with hH1 (or mu 1) alpha subunit cRNA into oocytes increased peak Na currents recorded 2 d after injection by 240% (225%) without altering the voltage dependence of activation. In mu 1 channels, steady state inactivation was shifted to more negative potentials (by 6 mV, p < 0.01), but the shift of 2 mV was not significant for hH1 channels. Nevertheless, coexpression with beta 1 subunit speeded the decay of macroscopic current of both isoforms. Ensemble average hH1 currents from cell-attached patches revealed that coexpression of beta 1 increases the rate of inactivation (quantified by time to 75% decay of current; p < 0.01 at -30, -40, and -50 mV). Use- dependent decay of hH1 Na current during repeated pulsing to -20 mV (1 s, 0.5 Hz) after a long rest was reduced to 16 +/- 2% of the first pulse current in oocytes coexpressing alpha and beta 1 subunits compared to 35 +/- 8% use-dependent decay for oocytes expressing the alpha subunit alone. Recovery from inactivation of mu 1 and hH1 Na currents after 1-s pulses to -20 mV is multiexponential with three time constants; coexpression of beta 1 subunit decreased all three recovery time constants. We conclude that the beta 1 subunit importantly influences the function of Na channels produced by coexpression with either the hH1 or mu 1 alpha subunits.  相似文献   

16.
Transient receptor potential (TRP) channels as cellular sensors are thought to function as tetramers. Yet, the molecular determinants governing channel multimerization remain largely elusive. Here we report the identification of a segment comprising 21 amino acids (residues 752-772 of mouse TRPV1) after the known TRP-like domain in the channel C terminus that functions as a tetrameric assembly domain (TAD). Purified recombinant C-terminal proteins of TRPV1-4, but not the N terminus, mediated the protein-protein interaction in an in vitro pulldown assay. Western blot analysis combined with electrophysiology and calcium imaging demonstrated that TAD exerted a robust dominant-negative effect on wild-type TRPV1. When fused with the membrane-tethered peptide Gap43, the TAD blocked the formation of stable homomultimers. Calcium imaging and current recordings showed that deletion of the TAD in a poreless TRPV1 mutant subunit suppressed its dominant-negative phenotype, confirming the involvement of the TAD in assembly of functional channels. Our findings suggest that the C-terminal TAD in TRPV1 channels functions as a domain that is conserved among TRPV1-4 and mediates a direct subunit-subunit interaction for tetrameric assembly.  相似文献   

17.
KChIP proteins regulate Shal, Kv4.x, channel expression by binding to a conserved sequence at the N terminus of the subunit. The binding of KChIP facilitates a redistribution of Kv4 protein to the cell surface, producing a large increase in current along with significant changes in channel gating kinetics. Recently we have shown that mutants of Kv4.2 lacking the ability to bind an intersubunit Zn(2+) between their T1 domains fail to form functional channels because they are unable to assemble to tetramers and remain trapped in the endoplasmic reticulum. Here we find that KChIPs are capable of rescuing the function of Zn(2+) site mutants by driving the mutant subunits to assemble to tetramers. Thus, in addition to known trafficking effects, KChIPs play a direct role in subunit assembly by binding to monomeric subunits within the endoplasmic reticulum and promoting tetrameric channel assembly. Zn(2+)-less Kv4.2 channels expressed with KChIP3 demonstrate several distinct kinetic changes in channel gating, including a reduced time to peak and faster entry into the inactivated state as well as extending the time to recover from inactivation by 3-4 fold.  相似文献   

18.
19.
Voltage-gated Kv1 channels are key factors regulating excitability in the mammalian central nervous system. Diverse posttranslational regulatory mechanisms operate to determine the density, subunit composition, and localization of Kv1 channel complexes in the neuronal plasma membrane. In this study, we investigated the role of the endoplasmic reticulum chaperone calnexin in the intracellular trafficking of Kv1 channels. We found that coexpressing calnexin with the Kv1.2alpha subunit in transfected mammalian COS-1 cells produced a dramatic dose-dependent increase in cell surface Kv1.2 channel complexes. In calnexin-transfected COS-1 cells, the proportion of Kv1.2 channels with mature N-linked oligosaccharide chains was comparable to that observed in neurons. In contrast, calnexin coexpression exerted no effects on trafficking of the intracellularly retained Kv1.1 or Kv1.6alpha subunits. We also found that calnexin and auxiliary Kvbeta2 subunit coexpression was epistatic, suggesting that they share a common pathway for promoting Kv1.2 channel surface expression. These results provide yet another component in the elaborate repertoire of determinants regulating the density of Kv1 channels in the plasma membrane.  相似文献   

20.
Tsuruda PR  Julius D  Minor DL 《Neuron》2006,51(2):201-212
Transient receptor potential (TRP) channels mediate numerous sensory transduction processes and are thought to function as tetramers. TRP channel physiology is well studied; however, comparatively little is understood regarding TRP channel assembly. Here, we identify an autonomously folded assembly domain from the cold- and menthol-gated channel TRPM8. We show that the TRPM8 cytoplasmic C-terminal domain contains a coiled coil that is necessary for channel assembly and sufficient for tetramer formation. Cell biological experiments indicate that coiled-coil formation is required for proper channel maturation and trafficking and that the coiled-coil domain alone can act as a dominant-negative inhibitor of functional channel expression. Our data define an authentic TRP modular assembly domain, establish a clear role for coiled coils in ion channel assembly, demonstrate that coiled-coil assembly domains are a general feature of TRPM channels, and delineate a new tool that should be of general use in dissecting TRPM channel function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号