首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported that protein kinase C (PKC) activation induced meiotic maturation (germinal vesicle breakdown, GVBD) of Rana dybowskii follicular oocytes cultured in vitro without hormone treatment. The experiments reported here were carried out to establish whether ovarian follicles ovulated in response to PKC activation during culture. A phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), was used for PKC activation. TPA addition (10 microM) to cultured ovarian fragments induced ovulation and maturation of the oocytes similar to that seen following addition of frog pituitary homogenate (FPH, 0.05 pituitary/ml) or progesterone (0.5 microgram/ml). Such changes were not observed when ovarian fragments were treated with inactive phorbol ester. The time course of TPA-induced ovulation was similar to that produced by FPH-stimulated ovulation. Both TPA- and FPH-stimulated ovulation and maturation were blocked by treatment with cycloheximide, forskolin (an adenylate cyclase stimulator), and 1-(5-isoquinolinylsulfonyl)-2-methyl-piperazine (H-7; a PKC inactivator). FPH treatment markedly increased progesterone levels in the medium during ovarian fragment culture whereas TPA treatment failed to elevate progesterone levels. Thus, TPA treatment mimics FPH and progesterone in inducing ovulation and meiotic maturation in cultured amphibian ovarian fragments. The data strongly suggest that PKC plays an important role in regulating ovulation as well as in modulating amphibian oocyte maturation during follicular differentiation.  相似文献   

2.
In ovarian follicles of Rana pipiens, frog pituitary homogenates (FPH) elevate intrafollicular progesterone levels which in turn is thought to induce meiotic resumption in the prophase I arrested oocytes. Calcium plays a role in FPH and steroid-provoked responses in the somatic and gametic components of the follicle, presumably via effects exerted at the plasma membrane of their respective target cells. Many membrane active hormones which utilize Ca2+ in their intracellular transduction also provoke membrane phosphoinositide hydrolysis yielding inositol triphosphate (IP3) and diacyl glycerol (DAG), an activator of the CA2+-dependent protein kinase C (PKC). The actions of phorbol 12-myristate 13-acetate (TPA), a potent synthetic activator of PKC, on progesterone production and oocyte maturation was examined in in vitro cultured ovarian follicles. TPA induced germinal vesicle breakdown (GVBD) in intact follicles and in oocytes denuded of somatic components, while the inactive compound phorbol 13-monoacetate was ineffective. Further, TPA induction of GVBD exhibited similarities to progesterone-induced GVBD, being inhibited by treatments which elevate cAMP or inhibit protein synthesis. TPA alone did not elevate intrafollicular or medium progesterone levels, as occurred in FPH-treated follicles. TPA partially inhibited intrafollicular progesterone accumulation induced by FPH or treatments which elevate cAMP levels. These data suggest that activation of PKC plays a role in oocyte maturation independent of follicular progesterone production as occurs in response to FPH. Further, it appears that the somatic cells of the amphibian follicle also possess PKC which when activated, antagonizes cAMP generating pathway in these cells. Results indicate that protein kinase can influence oocyte maturation in Rana follicular oocytes by several mechanisms.  相似文献   

3.
Fully grown Xenopus oocytes are physiologically arrested at the G2/prophase border of the first meiotic division. Addition in vitro of progesterone or insulin causes release of the G2/prophase block and stimulates meiotic cell division of the oocyte, leading to maturation of the oocyte into an unfertilized egg. The possibility that the products of polyphosphoinositide breakdown, diacylglycerol and inositol-1,4,5-trisphosphate (IP3-, are involved in oocyte maturation was investigated. Microinjection of IP3 into oocytes just prior to addition of progesterone or insulin accelerated the rate of germinal vesicle breakdown (GVBD) by up to 25%. Half-maximal acceleration occurred at an intracellular IP3 concentration of 1 microM. Treatment of oocytes with the diacylglycerol analog and tumor promoter, 12-O-tetradecanoylphorbol 13-acetate (TPA) induced GVBD in the absence of hormone. Half-maximal induction of GVBD occurred with 150 nM TPA and was blocked by pretreatment of oocytes with 10 nM cholera toxin. Microinjection of highly purified protein kinase C from rat brain into oocytes did not induce maturation but markedly accelerated the rate of insulin-induced oocyte maturation. However, injection of the enzyme had no effect on progesterone action. In oocytes with a basal intracellular pH below 7.6, TPA increased intracellular pH, but GVBD occurred with TPA in Na-substituted medium. Neomycin, a putative inhibitor of polyphosphoinositide breakdown, reversibly inhibited insulin- but not progesterone-induced maturation. Half-maximal inhibition occurred at 1.6 mM neomycin. These results indicate that protein kinase C is capable of regulating oocyte maturation in Xenopus.  相似文献   

4.
Effect of tumor promoters including phorbol esters and teleocidin on 1-methyladenine (1-MeAde)-induced oocyte maturation was studied in the starfish. When isolated immature oocytes were treated with 1-MeAde and 12-O-tetradecanoylphorbol-13-acetate (TPA), 1-MeAde-induced maturation was completely inhibited at more than 2.5 μg/ml. However, if TPA was added after the hormone-dependent period (the minimum period wherein 1-MeAde is required), such maturation-inhibiting effect was no longer observed. Pretreatment with TPA for 5 min showed that its inhibitory action is irreversible. However, when TPA-injected oocytes were treated with 1-MeAde, all oocytes underwent germinal vesicle breakdown (GVBD). GVBD was induced in TPA-treated oocytes upon injection of the cytoplasm of maturing oocytes containing maturation-promoting factor (MPF). These facts show that TPA acts on the oocyte surface to inhibit the production of MPF. Retinoids including retinal, retinol and retinoic acid reversed the inhibitory effect of TPA on 1-MeAde-induced maturation. Experiments with various phorbol esters showed a good correlation between their maturation-inhibiting activity and their known tumor-promoting activity. Further, telecoidin, which is structurally unrelated to phorbol esters, inhibited 1-MeAde action. Since both tumor-promoting phorbol esters and teleocidin are known to activate Ca2+ -activated, phospholipid-dependent protein kinase (protein kinase C) and their activation effect is inhibited by retinoids, it appears that the activation of protein kinase C by tumor promoters is involved in blocking of 1-MeAde action.  相似文献   

5.
The possible role of protein kinase C (PKC) activation in mediating the stimulatory actions of a Fundulus pituitary extract (FPE) on ovarian steroidogenesis and oocyte maturation was investigated. The phorbol ester, phorbol 12-myristate 13-acetate (PMA), alone slightly increased basal 17 alpha-hydroxy,20 beta-dihydroprogesterone (DHP) and 17 beta-estradiol (E2) synthesis and significantly stimulated germinal vesicle breakdown (GVBD). Addition of FPE promoted synthesis of DHP, testosterone (T), and E2, and initiated GVBD. Phorbol ester inhibited FPE-induced steroidogenesis but increased the number of oocytes that underwent GVBD. Phorbol ester also markedly impeded induction of steroidogenesis by dibutyryl cAMP and differentially affected the conversion of 25-hydroxycholesterol, pregnenolone, or progesterone to DHP, T, and E2: DHP production was not affected; T production diminished; and E2 synthesis increased (T aromatization also increased). These results suggest an inhibitory role for the PKC pathway on FPE-induced ovarian steroid production, with PMA appearing to affect various steroidogenic steps. The stimulatory action of PMA on oocyte maturation seems to be independent of follicular steroid production since aminoglutethimide, an inhibitor of steroidogenesis, did not block PMA-induced GVBD. Moreover, PMA had a marked stimulatory effect on GVBD in denuded oocytes. Thus, in contrast to the inhibitory role found for the PKC pathway on ovarian follicular steroidogenesis, activation of PKC in the oocyte may serve as a signal-transducing mechanism leading to GVBD.  相似文献   

6.
It is known that amphibian oocytes undergo maturation through the formation and activation of maturation-promoting factor (MPF) in response to stimulation by the maturation-inducing hormone progesterone; however, the signal transduction pathway that links the hormonal stimulation on the oocyte surface to the activation of MPF in the oocyte cytoplasm remains a mystery. The aim of this study was to investigate whether the signal transduction mediated by phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB), and glycogen synthase kinase 3beta (GSK3beta) is involved in progesterone-induced oocyte maturation in the Japanese brown frog, Rana japonica. Inhibitors of PI3K, wortmannin and LY294002, inhibited progesterone-stimulated germinal vesicle breakdown (GVBD) only when the oocytes were treated at the initial phase of maturation, suggesting that PI3K is involved in the progesterone-induced maturation of Rana oocytes. However, we also obtained results suggesting that PKB and GSK3beta are not involved in Rana oocyte maturation. A constitutively active PKB expressed in the oocytes failed to induce GVBD in the absence of progesterone despite its high level of kinase activity. A Myc-tagged PKB expressed in the oocytes (used to monitor endogenous PKB activity) was not activated in the process of progesterone-induced oocyte maturation. Overexpression of GSK3beta, which is reported to retard the progress of Xenopus oocyte maturation, had no effect on Rana oocyte maturation. On the basis of these results, we propose that PI3K is involved in the initiation of Rana oocyte maturation, but that neither PKB nor GSK3beta is a component of the PI3K signal transduction pathway.  相似文献   

7.
Spermidine or spermine but not putrescine inhibited progesterone induced Bufo bufo gargarizans oocyte maturation.The ID50 for spermine inhibition via intra -oocyte microinjection on maturation induced by progesterone was 6.8mM(100nl).Spermine could inhibit MPF induced toad oocyte maturation with a much higher ID50.A 55 kD protein was dephosphorylated during the process of progesterone induced oocyte maturation .Spermine selectively promoted the level of phosphorylation of this protein in both progesterone-stimulated and hormone-untreated oocytes.The extent of its dephosphorylation was fairly Correlated with the percentage of GVBD in the hormone stimulated oocytes.The level of endogenous spermine was reduced by 28% between the perod of 0.40 GVBD50 and 0.60 GVBD50,at which 55 kD protein was dephosphorylated.Spermine inhibited progesterone-stimulated protein synthesis in almost the same dose dependent manner as its inhititory effect on the hormone-induced maturation,The endogenous spermine regulated 55 kD protein dephosphorylation which may trigger the increase of protein dephosphorylation which may trigger the increase of protein synthesis and in turn promote the activation of MPF,It is possible that 55 kD protein may be one of the components of messenger ribonucleoprotein(mRNP) particles.  相似文献   

8.
Seasonal and hormonal influences regulating oocyte maturation (germinal vesicle breakdown, GVBD) in ovarian follicles of Rana dybowskii were investigated. During the early winter (Dec.-Jan.) GVBD occurred at a low incidence following in vitro culture of intact follicles. Addition of progesterone of frog pituitary homogenate (FPH) to such follicles induced oocyte maturation, whereas IBMX or forskolin inhibited hormone-induced oocyte maturation. The time course of spontaneous in vitro maturation varied markedly with the seasons and between animals. Follicles isolated from the ovaries in early February required 21-24 hours of culture to mature spontaneously, and addition of FPH or progesterone to the culture medium markedly accelerated the time course of GVBD. In contrast, follicles isolated in late February matured very rapidly (less than 6 hours), and FPH or progesterone were ineffective in accelerating the time course of GVBD. IBMX and forskolin separately or in combination stimulated follicular progesterone production, which resembled that seen following FPH stimulation. FPH addition to such follicles shifted the steroid peak to the left (accelerated) and increased the absolute amount of hormone detected in late-maturing follicles (50% GVBD, about 18 hours) but not in rapidly maturing follicles (50% GVBD, 3 hours). In contrast to other amphibians, a high incidence of spontaneous oocyte maturation occurred during in vitro culture. Essentially all animals exhibited spontaneous maturation during the normal breeding season, even those animals collected in the early winter and kept in artificial hibernation at 4 degrees C for extended periods.  相似文献   

9.
中华大蟾蜍卵母细胞成熟过程中膜电位变化的实验分析   总被引:1,自引:0,他引:1  
The full-grown oocytes obtained from toad (bufo bufo gargarizans) submitted in hibernation state or reared at 25-30 degrees C for several months, named hibernation oocyte or high temperature oocyte, had a membrane potential of -41.51 +/- 0.77 mV and -43.83 +/- 1.39 mV in Ringer's solution respectively. The hibernation oocytes underwent GVBD (germinal vesicle breakdown) and membrane depolarization at 19 +/- 1 degree C after progesterone stimulation. The membrane potential was about -20 mV at the period of GVBD, and -10 mV or so at 20 hours after the hormone treatment. However, the high temperature oocytes did not undergo GVBD, their membrane potential decreased before the fourth hour after treatment with progesterone and then recovered. If the hibernation oocytes were preincubated at 37-38 degrees C for 13 hours prior to the culture in the medium containing progesterone (10(-6)M, 37-38 degrees C), no GVBD was observed and the membrane depolarized before the fourth hour after treatment with progesterone then recovered, but MPF was detectable in the cytoplasm (unpublished). Both GVBD and membrane depolarization appeared in the hibernation oocytes and high temperature oocytes after injection of MPF. The time required for the hibernation oocytes injected MPF to attain the membrane potential about -20 mV was 4 hours earlier than that of progesterone treatment. It was just the time required for the appearance of MPF in the cytoplasm of oocytes treated with the hormone. It was noticed in our precedent article that a factor which appeared in the cytoplasm of high temperature oocytes differed from MPF. The factor was called Hibernation Oocyte Mature Promoting Factor (HOMPF).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) in cumulus cells are involved in FSH-induced meiotic resumption of cumulus-enclosed oocytes (CEOs), but their regulation and cross talk are unknown. The present experiments were designed to investigate 1) the possible involvement of MAPK cascade in PKC-induced meiotic resumption; 2) the regulation of PKC on MAPK activity in FSH-induced oocyte maturation; and 3) the pattern of PKC and MAPK function in induced meiotic resumption of mouse oocytes. PKC activators, phorbol 12-myristate 13-acetate (PMA) and 1-oleoyl-2-acetyl-sn-glycerol (OAG), induced the meiotic resumption of CEOs and activation of MAPK in cumulus cells, whereas this effect could be abolished by PKC inhibitors, calphostin C and chelerythrine, or MEK inhibitor U0126. These results suggest that PKC might induce the meiotic reinitiation of CEOs by activating MAPK in cumulus cells. Both PKC inhibitors and U0126 inhibited the FSH-induced germinal vesicle breakdown (GVBD) of oocytes and MAPK activation in cumulus cells, suggesting that PKC and MAPK are involved in FSH-induced GVBD of mouse CEOs. Protein synthesis inhibitor cycloheximide (CHX) inhibited FSH- or PMA-induced oocyte meiotic resumption, but not the MAPK activation in cumulus cells. FSH and PKC activators induced the GVBD in denuded oocytes cocultured with cumulus cells in hypoxanthine (HX)-supplemented medium, and this effect could be reversed by U0126. Thus, when activated by FSH and PKC, MAPK may stimulate the synthesis of specific proteins in cumulus cells followed by secretion of an unknown positive factor that is capable of inducing GVBD in oocytes.  相似文献   

11.
The role of protein kinase C (PKC) in the successive steps of mouse oocyte meiotic process was investigated. We have used either OAG, an analog of diacylglycerol, or mezerein, a nonphorbol ester diterpene, less tumor promoting than phorbol esters, as PKC activators, and staurosporine as PKC inhibitor. Cumulus-free oocytes were cultured in minimum essential medium with each of these PKC modulators and maturation stages were screened every two hours until the end of the process. Both PKC activators prevented GVBD at each tested dose for 4 hr (OAG) and 8 hr (mezerein), and decreased the frequencies of PB oocytes. The inhibitory effects of both activators were dose dependent and reversible. The addition of OAG to the culture medium after GVBD occurrence (i.e., after 4 hrs) did not affect PB extrusion whereas similar addition of mezerein significantly decreased the frequency of PB oocytes. Inhibition of PKC by staurosporine accelerated GVBD and increased the frequency of PB extrusion. When staurosporine was added after GVBD, PB extrusion occurred earlier but PB oocyte frequency was not increased. Fertilizability was not affected when oocyte maturation occurred in the presence of any of these substances despite the delay in maturation process. These results clearly indicate that the PKC pathway is involved in mouse oocyte meiotic process: activation of the enzyme would arrest meiotic process whereas its inhibition would participate in meiosis induction.  相似文献   

12.
Based on immunoblotting analyses using phospho‐specific antibodies, follicle‐free oocytes of the marine nemertean worm Cerebratulus sp. activate protein kinase C (PKC) when induced to mature by either seawater (SW) or cAMP‐elevating drugs. In SW‐stimulated oocytes, the onset of maturation (=germinal vesicle breakdown, “GVBD”) can be inhibited by broadly acting PKC antagonists such as bisindoylmaleimide (BIM)‐I or BIM‐IX. Conversely, co‐treatment with SW solutions of BIM‐I or BIM‐IX plus a cAMP elevator (forskolin, serotonin, or a phosphodiesterase inhibitor) restores GVBD, indicating that the blockage of SW‐induced GVBD by PKC antagonists is not simply due to oocyte morbidity and that such inhibition is somehow reversible by cAMP signaling. In tests to determine which specific PKC may be involved in regulating GVBD, immunoblots fail to provide strong evidence for the presence of conventional or novel PKCs, which are characteristically activated by 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA). Moreover, inhibitors of TPA‐sensitive PKCs do not prevent SW‐induced GVBD, and TPA itself serves to downregulate, rather than stimulate, GVBD. Alternatively, maturing oocytes apparently possess phosphorylated forms of TPA‐insensitive isotypes, including an ~67‐kDa atypical PKC and an ~130‐kDa PKC‐related kinase (PRK). Accordingly, inhibitors of atypical PKC signaling block SW‐but not cAMP‐induced GVBD, collectively suggesting that instead of depending on a conventional or novel isotype, SW‐induced GVBD may require atypical PKC and/or PRK. In addition, such findings provide further support for the view that GVBD in nemertean oocytes can be achieved via multiple mechanisms, with SW triggering different signaling pathways than are stimulated in the presence of cAMP‐elevating drugs. Mol. Reprod. Dev. 76: 693–707, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
To test the possible role of protein kinase C (C-kinase) in regulating germinal vesicle breakdown (GVBD) in Spisula oocytes, we studied the effects of phorbol esters and antagonists of C-kinase on GVBD and protein phosphorylation. Responses to these agents were compared to those elicited by fertilization or increased extracellular K+. The tumor-promoting phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), a potent agonist of C-kinase, elicited GVBD with half-maximal stimulation at 20 nM. By contrast, 4 alpha-phorbol-12,13-didecanoate, a phorbol ester which does not stimulate C-kinase, did not trigger GVBD. TPA accelerated GVBD when induced by excess K+, but it did not affect the time course of the process when initiated by fertilization. Three structurally different antagonists of C-kinase (W-7, H-7, and retinol) all blocked GVBD when induced by fertilization or TPA. When oocytes were preincubated with [32P]orthophosphate and then stimulated to undergo GVBD by fertilization, TPA, or 45 mM K+, protein phosphorylation was greatly increased, especially for a polypeptide(s) of about 45 kDa. Phosphorylation increased prior to GVBD. Retinol inhibited phosphorylation in activated eggs. C-kinase activity was demonstrated in oocyte extracts. These results strongly suggest that protein phosphorylation by C-kinase is involved in the pathway that regulates GVBD in Spisula oocytes.  相似文献   

14.
The present study analyses the effect of dihydrotestosterone (DHT) and mammalian insulin on the nuclear maturation of Bufo arenarum oocytes under in vitro conditions. The response of fully grown follicle oocytes to DHT, shown by germinal vesicle breakdown (GVBD), occurred in a manner dependent on dose, time and sexual cycle period. The highest oocyte sensitivity to the hormone appeared during the breeding period, a fact evinced by high GVBD percentages after short incubation periods and at a low hormone concentrations. Insulin also proved effective in inducing nuclear maturation, although its action was only visible at high concentrations and after a long incubation period. The combination of insulin and steroid hormones (DHT or progesterone), both at subliminal doses, caused a noticeable potentiating synergism, resulting in a rapid and important increase in GVBD. Another effect of insulin was the acquisition by oocytes of steroid sensitivity during folliculogenesis.  相似文献   

15.
We have examined the presence of protein kinase C in oocytes of Chaetopterus pergamentaceus and its role in the initiation of germinal vesicle breakdown (GVBD). First, we demonstrated that the oocytes contain a phospholipid- and calcium-dependent protein kinase, protein kinase C (PKC). Since PKC is the primary intracellular receptor for phorbol esters, we tested the ability of phorbol 12,13-dibutyrate (PDBu) to induce GVBD and compared several critical events and processes involved in GVBD induced by PDBu to those induced normally (by seawater). Seawater and 100-200 nM PDBu induced chromosome condensation, spindle formation, and spindle migration over a similar time course. Both treatments induced similar alterations in the SDS-PAGE pattern of newly synthesized proteins. The synthesis of polypeptides of approximately 46 and 54 kDa increased specifically. Both treatments increased oocyte protein phosphorylation, especially of proteins of 22, 32, 46, 55, 64, and 84 kDa. Both treatments resulted in the activation of an M-phase-specific histone H1 kinase activity, which demonstrates the appearance of maturation-promoting factor. Staurosporine, a potent protein kinase C inhibitor, blocked GVBD and the activation of M-phase-specific H1 kinase, whereas HA1004, which preferentially antagonizes protein kinase A, had no effect. The results of this study demonstrate that protein kinase C can activate a wide spectrum of essential biochemical and morphological processes involved in GVBD. Further, these studies suggest that protein kinase C elicits GVBD by activating maturation-promoting factor and support the hypothesis that protein kinase C plays an essential role in oocyte maturation in this species.  相似文献   

16.
It has been demonstrated in Bufo arenarum that fully grown oocytes are capable of meiotic resumption in the absence of a hormonal stimulus if they are deprived of their follicular envelopes. This event, called spontaneous maturation, only takes place in oocytes collected during the reproductive period, which have a metabolically mature cytoplasm. In Bufo arenarum, progesterone acts on the oocyte surface and causes modifications in the activities of important enzymes, such as a decrease in the activity of adenylate cyclase (AC) and the activation of phospholipase C (PLC). PLC activation leads to the formation of diacylglycerol (DAG) and inositol triphosphate (IP(3)), second messengers that activate protein kinase C (PKC) and cause an increase in intracellular Ca(2+). Recent data obtained from Bufo arenarum show that progesterone-induced maturation causes significant modifications in the level and composition of neutral lipids and phospholipids of whole fully grown ovarian oocytes and of enriched fractions in the plasma membrane. In amphibians, the luteinizing hormone (LH) is responsible for meiosis resumption through the induction of progesterone production by follicular cells. The aim of this work was to study the importance of gap junctions in the spontaneous and LH-induced maturation in Bufo arenarum oocytes. During the reproductive period, Bufo arenarum oocytes are capable of undergoing spontaneous maturation in a similar way to mammalian oocytes while, during the non-reproductive period, they exhibit the behaviour that is characteristic of amphibian oocytes, requiring progesterone stimulation for meiotic resumption (incapable oocytes). This different ability to mature spontaneously is coincident with differences in the amount and composition of the phospholipids in the oocyte membranes. Capable oocytes exhibit in their membranes higher quantities of phospholipids than incapable oocytes, especially of PC and PI, which are precursors of second messengers such as DAG and IP(3). The uncoupling of the gap junctions with 1-octanol or halothane fails to induce maturation in follicles from the non-reproductive period, whose oocytes are incapable of maturing spontaneously. However, if the treatment is performed during the reproductive period, with oocytes capable of undergoing spontaneous maturation, meiosis resumption occurs in high percentages, similar to those obtained by manual defolliculation. Interestingly, results show that LH is capable of inducing GVBD in both incapable oocytes and in oocytes capable of maturing spontaneously as long as follicle cells are present, which would imply the need for a communication pathway between the oocyte and the follicle cells. This possibility was analysed by combining LH treatment with uncoupling agents such as 1-octanol or halothane. Results show that maturation induction with LH requires a cell-cell coupling, as the uncoupling of the gap junctions decreases GVBD percentages. Experiments with LH in the presence of heparin, BAPTA/AM and theophylline suggest that the hormone could induce GVBD by means of the passage of IP(3) or Ca(2+) through the gap junctions, which would increase the Ca(2+) level in the oocyte cytoplasm and activate phosphodiesterase (PDE), thus contributing to the decrease in cAMP levels and allowing meiosis resumption.  相似文献   

17.
Processes of oocyte maturation that may be affected by boron (B) deficiency were studied to potentially determine a possible biochemical role of B in the Xenopus laevis oocyte. More specifically, the Xenopus oocyte membrane progesterone receptor (OMPR) in B-deficient oocytes was characterized by evaluating progesterone affinity for the OMPR and OMPR responsiveness to progesterone stimulation. The responsiveness of B-deficient oocytes to microinjection of a purified oocyte cytoplasmic fraction (OCF) from B-adequate oocytes was also studied to evaluate which aspects of the maturation process were affected by B deficiency. Results suggested that B deficiency resulted in incomplete oocyte maturation and that maturation could not be induced by the administration of exogenous progesterone. Progesterone successfully induced germinal vesicle breakdown (GVBD) in oocytes from females fed a B-supplemented diet (+B) and females administered a traditional diet of beef liver and lung (B adequate). Addition of exogenous B to the -B oocytes increased the rate of progesterone-induced GVBD slightly. The B-deficient X. laevis oocytes were capable of undergoing GVBD when endogenously stimulated by microinjected purified B-adequate OCF. These results indicated that the inability of the B-deficient oocytes to undergo GVBD was not associated with the cytoplasmic induction process specifically, but possibly in the progesterone receptor or signal transduction pathways. Radio-binding studies found that progesterone binding to the B-deficient OPMR was greatly reduced compared to B-adequate or B-supplemented OMPR. Moreover, washout studies determined that progesterone binding to the OMPR in B-deficient oocytes was more transient than the B adequate or +B oocytes.  相似文献   

18.
In the amphibian, gonadotropins act on the epithelial cells surrounding the oocyte to produce and/or release progesterone which in turn acts at the oocyte surface to initiate the resumption of meiotic maturation. Since maturation is reported to require continuous exposure to gonadotropins but only brief (5--15 min) exposure to progesterone, it was of interest to reexamine the interrelationships between the two hormonal stimuli as well as the kinetics of progesterone production, metabolism, and biological activity. Germinal vesicle breakdown (GVBD) required continuous exposure to 0.005 pituitaries/ml for 6.0 h to produce 50% GVBD that occurred at 10.1 h. Actinomycin D (10 microgram/ml) completely inhibited pituitary induced GVBD when added during the first 5--6 h; 50% inhibition occurred when added at 7.3 h. Thus, actinomycin D continues to inhibit 1--2 h after the requirement for pituitary stimulation. Pituitary stimulation produced a 4-fold increase in 3H-acetate incorporation into progesterone and acetate conversion to progesterone was relatively constant during successive 2 h pulses throughout the 10 h period leading to GVBD. There was no significant metabolism of 3H-acetate derived progesterone when follicles were treated with pituitary extract, although the same follicles rapidly concentrated and metabolized exogenous 3H- or 14C-progesterone. The length of continuous progesterone exposure required for 50% GVBD varied from 11 h at 0.158 microM to less than 0.08 h at 15.8 microM. The time to 50% GVBD was only delayed by about 10% (1.5 h) when maximal and minimal progesterone levels were compared. A comparison of 3H-progesterone uptake and response (GVBD) as a function of [progesterone]0 indicated that uptake of 2--4 mumol 1(-1) cell water will induce 50% GVBD. These results indicate that a threshold uptake must be reached to initiate resumption of meiosis and that this level must be maintained throughout the period leading to nuclear breakdown. Under physiologic conditions, gonadotropins stimulate progesterone production and this progesterone is protected from, or inaccessible to, steroid metabolizing enzymes.  相似文献   

19.
Microinjection of Xenopus oocytes with ras protein (p21) was used to investigate the role of phospholipid metabolism in ras-induced meiotic maturation. Induction of meiosis by ras was compared with induction by progesterone, insulin, and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). Neomycin, which specifically binds to phosphatidylinositides and inhibits their metabolism, blocked meiotic maturation induced by ras or insulin but not by progesterone or TPA. In addition, p21 and TPA, but not insulin or progesterone, stimulated the incorporation of 32Pi into oocyte lipids. ras protein specifically stimulated 32P incorporation into phosphatidylinositides, whereas both ras and TPA stimulated 32P incorporation into phosphatidylcholine and phosphatidylethanolamine. The stimulatory effect of p21 on phosphatidylinositide metabolism correlated with the dose response and kinetics of ras-induced meiotic maturation. In addition, the ras oncogene protein was more potent than the proto-oncogene protein both in inducing meiotic maturation and in stimulating phosphatidylinositide metabolism. These results indicate that phosphatidylinositide turnover is required for ras-induced meiosis and suggest that phosphatidylinositide-derived second messengers mediate the biological activity of ras in Xenopus oocytes.  相似文献   

20.
In the egg-brooding frog Gastrotheca riobambae (Fowler), oocyte maturation is comparable to the situation of other frog species. In isolated follicles, progesterone induces only germinal vesicle breakdown (GVBD), while human chorionic gonadotropin (hCG) induces GVBD and ovulation. In addition, defolliculated oocytes respond with GVBD to the treatment with progesterone, while hCG has no effect. As in other frogs, oocyte maturation in vitro depends on hormonal action and on the presence of divalent cations. In this frog, progesterone or a similar hormone conditions the brooding pouch for reproduction and induces pouch closure. Follicles from frogs with closed pouches showed GVBD after 15-17 hours of incubation with progesterone, while those from frogs with open pouches took 19-24 hours for GVBD. These findings suggest that follicles become stimulated for maturation when the pouch is closed and that this stimulated condition is maintained for several weeks in advance of the process of oocyte maturation. In G. riobambae, the external appearance of the pouch aperture indicates the reproductive condition of the ovary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号