首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have examined the expression in Escherichia coli of genes encoding a plant chloroplast molecular chaperone, chaperonin-60. Purified plant chaperonin-60 is distinct in that it contains two polypeptides, p60cpn-60 alpha and p60cpn-60 beta, which have divergent amino acid sequences (Hemmingsen, S. M., and Ellis, R. J. (1986) Plant Physiol. 80, 269-276; Martel, R., Cloney, L. P., Pelcher, L. E., and Hemmingsen, S. M. (1990) Gene (Amst.) 94, 181-187). The precise polypeptide composition(s) of the active tetradecameric specie(s) (cpn60(14)) has not been determined. Genes encoding the mature forms of the Brassica napus chaperonin polypeptides have been expressed separately and in combination in E. coli to produce three novel strains: alpha, beta, and alpha beta. The plant cpn60 polypeptides accumulated in soluble forms and to similar high levels in each. There was no conclusive evidence that p60cpn-60 alpha assembled into cpn60(14) species in alpha cells. In beta and alpha beta cells, the plant gene products assembled efficiently into cpn60(14) species. Thus, the assembly of p60cpn-60 alpha required the presence of p60cpn-60 beta, whereas the assembly of p60cpn-60 beta could occur in the absence of p60cpn-60 alpha. Significant proportions of the endogenous groEL polypeptides were not assembled into tetradecameric groEL14 in beta and alpha beta cells. Analysis of the tetradecameric species that did form indicated the presence of novel hybrid cpn6014 species that contained both plant and bacterial cpn60 polypeptides.  相似文献   

2.
Brassica napus chaperonin-60 alpha and chaperonin-60 beta genes expressed separately and in combination produce three novel Escherichia coli strains: alpha, beta, and alpha beta. In beta and alpha beta cells, the plant gene products assemble efficiently into tetradecameric cpn60(14) species, including novel hybrids containing both bacterial and plant gene products. The levels of authentic groEL14 are reduced in these cells (Cloney, L. P., Wu, H. B., and Hemmingsen, S. M. (1992) J. Biol. Chem. 267, 23327-23332). The assembly of cyanobacterial ribulose-P2 carboxylase (rubisco) in E. coli requires the activities of the endogenous chaperonin proteins. Furthermore, the extent to which assembly occurs is limited by the normal levels of expression of the groE operon (Goloubinoff, P., Gatenby, A. A., and Lorimer, G. H. (1989) Nature 337, 44-47). We have now monitored the accumulation of cyanobacterial rubisco in E. coli alpha, beta, and alpha beta cells to assess the activity of the plant cpn60 gene products and effects on endogenous chaperonin functions. Expression of cpn-60 alpha alone did not enhance rubisco assembly, which is consistent with our previous observation that p60cpn-60 alpha required the presence of p60cpn-60 beta for assembly into cpn60(14) species. In contrast, expression of cpn-60 beta alone resulted in markedly enhanced rubisco assembly in cells that accumulated normal levels of both endogenous chaperonin polypeptides (groEL and groES). This demonstrates that assembled p60cpn-60 beta is functional as a chaperonin in E. coli. Co-expression of cpn-60 alpha and cpn-60 beta in cells with normal levels of expression of groES and groEL suppressed rubisco assembly. Increased expression of groES in cells in which cpn-60 alpha and cpn-60 beta were co-expressed relieved this suppression and resulted in enhanced rubisco assembly. Implications with respect to dependence of chloroplast cpn60 function on cpn10 are discussed.  相似文献   

3.
Plastid chaperonin-60 protein was purified to apparent homogeneity from Brassica napus using a novel protocol. The purified protein, which migrated as a single species by nondenaturing polyacrylamide gel electrophoresis, contained four polypeptides: three variants of p60cpn60 alpha and p60cpn60 beta. Partial amino acid sequence determination demonstrated that each variant of p60cpn60 alpha is a distinct translation product. During this study, additional chaperonin-60 proteins were purified. These proteins, which were free from contaminating plastid chaperonin-60, were separated into at least two high molecular weight species that were resolved only by nondenaturing polyacrylamide gel electrophoresis. These proteins contained three 60-kD polypeptides. Two of these polypeptides were recognized by existing antisera, whereas the third was not. Partial amino acid sequence data revealed that each of these, including the immunologically distinct polypeptide, is a chaperonin-60 subunit of putative mitochondrial origin. The behavior of chaperonin-60 proteins during blue A Dyematrex chromatography suggests that this matrix may be generally useful for the identification of chaperonin-60 proteins.  相似文献   

4.
Roesler KR  Ogren WL 《Plant physiology》1990,94(4):1837-1841
Immunoblot analysis of ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) activase from the green alga Chlamydomonas reinhardtii indicated the presence of a single polypeptide. This observation contrasts with the Spinacea oleracea (spinach) and Arabidopsis thaliana proteins, in which two polypeptide species are generated by alternative pre-mRNA splicing. A Chlamydomonas rubisco activase cDNA clone containing the entire coding region was isolated and sequenced. The open reading frame encoded a 408 amino acid, 45 kilodalton polypeptide that included a chloroplast transit peptide. The presumptive mature polypeptide possessed 62% and 65% amino acid sequence identity, respectively, with the spinach and Arabidopsis mature polypeptides. The Chlamydomonas rubisco activase transit peptide possessed almost no amino acid sequence identity with the higher plant transit peptides. The nucleotide sequence of Chlamydomonas rubisco activase cDNA provided no evidence for alternative mRNA splicing, consistent with the immunoblot evidence for only one polypeptide. Genomic DNA blot analysis indicated the presence of a single Chlamydomonas rubisco activase gene. In the presence of spinach rubisco activase, a lower extent and rate of activation were obtained in vitro with Chlamydomonas rubisco than with spinach rubisco. We conclude Chlamydomonas rubisco activase comprises a single polypeptide which differs considerably from the higher plant polypeptides with respect to primary structure.  相似文献   

5.
The occurrence and distribution of a multifunctional chaperonin-60 (cpn60), the GroEL protein, was demonstrated in the cyanobacterium Anabaena PCC 7120 by using a rabbit anti-GroEL (Escherichia coli) antibody. Western-blot analysis showed a distinct cross-reaction with a protein of approx. 65 kilodaltons, analogous to the Mr of the E. coli homologue. Immunocyto-chemical studies of vegetative cells showed that a chaperonin was localized in both vegetative cells and heterocysts. In vegetative cells cpn60 was primarily detected both in the carboxysomes, and in the cytoplasm, though mainly in the thylakoid region of the latter. In heterocysts, specialized cells for nitrogen fixation, the cpn60 label was prominent and was evenly distributed throughout the cell. These results support recent findings that chaperonins are multifunctional proteins, and extend those findings by demonstrating the occurrence of cpn60 in a prokaryotic cyanobacterium and by raising the possibility of the involvement of this chaperonin in the assembly of heterocystous proteins.Abbreviations cpn60 chaperonin-60 - Mr relative molecular mass - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase  相似文献   

6.
Polyadenylated RNA was isolated from maize leaves and translated in vitro. In agreement with a previous report by others, we found among the translation products a 110-kilodalton pyruvate orthophosphate dikinase (PPDK) precursor that is about 16 kilodaltons larger than the polypeptide isolated from cells. This maize PPDK precursor polypeptide was taken up from the translation product mixture by intact spinach chloroplasts and yielded a mature PPDK polypeptide (94 kilodaltons). The uptake and processing support the proposal that the extra 16-kilodalton size of the polypeptide from in vitro translation of maize leaf mRNA represents a transit sequence which is cleaved after its entry into chloroplasts. Moreover, these results provide additional evidence that in vivo in maize leaf cells PPDK polypeptide is synthesized in the cytoplasm and is transported into the chloroplasts.

Location of PPDK in C3 plant leaves was investigated by immunochemical analysis. Intact chloroplasts were isolated from leaves of spinach, wheat, and maize. A protein blot of stromal protein in each case gave rise to bands corresponding to authentic PPDK polypeptide. This result indicates that PPDK is present in chloroplasts of C3 plant leaves as it is in the case of C4 plants.

  相似文献   

7.
When isolated pea plastids are incubated with translation products of poly(A+) mRNA they specifically import precursor molecules of plastid polypeptides. Etioplasts and chloroplasts import the same polypeptides from identical translation products, and, the imported polypeptides can be well resolved by two-dimensional gel electrophoresis. Therefore, the posttranslational uptake system using isolated chloroplasts can monitor changes in the abundance of translatable plastid-targeted messages. Poly(A+) mRNA was isolated from peas at various times during greening and analyzed by this technique. (a) After 48 hours of illumination of dark-grown plants, the relative portion of nuclear encoded messages for plastid targeted proteins had increased by a factor of 2. The percentage of polypeptides recovered in the stroma fraction increased from about 50 to 65%. (b) More than 140 imported polypeptide species could be detected in fluorograms of two-dimensional gels, most of which could be identified throughout the time course of greening. At least 37 imported polypeptides decreased and 36 increased in relative abundance during greening of darkgreen plants. (c) In most cases, where differences in translatable messages were seen between dark- and light-grown plants, they were accompanied by parallel changes in polypeptide abundance.  相似文献   

8.
Using the expression vector gt11 and immunochemical detection, six cDNA clones that encode the entire precursor polypeptides for spinach thioredoxin m were isolated and characterized. The ca. 1.0 kb cDNA sequence of the largest clone hybridizes to an RNA species of 1.1 kb. In each instance the cDNA sequences display single open reading frames encoding polypeptides of 181 amino acid residues corresponding to a molecular mass of 19.8 kDa. The sequences of the independently selected cDNAs fall into two classes that are indicative of at least two (closely related) genes for this protein. The amino acid sequences deduced from the cDNA sequences differ to some extent from the amino acid sequence published for spinach thioredoxin m. The sequences predict identical mature proteins of 112–114 amino acids corresponding to a polypeptide molecular mass of ca. 12.4–12.6 kDa, and include stroma-targeting N-terminal transit peptides of 67 residues which are removed during or after import into the organelle. Precursor protein was made in vitro from each of the different cDNA clones and imported into isolated intact chloroplasts. Independent of the cDNA clone used, two isoforms were detected in the chloroplasts after import in each instance. They comigrated with authentic thioredoxin mb and mc. These results indicate that the size variants observed for this protein in vivo result from post-translational modification and do not originate in different genes.  相似文献   

9.
The possibilities of independent function of the two chaperonin 10 (cpn10) domains of the cpn10 homologue from spinach chloroplasts and the role of five conserved amino acid residues in the N-terminal cpn10 unit were investigated. Recombinant single domain proteins and complete chloroplast cpn10 proteins carrying amino acid exchanges of conserved residues in their N-terminal cpn10 domain were expressed in Escherichia coli and partially purified. The function of the recombinant proteins was tested using GroEL as chaperonin 60 (cpn60) partner for in vitro refolding of denatured ribulose-1,5-bisphosphate carboxylase (Rubisco). Interaction with cpn60 was also monitored by the ability to inhibit GroEL ATPase activity. In vitro both isolated cpn10 domains were found to be incapable of co-chaperonin function. All mutants were also severely impaired in cpn10 function. The results are interpreted in terms of an essential role of the exchanged amino acid residues for the interaction between co-chaperonin and cpn60 partner and in terms of a functional coupling of both cpn10 domains.To test the function of mutant chloroplast cpn10 proteins in vivo the cpn10 deficiency of E. coli strain CG712 resulting in an inability to assemble -phage was exploited in a complementation assay. Transformation with plasmids directing the expression of mutant chloroplast cpn10 proteins in two cases restored -phage assembly in this bacterial strain to the same extent as did transformation with a plasmid encoding wild-type cpn10 protein. In contrast a plasmid encoded third mutant and truncated forms of chloroplast cpn 10 showed significantly reduced complementation efficiencies.  相似文献   

10.
Lumazine synthase, which catalyzes the penultimate step of riboflavin biosynthesis, has been cloned from three higher plants (spinach, tobacco, and arabidopsis) through functional complementation of an Escherichia coli auxotroph. Whereas the three plant proteins exhibit some structural similarities to known microbial homologs, they uniquely possess N-terminal polypeptide extensions that resemble typical chloroplast transit peptides. In vitro protein import assays with intact chloroplasts and immunolocalization experiments verify that higher plant lumazine synthase is synthesized in the cytosol as a larger molecular weight precursor protein, which is post-translationally imported into chloroplasts where it is proteolytically cleaved to its mature size. The authentic spinach enzyme is estimated to constitute <0.02% of the total chloroplast protein. Recombinant "mature" spinach lumazine synthase is expressed in E. coli at levels exceeding 30% of the total soluble protein and is readily purified to homogeneity using a simple two-step procedure. Apparent V(max) and K(m) values obtained with the purified plant protein are similar to those reported for microbial lumazine synthases. Electron microscopy and hydrodynamic studies reveal that native plant lumazine synthase is a hollow capsid-like structure comprised of 60 identical 16.5-kDa subunits, resembling its icosahedral counterparts in E. coli and Bacillus subtilis.  相似文献   

11.
12.
13.
Ustilago maydis killer toxins are small polypeptides (7–14 kDa) whichkill susceptible cells of closely related fungal species. The KP4 toxin is a single polypeptide subunit with a molecular weight of 11.1 kDa. In this work, a transgenic tobacco plant was constructed which secretes the KP4 toxin at a high level. The KP4 toxin expressed in this transgenic plant was of the same size and specificity as the authentic Ustilago KP4 toxin. The expression level was at least 500 times higher than that of the KP6 toxin expressed in plants. Transgenic crop plants producing the KP4 toxin could be rendered resistant to KP4-susceptible fungal pathogens.  相似文献   

14.
Purification and species distribution of rubisco activase   总被引:16,自引:8,他引:8       下载免费PDF全文
Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activase, a soluble chloroplast protein which promotes light-dependent rubisco activation, was partially purified from spinach chloroplasts by ion-exchange and gel-filtration fast protein liquid chromatography. The protein could also be isolated using rate zonal centrifugation in sucrose gradients followed by conventional ion-exchange on DEAE-cellulose. The active enzyme was composed of 44 and 41 kilodalton subunits. Antibodies to the activase polypeptides were produced in tumor-induced mouse ascites fluid and used as probes for activase on immunoblots of soluble proteins from a number of species. One or both of the activase polypeptides were recognized in all higher plant species examined including Arabidopsis thaliana, soybean, kidney bean, pea, tobacco, maize, oat, barley, celery, tomato, pigweed, purslane, dandelion, sorghum, and crabgrass. The polypeptides were not present in a mutant of Arabidopsis which is incapable of activating rubisco in vivo. The activase polypeptides were also detected in cell extracts of the green alga Chlamydomonas reinhardii. Activase activity, which had been demonstrated previously in wild-type Arabidopsis and in spinach, was measured in protoplast extracts of Nicotiana rustica. The results suggest that control of rubisco by activase may be an ubiquitous form of regulation in eucaryotic photosynthetic organisms.  相似文献   

15.
16.
Most chloroplastic proteins are synthesized as precursors in the cytosol prior to their transport into chloroplasts. These precursors are generally synthesized in a form that is larger than the mature form found inside chloroplasts. The extra amino acids, called transit peptides, are present at the amino terminus. The transit peptide is necessary and sufficient to recognize the chloroplast and induce movement of the attached protein across the envelope membranes. In this review, we discuss the primary and secondary structure of transit peptides, describe what is known about the import process, and present some hypotheses on the evolutionary origin of the import mechanism.Abbreviations DHFR dihydrofolate reductase - EPSP synthase 5-enolpyrovylshikimate-3-phosphate synthase; hsp heat-shock protein - LHCP II light-harvesting chlorophylla/b binding protein - OEE 16, 23, and 33 the 16-, 23-, and 33-kDa proteins of the oxygen-evolving complex - pr precursor - rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - SS rubisco small subunit  相似文献   

17.
18.
Ribulosebisphosphate carboxylase/oxygenase (EC 4.1.1.39) (rubisco) must be fully activated in order to catalyze the maximum rates of photosynthesis observed in plants. Activation of the isolated enzyme occurs spontaneously, but conditions required to observe full activation are inconsistent with those known to occur in illuminated chloroplasts. Genetic studies with a nutant of Arabidopsis thaliana incapable of activating rubisco linked two chloroplast polypeptides to the activation process in vivo. Using a reconstituted light activation system, it was possible to demonstrate the participation of a chloroplast protein in rubisco activation. These results indicate that a specific chloroplast enzyme, rubisco activase, catalyzes the activation of rubisco in vivo.  相似文献   

19.
20.
We isolated a cDNA clone from Arabidopsis thaliana encoding the TCA cycle enzyme, citrate synthase. The plant enzyme displays 48% and 44% amino acid residue similarity with the pig, and yeast polypeptides, respectively. Many proteins, including citrate synthase, which are destined to reside in organelles such as mitochondria and chloroplasts, are the products of the nucleocytoplasmic protein synthesizing machinery and are imported post-translationally to the site of function. We present preliminary investigations toward the establishment of an in vitro plant mitochondrial import system allowing for future studies to dissect this process in plants where the cell must differentiate between mitochondria and chloroplast and direct their polypeptides appropriately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号