首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A Gram-stain negative, non-motile, rod-shaped bacterial strain, designated 2-56T, was isolated from water and characterized taxonomically using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain 2-56T belongs to the family Flavobacteriaceae in the phylum Bacteroidetes and is closely related to Flavobacterium paronense KNUS1T (98.4%) and Flavobacterium collinsense 4-T-2T (96.7%). The G?+?C content of the genomic DNA of strain 2-56T was 33.4 mol%. The isolate contained MK-6 as the predominant respiratory quinone, and iso-C15:1 G (15.9%), iso-C15:0 (15.8%), iso-C17:0 3-OH (10.7%), and iso-C15:0 3-OH (9.6%) were the major fatty acids. The major polar lipids were phosphatidylethanolamine and an unidentified lipid. The phenotypic and chemotaxonomic data support the affiliation of strain 2-56T with the genus Flavobacterium. However, the DNA–DNA relatedness between the isolate and F. paronense and F. collinsense were 35.7 and 21.5%, respectively, clearly showing that strain 2-56T is not related to them at the species level. Strain 2-56T could be clearly differentiated from its close neighbours on the basis of its phenotypic, genotypic and chemotaxonomic features. Therefore, strain 2-56T represents a novel species of the genus Flavobacterium, for which the name Flavobacterium knui sp. nov. is proposed. The type strain is 2-56T (=?KCTC 62061T?=?JCM 32247T).  相似文献   

2.
Strain ZZ-8T, a Gram-negative, aerobic, non-spore-forming, non-motile, yellow-pigmented, rod-shaped bacterium, was isolated from metolachlor-contaminated soil in China. The taxonomic position was investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain ZZ-8T is a member of the genus Flavobacterium and shows high sequence similarity to Flavobacterium humicola UCM-46T (97.2%) and Flavobacterium pedocola UCM-R36T (97.1%), and lower (<?97%) sequence similarity to other known Flavobacterium species. Chemotaxonomic analysis revealed that strain ZZ-8T possessed MK-6 as the major respiratory quinone; and iso-C15:0 (28.5%), summed feature 9 (iso-C17:1 w9c/C16:0 10-methyl, 22.9%), iso-C17:0 3-OH (17.0%), iso-C15:0 3-OH (8.9%), iso-C15:1 G (8.6%) and summed feature 3 (C16:1 w7c/C16:1 w6c, 5.7%) as the predominant fatty acids. The polar lipids of strain ZZ-8T were determined to be lipids, a glycolipid, aminolipids and phosphatidylethanolamine. Strain ZZ-8T showed low DNA–DNA relatedness with F. pedocola UCM-R36T (43.23?±?4.1%) and F. humicola UCM-46T (29.17?±?3.8%). The DNA G+C content was 43.3 mol%. Based on the phylogenetic and phenotypic characteristics, chemotaxonomic data and DNA–DNA hybridization, strain ZZ-8T is considered a novel species of the genus Flavobacterium, for which the name Flavobacterium zaozhuangense sp. nov. (type strain ZZ-8T?=?KCTC 62315 T?=?CCTCC AB 2017243T) is proposed.  相似文献   

3.
A novel bacterium designated S-42T was isolated from stream bank soil. Cells were found to be aerobic, Gram staining-negative, oxidase-positive, catalase-negative, non-motile, non-spore-forming, rod-shaped, and yellow-pigmented. The strain can grow at 15–35 °C, pH 6.0–10.0, and at 0.5% (w/v) NaCl concentration. Urea was hydrolysed. Flexirubin-type pigments were absent. Phylogenetic analysis based on its 16S rRNA gene sequence revealed that strain S-42T formed a lineage within the family Flavobacteriaceae of the phylum Bacteroidetes that is distinct from various species of the genus Flavobacterium, including Flavobacterium maotaiense T9T (97.6% sequence similarity), Flavobacterium hibernum ATCC 51468T (97.4%), and Flavobacterium granuli Kw05T (97.1%). The 16S rRNA gene sequences identity between strain S-42T and other members of the genus Flavobacterium were < 97.0%. Strain S-42T contains MK-6 as sole respiratory quinone. The major polar lipids were identified as phosphatidylethanolamine and an unidentified aminolipid. The major cellular fatty acids were identified as iso-C15:0, summed feature 3 (C16:1ω7c and/or C16: 1ω6c), C16:0, anteiso-C15:0, iso-C17:0 3-OH, iso-C15:0 3-OH, and iso-C15:1 G. The DNA G?+?C content of the strain was 35.8 mol%. The polyphasic characterization indicated that strain S-42T represents a novel species of the genus Flavobacterium, for which the name Flavobacterium ureilyticum sp. nov. is proposed. The type strain is S-42T (=?KEMB 9005-537T?=?KACC 19115T?=?NBRC 112683T).  相似文献   

4.
A Gram-stain negative, non-motile, rod-shaped, aerobic bacterium, designated 15J8-8T, was isolated from a soil sample collected on Jeju Island, South Korea, and characterized taxonomically using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain 15J8-8T belongs to the family Cytophagaceae and is related to Larkinella bovis M2TB15T (95.0%), ‘Larkinella harenae’ 15J9-9 (94.5%), Larkinella arboricola Z0532T (93.2%), and Larkinella insperata LMG 22510T (93.0%). The DNA G+C content of strain 15J8-8T was 50.5 mol%. The detection of phosphatidylethanolamine and two unidentified polar lipids as major polar lipids; menaquinone-7 as the predominant quinone; and C16:1 ω5c, C16:0 N alcohol, and iso-C15:0 as the major fatty acids also supported the affiliation of the isolate to the genus Larkinella. Based on its phenotypic properties and phylogenetic distinctiveness, strain 15J8-8T should be classified in the genus Larkinella as representative of a novel species, for which the name Larkinella terrae sp. nov. is proposed. The type strain is 15J8-8T (= KCTC 52001T = JCM 31990T).  相似文献   

5.
A Gram-stain-positive, halophilic, rod-shaped, non-motile, spore forming bacterium, strain NKC1-2T, was isolated from kimchi, a Korean fermented food. Comparative analysis based on 16S rRNA gene sequence demonstrated that the isolated strain was a species of the genus Virgibacillus. Strain NKC1-2T exhibited high level of 16S rRNA gene sequence similarity with the type strains of Virgibacillus xinjiangensis SL6-1T (96.9%), V. sediminis YIM kkny3T (96.8%), and V. salarius SA-Vb1T (96.7%). The isolate grew at pH 6.5–10.0 (optimum, pH 8.5–9.0), 0.0–25.0% (w/v) NaCl (optimum, 10–15% NaCl), and 15–50°C (optimum, 37°C). The major menaquinone in the strain was menaquinone-7, and the main peptidoglycan of the strain was meso-diaminopimelic acid. The predominant fatty acids of the strain were iso-C14:0, anteisio-C15:0, iso- C15:0, and iso-C16:0 (other components were < 10.0%). The polar lipids consisted of diphosphatidylglycerol and phosphatidylglycerol. The genomic DNA G + C content of NKC1-2T was 42.5 mol%. On the basis of these findings, strain NKC1-2T is proposed as a novel species in the genus Virgibacillus, for which the name Virgibacillus kimchii sp. nov. is proposed (=KACC 19404T =JCM 32284T). The type strain of Virgibacillus kimchii is NKC1-2T.  相似文献   

6.
A Gram-positive, strictly aerobic, nonmotile, yellowish, coccus-rod-shaped bacterium (designated Gsoil 653T) isolated from ginseng cultivating soil was characterized using a polyphasic approach to clarify its taxonomic position. The strain Gsoil 653T exhibited optimal growth at pH 7.0 on R2A agar medium at 30°C. Phylogenetic analysis based on 16S rRNA gene sequence similarities, indicated that Gsoil 653T belongs to the genus Terrabacter of the family Humibacillus, and was closely related to Terrabacter tumescens DSM 20308T (98.9%), Terrabacter carboxydivorans PY2T (98.9%), Terrabacter terrigena ON10T (98.8%), Terrabacter terrae PPLBT (98.6%), and Terrabacter lapilli LR-26T (98.6%). The DNA G + C content was 70.5 mol%. The major quinone was MK-8(H4). The primary polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidyl-ethanolamine. The predominant fatty acids were iso-C15:0, iso-C16:0, iso-C14:0, and anteiso-C15:0, as in the case of genus Terrabacter, thereby supporting the categorization of strain Gsoil 653T. However, the DNA-DNA relatedness between Gsoil 653T and closely related strains of Terrabacter species was low at less than 31%. Moreover, strain Gsoil 653T could be both genotypically and phenotypically distinguished from the recognized species of the genus Terrabacter. This isolate, therefore, represents a novel species, for which the name Terrabacter ginsengisoli sp. nov. is proposed with the type strain Gsoil 653T (= KACC 19444T = LMG 30325T).  相似文献   

7.
A Gram-negative, non-motile, aerobic, catalase-, and oxidasepositive bacterial strain, designated DCY117T, was isolated from ginseng cultivated soil in Gochang-gun, Republic of Korea, and was characterized taxonomically using a multifaceted approach. 16S rRNA gene sequence analysis revealed that strain DCY117T showed highest similarity to Lysobacter ruishenii CTN-1T (95.3%). Phylogenetic analysis revealed that closely related relatives of strain DCY117T were L. aestuarii S2-CT (95.1%), L. daejeonensis GH1-9T (95.0%), and L. caeni BUT-8T (94.9%). Diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), and phosphatidylethanolamine (PE) were the major polar lipids of strain DCY117T. The major isoprenoid quinone was Q-8. The major cellular fatty acids of strain DCY117T were iso-C15:0, iso-C16:0, and summed feature 9 (comprising iso-C17:1ω9c and/or 10-methyl-C16:0). Genomic DNA G + C content was 61.8 mol%. On the basis of our findings, strain DCY117T is a novel species in the genus Lysobacter. We propose the name Lysobacter panacihumi sp. nov., and the type strain is DCY117T (= KCTC 62019T = JCM 32168T).  相似文献   

8.
A non-motile, pink-pigmented bacterial strain designated IMCC25679T, was isolated from freshwater Lake Chungju of Korea. Phylogenetic trees based on 16S rRNA gene sequences showed that the strain IMCC25679T formed a lineage within the genus Pedobacter. The strain IMCC25679T was closely related to Pedobacter daechungensis Dae 13T (96.4% sequence similarity), Pedobacter rivuli HME8457T (95.3%) and Pedobacter lentus DS-40T (94.3%). The major fatty acids of IMCC- 25679T were iso-C15:0, iso-C16:0 and summed feature 3 (comprising C16:1ω6c and/or C16:1ω7c). The major respiratory quinone was MK-7. The major polar lipids were phosphatidylethanolamine (PE), an unidentified sphingolipid (SL), an unidentified aminolipid (AL) and three unidentified polar lipids (PL). The DNA G + C content of IMCC25679T was 32.2 mol%. Based on the evidence presented in this study, the strain IMCC25679T represents a novel species within the genus Pedobacter, with the proposed name Pedobacter aquicola, sp. nov. The type strain is IMCC25679T (= KACC 19486T = NBRC113131T).  相似文献   

9.
A Gram-stain negative, aerobic, non-motile, rod-shaped and yellow bacterium, designated TX0651T, was isolated from an automotive air-conditioning system. Phylogenetically, the strain groups with the members of the genus Flavisolibacter and exhibits high 16S rRNA gene sequence similarities with Flavisolibacter ginsenosidimutans Gsoil 636T (97.4%), Flavisolibacter ginsengiterrae Gsoil 492T (96.3%) and Flavisolibacter ginsengisoli Gsoil 643T (96.2%). DNA–DNA relatedness between TX0651T and F. ginsenosidimutans KCTC 22818T and F. ginsengiterrae KCTC 12656T were determined to be less than 40%. The low levels of DNA–DNA relatedness identifies the strain TX0651T as a novel species in the genus Flavisolibacter. The major cellular fatty acids were identified as iso-C15:0, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), iso-C15:1 G and iso-C17:0 3-OH. The predominant respiratory quinone was identified as MK-7. The polar lipids were found to be comprised of phosphatidylethanolamine, unidentified amino-glycophospholipids, an unidentified aminophospholipid, an unidentified amino lipid and unidentified lipids. The DNA G+C content of the strain was determined to be 31.2 mol%. On the basis of the phenotypic, genotypic and chemotaxonomic characteristics, strain TX0651T should be classified in a novel species in the genus Flavisolibacter, for which the name Flavisolibacter carri sp. nov. (=?KACC 19014T?=?KCTC 52836T?=?NBRC 111784T) is proposed.  相似文献   

10.
A Gram-stain negative, rod-shaped, aerobic strain, designated YC973T, was isolated from a seamount near the Yap Trench in the tropical western Pacific. Phylogenetic analysis based on its 16S rRNA gene sequence showed that strain YC973T is related to the genus Maribacter and has high 16S rRNA gene sequence similarity to Maribacter orientalis KMM 3947T (97.6%). The predominant cellular fatty acids were iso-C15:0, iso-C15:1 G and an unidentified fatty acid of equivalent chain-length 13.565. The polar lipid profile contained phosphatidylethanolamine and five unidentified lipids. The genomic DNA G+C content of strain YC973T was 36.1 mol%. On the basis of the evidence presented in this study, strain YC973T represents a novel species of the genus Maribacter, for which we propose the name Maribacter marinus sp. nov. (type strain YC973T = KACC 19025T = CGMCC 1.16328T).  相似文献   

11.
An aerobic, Gram-stain negative, rod-shaped, non-motile bacterium, designated as strain HQA918T, was isolated from an ascidian, Botryllus schlosseri, which was collected from the coast of Weihai in the north of the Yellow Sea, in China. The strain grew optimally at 28–30 °C, at pH values 7.0–8.0, and in the presence of 1.0–3.0% (w/v) sodium chloride (NaCl). A phylogenetic analysis based on 16S rRNA gene sequences showed that strain HQA918T can be affiliated with the family Flavobacteriaceae in the phylum Bacteroidetes, with 92.7% similarity to its close relatives. The major fatty acids identified were iso-C15:0, iso-C15:0 3-OH, and summed feature 3 (iso-C15:0 2-OH and/or C16:1ω7c). The major polar lipids were phosphatidylethanolamine, one unidentified aminolipid, and five unidentified polar lipids. The G+C content of the genomic DNA was 44.1 mol%. On the basis of the phylogenetic, genotypic, phenotypic, and chemotaxonomic data, this organism should be classified as a representative of a novel genus, for which the name Ascidiaceibacter gen. nov. is proposed. The type species is Ascidiaceibacter salegens sp. nov. (type strain HQA918T?=?KCTC 52719T?=?MCCC 1K03259T).  相似文献   

12.
A Gram-stain-negative and orangish yellow-pigmented bacterial strain, designated PR1014KT, was isolated from an automobile evaporator core collected in Korea. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain PR1014KT was related with the members of the genus Spirosoma (94.7–90.2%) and closely related with Spirosoma lacussanchae CPCC 100624T (94.7%), Spirosoma knui 15J8-12T (94.3%), and Spirosoma soli MIMBbqt12T (93.3%). The strain grew at 15–40°C (optimum, 25°C), pH 6.5–7.0 (optimum, 6.5) and 0–1% (w/v) NaCl (optimum, 0%). The predominant fatty acids were summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C16:0, iso-C15:0, C16:1 ω5c, and iso-C17:0 3-OH. The major menaquinone was MK-7. The polar lipid profile of the strain indicated that the presence of one phosphatidylethanolamine, one unidentified aminolipid, two unidentified aminophospholipids, and three unidentified lipids. The DNA G+C content of the strain was 47.4 mol%. On the basis of the phenotypic, genotypic and chemotaxonomic characteristics, strain PR1014KT represents a novel species in the genus Spirosoma, for which the name Spirosoma metallicus sp. nov. (=KACC 17940T =NBRC 110792T) is proposed.  相似文献   

13.
A novel Gram-stain-negative, motile by means of gliding, and short rod-shaped bacterium, designated HS916T, was isolated from soil polluted by sewer water in Cheonan-si, South Korea. Growth occurred at 10–35°C (optimum 30°C), pH 6.0–8.0 (optimum pH 7.0), and 0–1% sodium chloride (NaCl, w/v). Based on similarities of 16S rRNA gene sequences, strain HS916T was closely related to members of the genus Flavobacterium, exhibiting the highest sequence similarities with Flavobacterium glycines Gm-149T (96.4%), followed by F. granuli Kw05T (96.3%), F. fluminis 3R17T (96.3%), F. aquicola TMd3a3T (96.2%), and F. nitratireducens N1T (96.2%). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain HS916T was placed in a monophyletic cluster with F. nitratireducens N1T and F. fluminis 3R17T. The predominant fatty acids (> 5% of the total) of strain HS916T were iso-C15:0, anteiso-C15:0, iso-C15:0 3-OH, C17:1ω6с, C16:0 3-OH, iso-C17:0 3-OH, and summed feature 3 (C16:1ω7с and/or C16:1ω6с). The major polar lipids of the strain comprised phosphatidylethanolamine, unidentified aminolipids, and five unidentified lipids. The predominant respiratory quinone and the major polyamine were menaquinone-6 (MK-6) and symhomospermidine, respectively. The DNA G + C content of strain HS916T was 34.9 mol%. Based on polyphasic analyses, strain HS916T represents a novel species belonging to the genus Flavobacterium, for which the name Flavobacterium parvum sp. nov. is proposed. The type strain is HS916T (= KACC 19448T = JCM 32368T).  相似文献   

14.
A Gram-reaction-positive, strictly aerobic, motile, endospore- forming, and rod-shaped bacterial strain designated 135PIL107-10T was isolated from a sponge on Jeju Island, and its taxonomic position was investigated using a polyphasic approach. Strain 135PIL107-10T grew at 20–37°C (optimum temperature, 25°C) and pH 6.0–10.0 (optimum pH, 6.0) on marine and R2A agars. Based on 16S rRNA gene phylogeny analysis, the novel strain formed a new branch within the genus Bacillus of the family Bacillaceae, and formed clusters with Bacillus thaohiensis NHI-38T (96.8%), Bacillus fengqiuensis NPK15T (96.7%), and Bacillus songklensis CAU 1033T (96.7%). Lower sequence similarities (97.0%) were found with the type strains of all other recognized members of the genus Bacillus (95.6–96.8% similarity). The G + C content of the genomic DNA was 43.6 mol%. The predominant respiratory quinone was menaquinone-7 and the major fatty acids were iso-C15:0 and iso-C17:1ω10c. The overall polar lipid patterns were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The isolate therefore represents a novel species, for which the name Bacillus spongiae sp. nov. is proposed, with the type strain 135PIL107-10T (= KACC 19275T = LMG 30080T).  相似文献   

15.
A novel bacterium, strain 1ZS3-15T, was isolated from rhizosphere of rice. Its taxonomic position was investigated using a polyphasic approach. The novel strain was observed to be Gram-stain positive, spore-forming, aerobic, motile and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 1ZS3-15T was recovered within the genus Paenibacillus. It is closely related to Paenibacillus pectinilyticus KCTC 13222T (97.9 % similarity), Paenibacillus frigoriresistens CCTCC AB 2011150T (96.8 %), Paenibacillus alginolyticus JCM 9068T (96.4 %) and Paenibacillus chondroitinus DSM 5051T (95.5 %). The fatty acid profile of strain 1ZS3-15T, which showed a predominance of anteiso-C15:0 and iso-C16:0, supported the allocation of the strain into the genus Paenibacillus. The predominant menaquinone was found to be MK-7. The polar lipids profile of strain 1ZS3-15T was found to consist of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, one unidentified lipid and two unidentified aminophospholipids. The cell wall peptidoglycan contains meso-diaminopimelic acid. Based on draft genome sequences, the DNA–DNA relatedness between strain 1ZS3-15T and the closely related species P. pectinilyticus KCTC 13222T are 24.2 ± 1.0 %, and the Average Nucleotide Identity values between the strains are 78.9 ± 0.1 %, which demonstrated that this isolate represents a new species in the genus Paenibacillus. The DNA G+C content was determined to be 45.3 mol%, which is within the range reported for Paenibacillus species. Characterisation by genotypic, chemotaxonomic and phenotypic analysis indicated that strain 1ZS3-15T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus oryzisoli sp. nov. is proposed. The type strain is 1ZS3-15T (= ACCC 19783T = JCM 30487T).  相似文献   

16.
A Gram-negative, yellow-pigmented, rod-shaped bacteria, designated M09-0166Tand M09-1053 were isolated from human urine samples. 16S rRNA gene sequence analysis revealed that the isolates belong to the Myroides cluster and were closely related to Myroides phaeus DSM 23313T (96.3 %), Myroides odoratimimus KCTC 23053T (96.1 %), Myroides profundi KCTC 23066T (96.0 %), Myroides odoratus KCTC 23054T (95.4 %) and Myroides pelagicus KCTC 12661T (95.2 %). The major mena quinone was identified as MK-6. The major polar lipids were identified as phosphatidylethanolamine, amino lipids, and several unknown lipids, and the major fatty acids as iso-C15:0 and iso-C17:0 3-OH. Phenotypic and chemotaxonomic data supported the affiliation of the isolates with the genus Myroides and clearly indicated that two isolates represent novel species, for which the name Myroides injenensis sp. nov. (type strain, M09-0166T = KCTC 23367T = JCM 17451T) is proposed.  相似文献   

17.
A yellow pigmented bacterium designated strain MBLN094T within the family Flavobacteriaceae was isolated from a halophyte Salicornia europaea on the coast of the Yellow Sea. This strain was a Gram-stain negative, aerobic, non-spore forming, rod-shaped bacterium. Phylogenetic analysis of the 16S rRNA gene sequence of strain MBLN094T was found to be related to the genus Zunongwangia, exhibiting 16S rRNA gene sequence similarity values of 97.0, 96.8, 96.4, and 96.3% to Zunongwangia mangrovi P2E16T, Z. profunda SM-A87T, Z. atlantica 22II14-10F7T, and Z. endophytica CPA58T, respectively. Strain MBLN094T grew at 20?37°C (optimum, 25?30°C), at pH 6.0?10.0 (optimum, 7.0?8.0), and with 0.5?15.0% (w/v) NaCl (optimum, 2.0?5.0%). Menaquinone MK-6 was the sole respiratory quinone. The polar lipids were phosphatidylethanolamine, two unidentified aminolipids, and four unidentified lipids. Major fatty acids were iso-C17:0 3-OH, summed feature 3 (C16:1ω6c and/or C16:1 ω7c), and iso-C15:0. The genomic DNA G + C content was 37.4 mol%. Based on these polyphasic taxonomic data, strain MBLN094T is considered to represent a novel species of the genus Zunongwangia, for which the name Zunongwangia flava sp. nov. is proposed. The type strain is MBLN094T (= KCTC 62279T = JCM 32262T).  相似文献   

18.
A Gram-stain negative, facultative anaerobic, non-motile, strongly orange-pigmented and rod-shaped bacterium, designated XAY3209T, was isolated from a marine sediment sample collected from the coast of Weihai, China. Strain XAY3209T was found to grow optimally at 30 °C, at pH 7.0 and in the presence of 2.0% (w/v) NaCl. Its genomic DNA G+C content was 41.9 mol%. On the basis of 16S rRNA gene sequence similarity, the novel isolate belongs to the family Cyclobacteriaceae and is related to the genus Algoriphagus. It shares 98.1% 16S rRNA sequence identity with Algoriphagus marincola, its close phylogenetic relative, but did not show similarities more than 97% with other members of the genus Algoriphagus with validly published names. It contained menaquinone-7 (MK-7) as the sole respiratory quinone, iso-C15:0, iso-C17:1 ω9c and Summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH) as the major fatty acids. The major polar lipids were phosphatidylethanolamine, one unidentified aminolipid, one unidentified phospholipid and five unidentified lipids. Results of physiological experiments, biochemical tests and genome average nucleotide identity value (with A. marincola MCCC 1F01203T) indicate that strain XAY3209T is genetically and phenotypically distinct from the species of the genus Algoriphagus with validly published names. Strain XAY3209T therefore represents a novel species, for which the name Algoriphagus formosus sp. nov. is proposed. The type strain is XAY3209T (= KCTC 52842T = MCCC 1H00189T).  相似文献   

19.
A Gram-negative, yellow-pigmented bacterial strain, designated IPC6T, was isolated from soil in an arid region of Goyang-si (Gyeonggi-do, South Korea). Cells were strictly aerobic, non-spore-forming, rod-shaped. The strain grew within a temperature range of 10–42°C (optimum, 30°C) and pH of 5.0–11.0 (optimum, pH 8.0) in the presence of 0–2% (w/v) NaCl. Phylogenetically, the novel strain was closely related to members of the Lysobacter genus based on 16S rRNA sequence similarity, and showed the highest sequence similarity to Lysobacter niastensis KACC 11588T (98.5%). The predominant fatty acids were iso-C15:0, iso-C16:0, and summed feature 9 (iso-C17:1ω9c), with Q-8 identified as the major ubiquinone. The polar lipid content included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unknown aminophospholipid, and an unidentified phospholipid. DNA-DNA hybridization results indicated that the strain IPC6T was distinct from Lysobacter niastensis KACC 11588T (37.9 ± 0.14%), Lysobacter panacisoli KACC 17502T (56.4 ± 0.13%), Lysobacter soli KCTC 22011T (8.1 ± 0.04%), Lysobacter gummosus KCTC 12132T (9.6 ± 0.03%), and Lysobacter cavernae KCTC 42875T (37.5 ± 0.14%), respectively. The DNA G + C content of the novel strain was 71.1 mol%. Based on the collective phenotypic, genotypic and chemotaxonomic data, the IPC6T strain is considered to represent a novel species in the genus Lysobacter, for which the name Lysobacter pedocola sp. nov. (= KCTC 42811T = JCM 31020T) is proposed.  相似文献   

20.
An actinomycete strain, designated strain LUSFXJT, was isolated from a soil sample obtained near the Xiangtan Manganese Mine, Central-South China and characterised using a polyphasic taxonomic approach. The 16S rRNA gene sequence-based phylogenetic analysis indicated that this strain belongs to the genus Streptomyces. The DNA–DNA relatedness between this strain and two closely related type strains, Streptomyces echinatus CGMCC 4.1642T and Streptomyces lanatus CGMCC 4.137T, were 28.7 ± 0.4 and 19.9 ± 2.0%, respectively, values which are far lower than the 70% threshold for the delineation of a novel prokaryotic species. The DNA G+C content of strain LUSFXJ T is 75.0 mol%. Chemotaxonomic analysis revealed that the menaquinones of strain LUSFXJT are MK-9(H6), MK-9(H8), MK-9(H2) and MK-8(H8). The polar lipid profile of strain LUSFXJT was found to contain diphosphatidylglycerol and an unidentified polar lipid. The major cellular fatty acids were identified as iso-C15:0, anteiso-C15:0, iso-C16:0, C16:0 and Summed feature 3. Strain LUSFXJT was found to contain meso-diaminopimelic acid as the diagnostic cell wall diamino acid and the whole cell hydrolysates were found to be rich in ribose, mannose and glucose. Based on phenotypic, phylogenetic and chemotaxonomic characteristics, it is concluded that strain LUSFXJT represents a novel species of the genus Streptomyces, for which the name S. xiangtanensis sp. nov. is proposed. The type strain is LUSFXJT (=GDMCC 4.133T = KCTC 39829T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号