首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Enzyme-substrate contacts in the hydrolysis of ester substrates by the cysteine protease papain were investigated by systematically altering backbone hydrogen-bonding and side-chain hydrophobic contacts in the substrate and determining each substrate's kinetic constants. The observed specificity energies [defined as delta delta G obs = -RT ln [(kcat/KM)first/(kcat/KM)second)]] of the substrate backbone hydrogen bonds were -2.7 kcal/mol for the P2 NH and -2.6 kcal/mol for the P1 NH when compared against substrates containing esters at those sites. The observed binding energies were -4.0 kcal/mol for the P2 Phe side chain, -1.0 kcal/mol for the P1' C=O, and -2.3 kcal/mol for the P2' NH. The latter three values probably all significantly underestimate the incremental binding energies. The P2 NH, P2 Phe side-chain, and P1 NH contacts display a strong interdependence, or cooperativity, of interaction energies that is characteristic of enzyme-substrate interactions. This interdependence arises largely from the entropic cost of forming the enzyme-substrate transition state. As favorable contacts are added successively to a substrate, the entropic penalty associated with each decreases and the free energy expressed approaches the incremental interaction energy. This is the first report of a graded cooperative effect. Elucidation of favorable enzyme-substrate contacts remote from the catalytic site will assist in the design of highly specific cysteine protease inhibitors.  相似文献   

2.
The development of HIV-1 protease inhibitors has been the historic paradigm of rational structure-based drug design, where structural and thermodynamic analyses have assisted in the discovery of novel inhibitors. While the total enthalpy and entropy change upon binding determine the affinity, often the thermodynamics are considered in terms of inhibitor properties only. In the current study, profound changes are observed in the binding thermodynamics of a drug-resistant variant compared to wild-type HIV-1 protease, irrespective of the inhibitor bound. This variant (Flap+) has a combination of flap and active site mutations and exhibits extremely large entropy-enthalpy compensation compared to wild-type protease, 5-15 kcal/mol, while losing only 1-3 kcal/mol in total binding free energy for any of six FDA-approved inhibitors. Although entropy-enthalpy compensation has been previously observed for a variety of systems, never have changes of this magnitude been reported. The co-crystal structures of Flap+ protease with four of the inhibitors were determined and compared with complexes of both the wild-type protease and another drug-resistant variant that does not exhibit this energetic compensation. Structural changes conserved across the Flap+ complexes, which are more pronounced for the flaps covering the active site, likely contribute to the thermodynamic compensation. The finding that drug-resistant mutations can profoundly modulate the relative thermodynamic properties of a therapeutic target independent of the inhibitor presents a new challenge for rational drug design.  相似文献   

3.
Peptides are preferred for designing inhibitors because of their high activity and specificity. Seven cyclopentapeptide inhibitors were designed in this study against dengue virus type 2 (DEN-2) NS3-NS2B protease: CKRRC, CGRRC, CRGRC, CRTRC, CTRRC, CKRKC and CRRKC. Docking analysis was performed to study the enzyme-inhibitor binding interactions. The free energy binding and estimated Ki values for all the inhibitors were found to be small (within micromolar range), indicating that the inhibitors bind considerably well to the binding site. The results showed that the cyclopentapeptide CKRKC was the best peptide inhibitor candidate with estimated free binding energy of -8.39 kcal/mol and Ki of 0.707 μM when compared to the standard inhibitor Bz-Nle-Lys-Arg-Arg-H that has been experimentally tested and shown to exhibit Ki value of 5.8 μM. Several modes of weak interactions were observed between the cyclopentapeptide CKRKC and the active site of DEN-2 NS3-NS2B protease. Thus, the cyclopentapeptide is proposed as a potential inhibitor to the NS3-NS2B protease activities of DEN-2. While these preliminary results are promising, further experimental investigation is necessary to validate the results.  相似文献   

4.
Three high level, cross-resistant variants of the HIV-1 protease have been analyzed for their ability to bind four protease inhibitors approved by the Food and Drug Administration (saquinavir, ritonavir, indinavir, and nelfinavir) as AIDS therapeutics. The loss in binding energy (DeltaDeltaG(b)) going from the wild-type enzyme to mutant enzymes ranges from 2.5 to 4.4 kcal/mol, 40-65% of which is attributed to amino acid substitutions away from the active site of the protease and not in direct contact with the inhibitor. The data suggest that non-active site changes are collectively a major contributor toward engendering resistance against the protease inhibitor and cannot be ignored when considering cross-resistance issues of drugs against the HIV-1 protease.  相似文献   

5.
In the study, molecular dynamics simulations combined with MM-PBSA (Molecular Mechanics and Poisson-Boltzmann Surface Area) technique were applied to predict the binding mode of the polyphenol inhibitor in the binding pocket of the HCV NS3 serine protease for which the ligand-protein crystal structure is not available. The most favorable geometry of three candidates from molecular docking had a binding free energy about 3 and 6kcal/mol more favorable than the other two candidates, respectively, and was identified as the correct binding mode. In the mode, the correlation of the calculated and experimental binding affinities of all five polyphenol compounds is satisfactory indicated by r(2)=0.92. The most favorable binding mode suggests that two galloyl residues at 3 and 4 positions of the glucopyranose ring of the inhibitors interact with SER139, GLY137, ALA157, and ASP81 by hydrogen bond interaction and with ALA156 and HIE57 by hydrophobic interaction and are essential for the activities of the studied inhibitors.  相似文献   

6.
7.
KNI-272 is a powerful HIV-1 protease inhibitor with a reported inhibition constant in the picomolar range. In this paper, a complete experimental dissection of the thermodynamic forces that define the binding affinity of this inhibitor to the wild-type and drug-resistant mutant V82F/184V is presented. Unlike other protease inhibitors, KNI-272 binds to the protease with a favorable binding enthalpy. The origin of the favorable binding enthalpy has been traced to the coupling of the binding reaction to the burial of six water molecules. These bound water molecules, previously identified by NMR studies, optimize the atomic packing at the inhibitor/protein interface enhancing van der Waals and other favorable interactions. These interactions offset the unfavorable enthalpy usually associated with the binding of hydrophobic molecules. The association constant to the drug resistant mutant is 100-500 times weaker. The decrease in binding affinity corresponds to an increase in the Gibbs energy of binding of 3-3.5 kcal/mol, which originates from less favorable enthalpy (1.7 kcal/mol more positive) and entropy changes. Calorimetric binding experiments performed as a function of pH and utilizing buffers with different ionization enthalpies have permitted the dissection of proton linkage effects. According to these experiments, the binding of the inhibitor is linked to the protonation/deprotonation of two groups. In the uncomplexed form these groups have pKs of 6.0 and 4.8, and become 6.6 and 2.9 in the complex. These groups have been identified as one of the aspartates in the catalytic aspartyl dyad in the protease and the isoquinoline nitrogen in the inhibitor molecule. The binding affinity is maximal between pH 5 and pH 6. At those pH values the affinity is close to 6 x 10(10) M(-1) (Kd = 16 pM). Global analysis of the data yield a buffer- and pH-independent binding enthalpy of -6.3 kcal/mol. Under conditions in which the exchange of protons is zero, the Gibbs energy of binding is -14.7 kcal/mol from which a binding entropy of 28 cal/K mol is obtained. Thus, the binding of KNI-272 is both enthalpically and entropically favorable. The structure-based thermodynamic analysis indicates that the allophenylnorstatine nucleus of KNI-272 provides an important scaffold for the design of inhibitors that are less susceptible to resistant mutations.  相似文献   

8.
Glycogen phosphorylase (GP) is a validated target for the treatment of type 2 diabetes. Here we describe highly potent GP inhibitors, AVE5688, AVE2865, and AVE9423. The first two compounds are optimized members of the acyl urea series. The latter represents a novel quinolone class of GP inhibitors, which is introduced in this study. In the enzyme assay, both inhibitor types compete with the physiological activator AMP and act synergistically with glucose. Isothermal titration calorimetry (ITC) shows that the compounds strongly bind to nonphosphorylated, inactive GP (GPb). Binding to phosphorylated, active GP (GPa) is substantially weaker, and the thermodynamic profile reflects a coupled transition to the inactive (tense) conformation. Crystal structures confirm that the three inhibitors bind to the AMP site of tense state GP. These data provide the first direct evidence that acyl urea and quinolone compounds are allosteric inhibitors that selectively bind to and stabilize the inactive conformation of the enzyme. Furthermore, ITC reveals markedly different thermodynamic contributions to inhibitor potency that can be related to the binding modes observed in the cocrystal structures. For AVE5688, which occupies only the lower part of the bifurcated AMP site, binding to GPb (Kd = 170 nM) is exclusively enthalpic (Delta H = -9.0 kcal/mol, TDelta S = 0.3 kcal/mol). The inhibitors AVE2865 (Kd = 9 nM, Delta H = -6.8 kcal/mol, TDelta S = 4.2 kcal/mol) and AVE9423 (Kd = 24 nM, Delta H = -5.9 kcal/mol, TDelta S = 4.6 kcal/mol) fully exploit the volume of the binding pocket. Their pronounced binding entropy can be attributed to the extensive displacement of solvent molecules as well as to ionic interactions with the phosphate recognition site.  相似文献   

9.
Snider MJ  Wolfenden R 《Biochemistry》2001,40(38):11364-11371
Kinetic measurements have shown that substantial enthalpy changes accompany substrate binding by cytidine deaminase, increasing markedly as the reaction proceeds from the ground state (1/K(m), DeltaH = -13 kcal/mol) to the transition state (1/K(tx), DeltaH = -20 kcal/mol) [Snider, M. J., et al. (2000) Biochemistry 39, 9746-9753]. In the present work, we determined the thermodynamic changes associated with the equilibrium binding of inhibitors by cytidine deaminase by isothermal titration calorimetry and van't Hoff analysis of the temperature dependence of their inhibition constants. The results indicate that the binding of the transition state analogue 3,4-dihydrouridine DeltaH = -21 kcal/mol), like that of the transition state itself (DeltaH = -20 kcal/mol), is associated with a large favorable change in enthalpy. The significantly smaller enthalpy change that accompanies the binding of 3,4-dihydrozebularine (DeltaH = -10 kcal/mol), an analogue of 3,4-dihydrouridine in which a hydrogen atom replaces this inhibitor's 4-OH group, is consistent with the view that polar interactions with the substrate at the site of its chemical transformation play a critical role in reducing the enthalpy of activation for substrate hydrolysis. The entropic shortcomings of 3,4-dihydrouridine, in capturing all of the free energy involved in binding the actual transition state, may arise from its inability to displace a water molecule that occupies the binding site normally occupied by product ammonia.  相似文献   

10.
GP catalyzes the phosphorylation of glycogen to Glc-1-P. Because of its fundamental role in the metabolism of glycogen, GP has been the target for a systematic structure-assisted design of inhibitory compounds, which could be of value in the therapeutic treatment of type 2 diabetes mellitus. The most potent catalytic-site inhibitor of GP identified to date is spirohydantoin of glucopyranose (hydan). In this work, we employ MD free energy simulations to calculate the relative binding affinities for GP of hydan and two spirohydantoin analogues, methyl-hydan and n-hydan, in which a hydrogen atom is replaced by a methyl- or amino group, respectively. The results are compared with the experimental relative affinities of these ligands, estimated by kinetic measurements of the ligand inhibition constants. The calculated binding affinity for methyl-hydan (relative to hydan) is 3.75 +/- 1.4 kcal/mol, in excellent agreement with the experimental value (3.6 +/- 0.2 kcal/mol). For n-hydan, the calculated value is 1.0 +/- 1.1 kcal/mol, somewhat smaller than the experimental result (2.3 +/- 0.1 kcal/mol). A free energy decomposition analysis shows that hydan makes optimum interactions with protein residues and specific water molecules in the catalytic site. In the other two ligands, structural perturbations of the active site by the additional methyl- or amino group reduce the corresponding binding affinities. The computed binding free energies are sensitive to the preference of a specific water molecule for two well-defined positions in the catalytic site. The behavior of this water is analyzed in detail, and the free energy profile for the translocation of the water between the two positions is evaluated. The results provide insights into the role of water molecules in modulating ligand binding affinities. A comparison of the interactions between a set of ligands and their surrounding groups in X-ray structures is often used in the interpretation of binding free energy differences and in guiding the design of new ligands. For the systems in this work, such an approach fails to estimate the order of relative binding strengths, in contrast to the rigorous free energy treatment.  相似文献   

11.
One of the most serious side effects associated with the therapy of HIV-1 infection is the appearance of viral strains that exhibit resistance to protease inhibitors. The active site mutant V82F/I84V has been shown to lower the binding affinity of protease inhibitors in clinical use. To identify the origin of this effect, we have investigated the binding thermodynamics of the protease inhibitors indinavir, ritonavir, saquinavir, and nelfinavir to the wild-type HIV-1 protease and to the V82F/I84V resistant mutant. The main driving force for the binding of all four inhibitors is a large positive entropy change originating from the burial of a significant hydrophobic surface upon binding. At 25 degrees C, the binding enthalpy is unfavorable for all inhibitors except ritonavir, for which it is slightly favorable (-2.3 kcal/mol). Since the inhibitors are preshaped to the geometry of the binding site, their conformational entropy loss upon binding is small, a property that contributes to their high binding affinity. The V82F/I84V active site mutation lowers the affinity of the inhibitors by making the binding enthalpy more positive and making the entropy change slightly less favorable. The effect on the enthalpy change is, however, the major one. The predominantly enthalpic effect of the V82F/I84V mutation is consistent with the idea that the introduction of the bulkier Phe side chain at position 82 and the Val side chain at position 84 distort the binding site and weaken van der Waals and other favorable interactions with inhibitors preshaped to the wild-type binding site. Another contribution of the V82F/I84V to binding affinity originates from an increase in the energy penalty associated with the conformational change of the protease upon binding. The V82F/I84V mutant is structurally more stable than the wild-type protease by about 1.4 kcal/mol. This effect, however, affects equally the binding affinity of substrate and inhibitors.  相似文献   

12.
Several beta-D-glucopyranosides (p-nitrophenyl, phenyl, and ethyl), 1-thio-beta-D-glucopyranosides, and phenyl 2-deoxy, 3-deoxy, 4-deoxy, and 6-deoxy beta-D-glucopyranosides were synthesized and used to study the mechanism of the enzymatic action of Taka-beta-glucosidase [EC 3.2.1.21 Aspergillus oryzae]. Kinetic constants of the enzyme for these glycosides were determined from S/V-S or 1/V-1/S plots, and the hydrolysis rates of these compounds with the enzyme, acid (3 N HCl) and alkali (3 N NaOH) were compared. Inhibition of the enzyme by 1,5-anhydroglucitol, glucal, dihydroglucal, and 1,6-anhydroglucopyranose was also examined. Glucal and 1,5-anhydroglucitol showed strong competitive inhibition. Free energy of binding of each hydroxyl group of glucosidic glucose with the enzyme was estimated from Kms of phenyl beta-glucoside and its deoxy analogues, and also Ki values of some inhibitors. The free energies of binding of 2-OH, 3-OH, 4-OH, and 6-OH were calculated to be 1.1, 2.4, 0.7, and 1.8 kcal/mol, respectively. The free energy of binding of phenoxide at C-1 (0.3 kcal/mol) was calculated from the Km of Ph-beta-Glc and Ki of 1,5-anhydroglucitol. The energy of binding of 5-CH2OH (2.3 kcal/mol) was obtained from the Km of Ph-beta-Glc and that of Ph-beta-Xyl. The sum (6.8 kcal/mol) of each partial binding free energy was close to the value of binding free energy of Ph-beta-Glc (7.0 kcal/mol) calculated by the equation; -delta Gbind = -RT ln Km-T delta Smix, showing that the methods of estimation of each binding energy used in the present study seemed reasonable. Glucal, having a pyranose form distorted slightly, showed strong competitive inhibition and the Ki of this inhibitor was smaller than the Km of Ph-beta-Glc, suggesting that the sugar ring bound to the active site was distored to a half chair form which is labile to acid hydrolysis.  相似文献   

13.
The PR20 HIV-1 protease, a variant with 20 mutations, exhibits high levels of multi-drug resistance; however, to date, there has been no report detailing the impact of these 20 mutations on the conformational and drug binding landscape at a molecular level. In this report, we demonstrate the first account of a comprehensive study designed to elaborate on the impact of these mutations on the dynamic features as well as drug binding and resistance profile, using extensive molecular dynamics analyses. Comparative MD simulations for the wild-type and PR20 HIV proteases, starting from bound and unbound conformations in each case, were performed. Results showed that the apo conformation of the PR20 variant of the HIV protease displayed a tendency to remain in the open conformation for a longer period of time when compared to the wild type. This led to a phenomena in which the inhibitor seated at the active site of PR20 tends to diffuse away from the binding site leading to a significant change in inhibitor–protein association. Calculating the per-residue fluctuation (RMSF) and radius of gyration, further validated these findings. MM/GBSA showed that the occurrence of 20 mutations led to a drop in the calculated binding free energies (ΔGbind) by ~25.17 kcal/mol and ~5 kcal/mol for p2-NC, a natural peptide substrate, and darunavir, respectively, when compared to wild type. Furthermore, the residue interaction network showed a diminished inter-residue hydrogen bond network and changes in inter-residue connections as a result of these mutations. The increased conformational flexibility in PR20 as a result of loss of intra- and inter-molecular hydrogen bond interactions and other prominent binding forces led to a loss of protease grip on ligand. It is interesting to note that the difference in conformational flexibility between PR20 and WT conformations was much higher in the case of substrate-bound conformation as compared to DRV. Thus, developing analogues of DRV by retaining its key pharmacophore features will be the way forward in the search for novel protease inhibitors against multi-drug resistant strains.  相似文献   

14.
M J Todd  E Freire 《Proteins》1999,36(2):147-156
The effects of the peptide inhibitor acetyl pepstatin on the structural stability of the HIV-1 protease have been measured by high sensitivity calorimetric techniques. At 25 degrees C and pH 3.6, acetyl pepstatin binds to HIV-1 protease with an affinity of 1.6 x 10(7 )M-1 and an enthalpy of 7.3 +/- 0.5 kcal/mol, indicating that binding is not favored enthalpically and that the favorable Gibbs energy originates from a large positive entropy. Since the binding of acetyl pepstatin is associated with a negative change in heat capacity (-450 cal/K*mol) the association reaction becomes enthalpically favored at temperatures higher than 40 degrees C. The presence of the inhibitor stabilizes the dimeric structure of the protease in a fashion that can be quantitatively described by a set of thermodynamic linkage equations. The combination of titration and differential scanning calorimetry provides an accurate way of determining binding constants for high affinity inhibitors that cannot be determined by titration calorimetry alone. A structure-based thermodynamic analysis of the binding process indicates that the stabilization effect is not distributed uniformly throughout the protease molecule. The binding of the inhibitor selectively stabilizes those conformational states in which the binding site is formed, triggering a redistribution of the state probabilities in the ensemble of conformations populated under native conditions. As a result, the stability constants for individual residues do not exhibit the same change in magnitude upon inhibitor binding. Residues in certain areas of the protein are affected significantly whereas residues in other areas are not affected at all. In particular, inhibitor binding has a significant effect on those regions that define the binding site, especially the flap region which becomes structurally stable as a result of the additional binding free energy. The induced stabilization propagates to regions not in direct contact with the inhibitor, particularly to the strand between residues Pro9 and Ala22 and the helix between Arg87 and Gly94. On the other hand, the stability of the strand between Asp60 and Leu76 is not significantly affected by inhibitor binding. The structural distribution of binding effects define cooperative pathways within the protease molecule. Proteins 1999;36:147-156.  相似文献   

15.
Harris DL  Park JY  Gruenke L  Waskell L 《Proteins》2004,55(4):895-914
The molecular origins of temperature-dependent ligand-binding affinities and ligand-induced heme spin state conversion have been investigated using free energy analysis and DFT calculations for substrates and inhibitors of cytochrome P450 2B4 (CYP2B4), employing models of CYP2B4 based on CYP2C5(3LVdH)/CYP2C9 crystal structures, and the results compared with experiment. DFT calculations indicate that large heme-ligand interactions (ca. -15 kcal/mol) are required for inducing a high to low spin heme transition, which is correlated with large molecular electrostatic potentials (approximately -45 kcal/mol) at the ligand heteroatom. While type II ligands often contain oxygen and nitrogen heteroatoms that ligate heme iron, DFT results indicate that BP and MF heme complexes, with weak substrate-heme interactions (ca. -2 kcal/mol), and modest MEPS minima (>-35 kcal/mol) are high spin. In contrast, heme complexes of the CYP2B4 inhibitor, 4PI, the product of benzphetamine metabolism, DMBP, and water are low spin, have substantial heme-ligand interaction energies (<-15 kcal/mol) and deep MEPS minima (<-45 kcal/mol) near their heteroatoms. MMPBSA analysis of MD trajectories were made to estimate binding free energies of these ligands at the heme binding site of CYP2B4. In order to initially assess the realism of this approach, the binding free energy of 4PI inhibitor was computed and found to be a reasonable agreement with experiment: -7.7 kcal/mol [-7.2 kcal/mol (experiment)]. BP was determined to be a good substrate [-6.3 kcal/mol (with heme-ligand water), -7.3 kcal/mol (without ligand water)/-5.8 kcal/mol (experiment)], whereas the binding of MF was negligible, with only marginal binding binding free energy of -1.7 kcal/mol with 2-MF bound [-3.8 kcal/mol (experiment)], both with and without retained heme-ligand water. Analysis of the free energy components reveal that hydrophobic/nonpolar contributions account for approximately 90% of the total binding free energy of these substrates and are the source of their differential and temperature-dependent CYP2B4 binding. The results indicate the underlying origins of the experimentally observed differential binding affinities of BP and MF, and indicate the plausibility of the use of models derived from moderate sequence identity templates in conjunction with approximate free energy methods in the estimation of ligand-P450 binding affinities.  相似文献   

16.
Drug resistance is a major problem affecting the clinical efficacy of antiretroviral agents, including protease inhibitors, in the treatment of infection with human immunodeficiency virus type 1 (HIV-1)/AIDS. Consequently, the elucidation of the mechanisms by which HIV-1 protease inhibitors maintain antiviral activity in the presence of mutations is critical to the development of superior inhibitors. Tipranavir, a nonpeptidic HIV-1 protease inhibitor, has been recently approved for the treatment of HIV infection. Tipranavir inhibits wild-type protease with high potency (K(i) = 19 pM) and demonstrates durable efficacy in the treatment of patients infected with HIV-1 strains containing multiple common mutations associated with resistance. The high potency of tipranavir results from a very large favorable entropy change (-TDeltaS = -14.6 kcal/mol) combined with a favorable, albeit small, enthalpy change (DeltaH = -0.7 kcal/mol, 25 degrees C). Characterization of tipranavir binding to wild-type protease, active site mutants I50V and V82F/I84V, the multidrug-resistant mutant L10I/L33I/M46I/I54V/L63I/V82A/I84V/L90M, and the tipranavir in vitro-selected mutant I13V/V32L/L33F/K45I/V82L/I84V was performed by isothermal titration calorimetry and crystallography. Thermodynamically, the good response of tipranavir arises from a unique behavior: it compensates for entropic losses by actual enthalpic gains or by sustaining minimal enthalpic losses when facing the mutants. The net result is a small loss in binding affinity. Structurally, tipranavir establishes a very strong hydrogen bond network with invariant regions of the protease, which is maintained with the mutants, including catalytic Asp25 and the backbone of Asp29, Asp30, Gly48 and Ile50. Moreover, tipranavir forms hydrogen bonds directly to Ile50, while all other inhibitors do so by being mediated by a water molecule.  相似文献   

17.
Zhao H  Huang D 《PloS one》2011,6(6):e19923
Ligand binding involves breakage of hydrogen bonds with water molecules and formation of new hydrogen bonds between protein and ligand. In this work, the change of hydrogen bonding energy in the binding process, namely hydrogen bonding penalty, is evaluated with a new method. The hydrogen bonding penalty can not only be used to filter unrealistic poses in docking, but also improve the accuracy of binding energy calculation. A new model integrated with hydrogen bonding penalty for free energy calculation gives a root mean square error of 0.7 kcal/mol on 74 inhibitors in the training set and of 1.1 kcal/mol on 64 inhibitors in the test set. Moreover, an application of hydrogen bonding penalty into a high throughput docking campaign for EphB4 inhibitors is presented, and remarkably, three novel scaffolds are discovered out of seven tested. The binding affinity and ligand efficiency of the most potent compound is about 300 nM and 0.35 kcal/mol per non-hydrogen atom, respectively.  相似文献   

18.
Association constants, enthalpies, and stoichiometries of Bowman-Birk soybean inhibitor for trypsin and alpha-chymotrypsin were measured in the pH range 4-8 at 25 degrees, 0.01 M Ca2+. The results are quoted in terms of moles of protease active sites, from active site titration. Enthalpies were obtained from calorimetry. The inhibitor was modified by carboxyl group modification, and by tryptic and chymotryptic attack. Association thermodynamics and stoichiometries of the modified inhibitors with both proteases were also determined. There is one independent site for each protease on the inhibitor protein. Modification decreases association to some extent, but does not appear to change stoichiometry or protease binding site independency. In the pH 4 region the association enthalpies are endothermic, of the order 6 kcal/mol for both trypsin and chymotrypsin. With increasing pH, the enthalpies decrease and become exothermic at pH 8 for chymotrypsin. Positive entropies, 50 cal mol-1 deg-1, occur at pH 4-5. They decrease as pH increases, but are always positive in sign. The observed to accompany the overall reaction, such as H+ transfer steps. The enthalpies and entropies probably compensate over the pH range 4-8, with a characteristic temperature of 390 plus or minus 30 degrees K. Estimates were made of the macromolecular Coulomb charge products in inhibitor-protease interaction. These range from about +5 to -60, over pH range 4-8, depending on the protease. Although intermolecular Coulombic forces cannot be easily delineated at the specific side chain level, they may operate at the macromolecule level.  相似文献   

19.
Although Hsp90‐family chaperones have been extensively targeted with ATP‐competitive inhibitors, it is unknown whether high affinity is achieved from a few highly stabilizing contacts or from many weaker contacts within the ATP‐binding pocket. A large‐scale analysis of Hsp90α:inhibitor structures shows that inhibitor hydrogen‐bonding to a conserved aspartate (D93 in Hsp90α) stands out as most universal among Hsp90 inhibitors. Here we show that the D93 region makes a dominant energetic contribution to inhibitor binding for both cytosolic and organelle‐specific Hsp90 paralogs. For inhibitors in the resorcinol family, the D93:inhibitor hydrogen‐bond is pH‐dependent because the associated inhibitor hydroxyl group is titratable, rationalizing a linked‐protonation event previously observed by the Matulis group. The inhibitor hydroxyl group pKa associated with the D93 hydrogen‐bond is therefore critical for optimizing the affinity of resorcinol derivatives, and we demonstrate that spectrophotometric measurements can determine this pKa value. Quantifying the energetic contribution of the D93 hotspot is best achieved with the mitochondrial Hsp90 paralog, yielding 3–6 kcal/mol of stabilization (35–60% of the total binding energy) for a diverse set of inhibitors. The Hsp90 Asp93?Asn substitution has long been known to abolish nucleotide binding, yet puzzlingly, native sequences of structurally similar ATPases, such as Topoisomerasese II, have an asparagine at this same crucial site. While aspartate and asparagine sidechains can both act as hydrogen bond acceptors, we show that a steric clash prevents the Hsp90 Asp93?Asn sidechain from adopting the necessary rotamer, whereas this steric restriction is absent in Topoisomerasese II.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号