首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The inner membrane of mitochondria possesses a pH-regulated anion uniporter which is activated by depletion of matrix divalent cations with A23187 (Beavis, A. D., and Garlid, K. D. (1987) J. Biol. Chem. 262, 15085-15093). It is now shown that Cl- transport through this pathway is inhibited by Mg2+ and Ca2+. There appear to be two sites for inhibition by Mg2+. One has an IC50 = 38 microM at pH 7.4 and appears to be on the inside since it is only observed in the presence of A23187 (10 nmol/mg). The other has an IC50 = 440 microM at pH 7.4 and appears to be on the outside since it is observed in mitochondria pretreated with very low doses of A23187 (0.25 nmol/mg or less) and in A23187-pretreated mitochondria washed to remove A23187. Ca2+ is found to inhibit anion uniport in the presence or absence of A23187 with an IC50 of about 17 microM. In contrast to these findings Cl- uniport, activated by addition of valinomycin to respiring mitochondria without depleting endogenous Mg2+ is found to be very insensitive to exogenous Mg2+, being inhibited with an IC50 of 3.2 mM. This is explained by examination of the pH dependence of the Mg2+ IC50 in non-respiring mitochondria. The internal IC50 is found to be pH-dependent, rising to about 250 microM at pH 8.4. The external IC50 is also pH-dependent, rising to 2.5 mM or above at pH 8.4. These data are consistent with a model in which Mg2+ can only bind to the protein when it is protonated at a site with a pK of about 6.8 located in the matrix. Thus, both the intrinsic activity of the uniporter and its inhibition by Mg2+ appear to be regulated by matrix protons. This makes the rate of anion uniport much more sensitive to changes in matrix pH which is physiologically advantageous for its proposed role in volume homeostasis.  相似文献   

2.
Electrophoretic uniport of anions through the inner mitochondrial membrane can be activated by alkaline pH or by depleting the matrix of divalent cations. It has also been suggested that, in the presence of valinomycin and potassium, respiration can also activate anion uniport. We have proposed that a single pathway is responsible for all three of these transport processes (Garlid, K. D., and Beavis, A. D. (1986) Biochim. Biophys. Acta 853, 187-204). We now present evidence that like the "pH-dependent" pore the divalent cation-regulated pore and the "respiration-induced" pore are blocked by N,N'-dicyclohexylcarbodiimide (DCCD). Moreover, the kinetics of inhibition of the latter two pathways are identical and exhibit a second order rate constant of 2.6 X 10(-3) (nmol DCCD/mg)-1.min-1. DCCD inhibits the uniport of Cl-, phosphate, malate, and other lipophobic anions completely, but it has no effect on the classical electroneutral phosphate and dicarboxylate carriers. In Mg2+-depleted mitochondria DCCD partially inhibits the transport of SCN-; however, in Mg2+-containing mitochondria and at low pH, no inhibition is observed. Furthermore, in DCCD-treated mitochondria, even following depletion of Mg2+, the transport of SCN- is independent of pH. These results lead us to conclude that two pathways for anion uniport exist: a specific, regulated pathway which can conduct a wide variety of anions and a nonregulated pathway through the lipid bilayer which only conducts lipid-soluble ions.  相似文献   

3.
Adam Curtis 《FEBS letters》1984,170(1):186-190
Specific permeability properties of the inner membrane of brown adipose tissue mitochondria were analysed with the aid of simultaneous pH measurements outside mitochondria and of mitochondria swelling. It was shown that valinomycin-induced potassium diffusion potential drives a parallel passive uptake of chlorides and extrusion of proton. Electrogenic H+ -extrusion was independent on anion transport, no competition was found between the two processes and the former process exerted a lower sensitivity to the inhibitory effect of GDP. The existence of two distinct, independent pathways for translocation of protons and halide anions across the membrane is suggested.  相似文献   

4.
It has long been established that the inner membrane of plant mitochondria is permeable to Cl-. Evidence has also accumulated which suggests that a number of other anions such as Pi and dicarboxylates can also be transported electrophoretically. In this paper, we present evidence that anion uniport in plant mitochondria is mediated via a pH-regulated channel related to the so-called inner membrane anion channel (IMAC) of animal mitochondria. Like IMAC, the channel in potato mitochondria transports a wide variety of anions including NO3-, Cl-, ferrocyanide, 1,2,3-benzene-tricarboxylate, malonate, Pi, alpha-ketoglutarate, malate, adipate, and glucuronate. In the presence of nigericin, anion uniport is sensitive to the medium pH (pIC50 = 7.60, Hill coefficient = 2). In the absence of nigericin, transport rates are much lower and much less sensitive to pH, suggesting that matrix H+ inhibit anion uniport. This conclusion is supported by measurements of H+ flux which reveal that "activation" of anion transport at high pH by nigericin and at low pH by respiration is associated with an efflux of matrix H+. Other inhibitors of IMAC which are found to block anion uniport in potato mitochondria include propranolol (IC50 = 14 microM, Hill coefficient = 1.28), tributyltin (IC50 = 4 nmol/mg, Hill coefficient = 2.0), and the nucleotide analogs Erythrosin B and Cibacron Blue 3GA. The channel in plant mitochondria differs from IMAC in that it is not inhibited by matrix Mg2+, mercurials, or N,N'-dicyclohexylcarbodiimide. The lack of inhibition by Mg2+ suggests that the physiological regulation of the plant channel may differ from IMAC and that the plant IMAC may have functions such as a role in the malate/oxaloacetate shuttle in addition to its proposed role in volume homeostasis.  相似文献   

5.
It is now well established that incubation of mitochondria at pH 8 or higher opens up an electrophoretic anion transport pathway in the inner membrane. It is not known, however, whether this transport process has any physiological relevance. In this communication we demonstrate that anion uniport can take place at physiological pH if the mitochondria are depleted of matrix divalent cations with A23187 and EDTA. Using the light-scattering technique we have quantitated the rates of uniport of a wide variety of anions. Inorganic anions such as Cl-, SO4(2-), and Fe(CN)6(4-) as well as physiologically important anions such as HCO3-, Pi-, citrate, and malate are transported. Some anions, however, such as gluconate and glucuronate do not appear to be transported. On the basis of the finding that the rate of anion uniport assayed in ammonium salts exhibits a dramatic decline associated with loss of matrix K+ via K+/H+ antiport, we suggest that anion uniport is inhibited by matrix protons. Direct inhibition of anion uniport by protons in divalent cation-depleted mitochondria is demonstrated, and the apparent pK of the binding site is shown to be about 7.8. From these properties we tentatively conclude that anion uniport induced by divalent cation depletion and that induced by elevated pH are catalyzed by the same transport pathway, which is regulated by both matrix H+ and Mg2+.  相似文献   

6.
Previously it has been shown that the mitochondrial inner membrane anion channel is reversibly inhibited by matrix Mg2+, matrix H+ and cationic amphiphiles such as propranolol. Furthermore, the IC50 values for both Mg2+ and cationic amphiphiles are dependent on matrix pH. It is now shown that pretreatment of mitochondria with N-ethylmaleimide, mersalyl and p-chloromercuribenzenesulfonate increases the IC50 values of these inhibitors. The effect of the mercurials is most evident when cysteine or thioglycolate is added to the assay medium to reverse their previously reported inhibitory effect (Beavis, A.D. (1989) Eur. J. Biochem. 185, 511-519). Although the IC50 values for Mg2+ and propranolol are shifted they remain pH dependent. Mersalyl is shown to inhibit transport even in N-ethylmaleimide-treated mitochondria indicating that N-ethylmaleimide does not react at the inhibitory mercurial site. However, the effects of N-ethylmaleimide and mersalyl on the IC50 for H+ are not additive which suggests that mercurials and N-ethylmaleimide react at the same 'regulatory' site. It is suggested that modification of this latter site exerts an effect on the binding of Mg2+, H+ and propranolol by inducing a conformational change. It is also suggested that a physiological regulator may exist which has a similar effect in vivo.  相似文献   

7.
1. Rapid choline oxidation and the onset of P(i)-induced swelling by liver mitochondria, incubated in a sucrose medium at or above pH7.0, required the addition of both P(i) and an uncoupling agent. Below pH7.0, P(i) alone was required for rapid choline oxidation and swelling. 2. Choline oxidation was inhibited by each of several reagents that also inhibited P(i)-induced swelling under similar conditions of incubation, including EGTA, mersalyl, Mg(2+), the Ca(2+)-ionophore A23187, rotenone and nupercaine. None of these reagents had any significant effect on the rate of choline oxidation by sonicated mitochondria. There was therefore a close correlation between the conditions required for rapid choline oxidation and for P(i)-induced swelling to occur, suggesting that in the absence of mitochondrial swelling the rate of choline oxidation is regulated by the rate of choline transport across the mitochondrial membrane. 3. Respiratory-chain inhibitors, uncoupling agents (at pH6.5) and ionophore A23187 caused a loss of endogenous Ca(2+) from mitochondria, whereas nupercaine and Mg(2+) had no significant effect on the Ca(2+) content. Inhibition of choline oxidation and mitochondrial swelling by ionophore A23187 was reversed by adding Ca(2+), but not by Mg(2+). It is concluded that added P(i) promotes the Ca(2+)-dependent activation of mitochondrial membrane phospholipase activity in respiring mitochondria, causing an increase in the permeability of the mitochondrial inner membrane to choline and therefore enabling rapid choline oxidation to occur. Nupercaine and Mg(2+) appear to block choline oxidation and swelling by inhibiting phospholipase activity. 4. Choline was oxidized slowly by tightly coupled mitochondria largely depleted of their endogenous adenine nucleotides, suggesting that these compounds are not directly concerned in the regulation of choline oxidation. 5. The results are discussed in relation to the possible mechanism of choline transport across the mitochondrial membrane in vivo and the influence of this process on the pathways of choline metabolism in the liver.  相似文献   

8.
Summary The transport of potassium, sodium and various anions in rat-liver mitochondria was studied mainly by analysis of ion content and water compartmentation of the mitochondrial pellet. A comparison of spontaneous transport with valinomycin- or gramicidin-stimulated transport is made. The rate or extent of uptake, the internal concentrations and the concentration ratio (Cin/Cout) are calculated and compared to test existing models for ion transport in mitochondria.Several models of ion transport in mitochondria are based on a cation-pump which is directed inward. This hypothesis is rejected because of the following findings: (1) Valinomycin stimulates the rate of potassium uptake but does not increase the potassium concentration ratio that can be actively maintained in a steady state (in which there is no potassium flow). (2) Valinomycin greatly stimulates the efflux of42K from mitochondria during the process of potassium accumulation. When potassium accumulation is stimulated the flux ratio, i.e. influx/efflux, decreases; in the presence of valinomycin this ratio approaches 1. (3) In the presence of gramicidin, the concentration ratios of potassium and sodium are about the same under a variety of conditions. These findings indicate that potassium and sodium transport are passive processes of relaxation towards electro-chemical equilibrium (of the potassium and sodium). In high external potassium concentrations the extent of potassium uptake is limited by the permeation of anions; of the permeating anions multivalent acids support a higher extent than monovalent acids. It was found that succinate, acetate and oxalate which are transported together with potassium are distributed in accordance with the pH and without any relation to the potassium concentration ratio. These findings are compatible with the hypothesis that an outward-directed proton pump creates an electrical potential gradient, which shifts the equilibrium state for the cations and drives sodium and potassium inward, and also creates proton gradient that is the driving force for anion transport.  相似文献   

9.
Isolated beef heart mitochondria were treated with A23187 in the presence of different concentrations of Mg2+ or EDTA to establish varying levels of total mitochondrial Mg2+. The Mg2+ content was related to the rate of passive swelling of the mitochondria in potassium acetate and other potassium salts in which swelling is presumed to depend on K+ entry via an endogenous K+/H+ antiport. Swelling in these salts does not commence until Mg2+ has been depleted from an initial value of 36 nmol X mg-1 of protein to 8 nmol/mg-1, or less. Below this level, swelling increases linearly with decreasing Mg2+ to a maximum rate at 2 nmol of Mg2+ X mg-1. Rotenone-treated heart mitochondria suspended in 75 mM potassium acetate at pH 7.80 show no delta pH by 5,5-dimethyl-2,4-oxazolidinedione distribution. Distribution of methylamine also shows essentially no delta pH under these conditions when allowance is made for binding of [14C]methylamine by mitochondrial membranes under these conditions. Addition of A23187 results in a small and transient delta pH (delta pH less than 0.14, acid interior) as measured by methylamine distribution. Estimation of the maximum matrix free Mg2+ concentration from the maximum delta pH observed and the external free Mg2+ concentration at equilibrium with A23187 shows that swelling is not initiated until matrix free Mg2+ is decreased to below 150 microM. An independent estimate of free Mg2+ using a null-point procedure gives a lower, but quite similar value (50 microM) for maximum matrix free Mg2+ when swelling commences. The large depletion of total and free Mg2+ that is required to activate swelling in potassium acetate (and presumably K+/H+ antiport activity) does not appear to be compatible with previous indications that free Mg2+ acts as a "carrier brake" to regulate K+ extrusion from the mitochondrion on such an antiport (Garlid, K. D. (1980) J. Biol. Chem. 255, 11273-11279). The removal of a tightly bound component of mitochondrial Mg2+ is closely related to increased K+ permeability and increased passive swelling in potassium salts. This Mg2+ appears to play a role in the maintenance of mitochondrial membrane structure and integrity.  相似文献   

10.
Proton translocation of the bovine chromaffin-granule membrane.   总被引:3,自引:0,他引:3       下载免费PDF全文
Bovine chromaffin granules were lysed and their membranes resealed to give osmotically sensitive 'ghosts'. These swell in the presence of salts and MgATP. It is shown that this is due to proton entry accompanied by anions. The rate of swelling depends on the anion present, but swelling is not limited to media containing permeant anions. It is quite marked in solutions of sulphates, phosphates and acetates. It is not uncoupler-sensitive, suggesting that at least one component of swelling is due to coupled proton and anion entry (non-electrogenic proton translocation). Direct measurements of transmembrane pH and potential gradients generated in the presence of MgATP shows that these are rapidly established in sucrose media, and are rather little affected by the presence of salts. They contribute roughly equally to the total protonmotive force. The potential gradient is establihsed very rapidly, but the pH gradient is generated over several minutes. The gradients are not completely dissipated by uncoupler, and it is shown that, in media containing sulphate but no permeant anion, sulphate can be taken up by the 'ghosts'. There thus appear to be two mechanisms of proton translocation across the membrane, both dependent on ATP hydrolysis: an electrogenic transfer of protons, and proton movement linked to an anion transporter of broad specificity.  相似文献   

11.
The mitochondrial inner membrane anion channel (IMAC) carries a wide variety of anions and is postulated to be involved in mitochondrial volume homeostasis in conjunction with the K+/H+ antiporter, thus allowing the respiratory chain proton pumps to drive salt efflux. How it is regulated is uncertain; however, it is inhibited by matrix Mg2+ and matrix protons. Previously determined values for the IC50 suggested that the channel would be closed under physiological conditions. In a previous study (Liu, G., Hinch, B., Davatol-Hag, H., Lu, Y., Powers, M., and Beavis, A. D. (1996) J. Biol. Chem. 271, 19717-19723), it was demonstrated that the channel is highly temperature-dependent, and that a large component of this sensitivity resulted from an effect on the pIC50 for protons. We have now investigated the effect of temperature on the inhibition by Mg2+ and have found that it too is temperature-dependent. When the temperature is raised from 20 degrees C to 45 degrees C, the IC50 increases from 22 to 350 microm at pH 7.4 and from 80 to 1.5 mm at pH 8.4, respectively. The Arrhenius plot for the IC50 is linear with a slope = -80 kJ/mol. The IC50 is also strongly pH-dependent, and at 37 degrees C increases from 90 microm at pH 7.4 to 1230 microm at pH 8.4. In view of the extremely rapid fluxes that IMAC is capable of conducting at 37 degrees C, we conclude that inhibition by matrix Mg2+ and protons is necessary to limit its activity under physiological conditions. We conclude that the primary role of Mg2+ is to ensure IMAC is poised to allow regulation by small changes in pH in the physiological range. This control is mediated by a direct effect of H+ on the activity, in addition to an indirect effect mediated by a change in the Mg2+ IC50. The question that remains is not whether IMAC can be active at physiological concentrations of Mg2+ and H+, but what other factors might increase its sensitivity to changes in mitochondrial volume.  相似文献   

12.
Mechanisms of proton transport were investigated in planar phospholipid bilayer membranes exposed to aspirin (acetylsalicylic acid), acetaminophen (4-acetamidophenol), benzoic acid and three aspirin metabolites (salicylic acid, gentisic acid and salicyluric acid). The objectives were to characterize the conductances and permeabilities of these weak acids in lipid bilayer membranes and then predict their effects on mitochondrial membranes. Of the compounds tested only aspirin, benzoate and salicylate caused significant increases in membrane conductance. The conductance was due mainly to proton current at low pH and to weak acid anion current at neutral pH. Analysis of the concentration and pH dependence suggests that these weak acids act as HA2 -type proton carriers when pH pK and as lipid soluble anions at neutral pH. Salicylate is much more potent than aspirin and benzoate because salicylate contains an internal hydrogen bond which delocalizes the negative charge and increases the permeability of the anion. Model calculations for mitochondria suggest that salicylate causes net H+ uptake by a cyclic process of HA influx and A efflux. This model can explain the salicylate-induced uncoupling and swelling observed in isolated mitochondria. Since ingested aspirin breaks down rapidly to form salicylate, these results may clarify the mechanisms of aspirin toxicity in humans. The results may also help to explain why the ingestion of aspirin but not acetaminophen is associated with Reye's syndrome, a disease characterized by impaired energy metabolism and mitochondrial swelling.  相似文献   

13.
Mitochondria normally exhibit very low electrophoretic permeabilities to physiologically important anions such as chloride, bicarbonate, phosphate, succinate, citrate, etc. Nevertheless, considerable evidence has accumulated which suggests that heart and liver mitochondria contain a specific anion-conducting channel. In this review, a postulated inner membrane anion channel is discussed in the context of other known pathways for anion transport in mitochondria. This anion channel exhibits the following properties. It is anion-selective and inhibited physiologically by protons and magnesium ions. It is inhibited reversibly by quinine and irreversibly by dicyclohexylcarbodiimide. We propose that the inner membrane anion channel is formed by inner membrane proteins and that this pathway is normally latent due to regulation by matrix Mg2+. The physiological role of the anion channel is unknown; however, this pathway is well designed to enable mitochondria to restore their normal volume following pathological swelling. In addition, the inner membrane anion channel provides a potential futile cycle for regulated non-shivering thermogenesis and may be important in controlled energy dissipation.  相似文献   

14.
The ClC family encompasses two classes of proteins with distinct transport functions: anion channels and transporters. ClC-type transporters usually mediate secondary active anion–proton exchange. However, under certain conditions they assume slippage mode behavior in which proton and anion transport are uncoupled, resulting in passive anion fluxes without associated proton movements. Here, we use patch clamp and intracellular pH recordings on transfected mammalian cells to characterize exchanger and slippage modes of human ClC-4, a member of the ClC transporter branch. We found that the two transport modes differ in transport mechanisms and transport rates. Nonstationary noise analysis revealed a unitary transport rate of 5 × 105 s−1 at +150 mV for the slippage mode, indicating that ClC-4 functions as channel in this mode. In the exchanger mode, unitary transport rates were 10-fold lower. Both ClC-4 transport modes exhibit voltage-dependent gating, indicating that there are active and non-active states for the exchanger as well as for the slippage mode. ClC-4 can assume both transport modes under all tested conditions, with exchanger/channel ratios determined by the external anion. We propose that binding of transported anions to non-active states causes transition from slippage into exchanger mode. Binding and unbinding of anions is very rapid, and slower transitions of liganded and non-liganded states into active conformations result in a stable distribution between the two transport modes. The proposed mechanism results in anion-dependent conversion of ClC-type exchanger into an anion channel with typical attributes of ClC anion channels.  相似文献   

15.
We have systematically investigated certain characteristics of the ATP-dependent proton transport mechanism of bovine brain clathrin-coated vesicles. H+ transport specific activity was shown by column chromatograpy to co-purify with coated vesicles, however, the clathrin coat is not required for vesicle acidification as H+ transport was not altered by prior removal of the clathrin coat. Acidification of the vesicle interior, measured by fluorescence quenching of acridine orange, displayed considerable anion selectively (Cl- greater than Br- much greater than NO3- much greater than gluconate, SO2-(4), HPO2-(4), mannitol; Km for Cl- congruent to 15 mM), but was relatively insensitive to cation replacement as long as Cl- was present. Acidification was unaffected by ouabain or vanadate but was inhibited by N-ethylmaleimide (IC50 less than 10 microM), dicyclohexylcarbodiimide (DCCD) (IC50 congruent to 10 microM), chlorpromazine (IC50 congruent to 15 microM), and oligomycin (IC50 congruent to 3 microM). In contrast to N-ethylmaleimide, chlorpromazine rapidly dissipated preformed pH gradients. Valinomycin stimulated H+ transport in the presence of potassium salts (gluconate much greater than NO3- greater than Cl-), and the membrane-potential-sensitive dye Oxonol V demonstrated an ATP-dependent interior-positive vesicle membrane potential which was greater in the absence of permeant anions (mannitol greater than potassium gluconate greater than KCl) and was abolished by N-ethylmaleimide, protonophores or detergent. Total vesicle-associated ouabain-insensitive ATPase activity was inhibited 64% by 1 mM N-ethylmaleimide, and correlated poorly with H+ transport, however N-ethylmaleimide-sensitive ATPase activity correlated well with proton transport (r = 0.95) in the presence of various Cl- salts and KNO3. Finally, vesicles prepared from bovine brain synaptic membranes exhibited H+ transport activity similar to that of the coated vesicles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Ionophore A23187-mediated net influx of Ca2+ in ATP-depleted human red cells was studied as a function of the pH and the proton concentration gradient across the membranes. Utilizing the Ca2+-induced increase in K+ conductance of the cell membranes, various CCCP-mediated proton gradients were raised across the membranes of cells suspended in unbuffered salt solutions with different K+ concentrations. In ionophore-mediated equilibrium the concentration ratios of ionized Ca between ATP-depleted, DIDS-treated cells and their suspension medium were equal to the concentration ratios of protons raised to the second power. With no proton concentration gradient across the membranes the net influxes of Ca2+ as a function of pH resembled a titration curve of a weak acid, with half maximal net influx at pH 7.3, at 100 microM extracellular Ca2+. With cellular pH fixed at various values, the net influx of Ca2+ was determined as a function of the proton concentration gradient. A linear relationship between the logarithm of net influx and the difference between extracellular and cellular pH was found at all cellular pH values tested, but the proton concentration gradient acceleration was a function of the cellular pH. Accelerations between 10- and 40- times per unit delta pH were found and net effluxes were correspondingly decreased. The results are discussed in relation to present models of the mechanism of ionophore A23187-mediated Ca2+ transport. The importance of the proton concentration gradient dependency is discussed in relation to the induced oscillations in K+-conductance of human red cell membranes previously reported (Vestergaard-Bogind and Bennekou (1982) Biochim. Biophys. Acta 688, 37-44).  相似文献   

17.
Long-chain fatty acids induce a rapid release of Mg(2+) from both energized and nonenergized rat liver mitochondria suspended at pH 8 in isotonic saline but not sucrose media. The effect is observed only with fatty acids that possess protonophoric activity. The most active saturated fatty acids are myristic and palmitic, while the most active unsaturated acids are oleic, linolenic, and arachidonic. The rate of Mg(2+) release drastically decreases with decreasing medium pH to 7.2-7.6. However, at those pH values this rate is doubled by energization of mitochondria with respiratory substrates. Mg(2+) release is accompanied by cyclosporin A-insensitive large-amplitude swelling of mitochondria. This swelling is similar to that produced by the divalent metal ionophore A23187 and is interpreted as being due to activation of the inner membrane anion channel, the K(+) uniporter, and the K(+)/H(+) exchanger. In energized mitochondria, both swelling and Mg(2+) release are blocked by the exogenous K(+)/H(+) exchanger nigericin. It is proposed that fatty acids under conditions of alkaline mitochondrial matrix activate latent Mg(2+)-sensitive ion-conducting pathways in the inner mitochondrial membrane, which mediate swelling and Mg(2+) release. It is hypothesized that fatty acids activate an intrinsic Mg(2+)/H(+) exchanger that is related to, or identical with, the K(+)/H(+) exchanger.  相似文献   

18.
Addition of A23187 plus EDTA to energized mitochondria in KCl medium determines a rapid osmotic swelling due to K+ uptake. The swelling is fully reversed by uncoupler, is stimulated by quinine, and is accompanied by membrane depolarization and increased rate of respiration. A23187-treated mitochondria passively swell in K+ thiocyanate at neutral pH, under conditions where the H+-K+ antiporter appears to be silent. These data indicate that A23187 activates electrophoretic K+ flux, supporting the notion that Mg2+ depletion unmasks several ionic conductance pathways whose concerted interplay could provide a sensitive regulation of mitochondrial volume homeostasis.  相似文献   

19.
The influence of nucleotides on 2,4-dinitrophenol (DNP)-induced K+ efflux from intact rat liver mitochondria has been studied. ATP and ADP at micromolar concentrations were found to inhibit mitochondrial potassium transport, whereas GTP, GDP, CTP, and UTP did not show tha same effect. The values of half-maximal inhibition (IC50) were approximately 20 microM for ATP and approximately 60 microM for ADP. It is suggested that adenine nucleotides exert their inhibitory action at the matrix side of the inner mitochondrial membrane since the inhibitor of adenine nucleotide translocase atractyloside at concentration of 1 microM completely removed the inhibitory effect of ATP and ADP. The mitochondrial ATPase inhibitor oligomycin (2 microg/ml) was found to reduce slightly the rate of DNP-induced K+ efflux and had no effect on inhibition by adenine nucleotides; the latter was insensitive to Mg2+ and the changes in pH. It seems likely that the regulation of potassium transport is not due to phosphorylation of the channel-forming protein but to binding of the nucleotides in specific regulatory sites. The possibility of potassium efflux from mitochondria in the presence of uncoupler via the ATP-dependent potassium channel is discussed.  相似文献   

20.
The mitochondrial inner membrane anion channel catalyzes the electrophoretic transport of a wide variety of anions and is inhibited by matrix divalent cations and protons. In this paper, evidence is provided that mersalyl and p-chloromercuribenzene-sulfonate each interact with this uniporter at two distinct sites. Binding to site 1 causes a shift in the pH dependence of transport, characterized by a decrease in the pIC50 for protons from about 7.8 to about 7.3, and leads to substantial stimulation of transport in the physiological pH range. This effect is not reversed by addition of thiols such as thioglycolate. Binding of mersalyl and p-chloromercuribenzenesulfonate to site 2 inhibits the transport of most anions including Pi, citrate, malonate, sulfate and ferrocyanide. The transport of Cl- is inhibited about 60% by mersalyl, but is not inhibited by p-chloromercuribenzenesulfonate. These data suggest that inhibition is a steric effect dependent on the size of the anion and the size of the R group of the mercurial. This inhibition is reversed by thioglycolate. Dose/response curves indicate that mersalyl binds to site 1 as the dose increased from 7 to 13 nmol/mg, whereas it binds to site 2 as the dose is increased from 10 to 18 nmol/mg. Thus, at certain pH values both stimulatory and inhibitory phases can be seen in the same dose/response curve. It is suggested that these sites may contain thiol groups and that physiological regulators may exist which can effect changes in activity of the inner membrane anion uniporter similar to those exerted by mercurials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号