首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of chest wall vibration on breathlessness in normal subjects   总被引:2,自引:0,他引:2  
This study evaluated the effect of chest wall vibration (115 Hz) on breathlessness. Breathlessness was induced in normal subjects by a combination of hypercapnia and an inspiratory resistive load; both minute ventilation and end-tidal CO2 were kept constant. Cross-modality matching was used to rate breathlessness. Ratings during intercostal vibration were expressed as a percentage of ratings during the control condition (either deltoid vibration or no vibration). To evaluate their potential contribution to any changes in breathlessness, we assessed several aspects of ventilation, including chest wall configuration, functional residual capacity (FRC), and the ventilatory response to steady-state hypercapnia. Intercostal vibration reduced breathlessness ratings by 6.5 +/- 5.7% compared with deltoid vibration (P less than 0.05) and by 7.0 +/- 8.3% compared with no vibration (P less than 0.05). The reduction in breathlessness was accompanied by either no change or negligible change in minute ventilation, tidal volume, frequency, duty cycle, compartmental ventilation, FRC, and the steady-state hypercapnic response. We conclude that chest wall vibration reduces breathlessness and speculate that it may do so through stimulation of receptors in the chest wall.  相似文献   

2.
We examined the effects of 10 min of lower lateral chest wall percussion with a mechanical percussor or hand clapping in groups of anesthetized, paralyzed, and ventilated supine dogs. Mechanical percussion was applied at 10-16 Hz and caused an esophageal pressure swing (delta Pes) of 10-17 cmH2O. Hand clapping was applied at 4-7 Hz and caused a delta Pes of 6-17 cmH2O. At necropsy there were large reddened areas on the lateral surface of the underlying lung as well as smaller reddened areas on the hilar surfaces of both lungs and on the lateral surface of the opposite lung. These reddened regions were demonstrated to be atelectatic by postmortem lung inflation (which caused the reddened areas to disappear) and by microscopic examination. Despite the atelectasis, gas exchange improved toward the end of the percussion or clapping period. In four dogs that were ventilated for an additional 20 min after percussion, there was a tendency for gas exchange initially to worsen and then to gradually improve.  相似文献   

3.
We have tested a new fiber-optic pressure recording system, Samba, with a thin fiber [outer diameter (OD) = 0.25 mm] and a pressure sensor (length and OD = 0.42 mm) attached to the end. The accuracy of the system tested in vitro was good, with a coefficient of variation of 2.54% at 100 mmHg. The drift was <0.45 mmHg/h, and the temperature sensitivity was approximately 0.07 mmHg/1 degrees C between 22 and 37 degrees C. The frequency response characteristics were similar to a 1.4-Fr Millar catheter (0-200 Hz). Introduction of the Samba sensor from the right carotid artery into the left ventricle in six mice caused no drop in mean aortic pressure, whereas introduction of a 1.4-Fr Millar catheter (OD = 0.47 mm; n = 6) caused a pressure drop from 91.6 +/- 9.2 to 65.1 +/- 6.2 mmHg; P < 0.05. Thus the Samba sensor system may represent a new alternative to assess hemodynamic variables in the murine cardiovascular system.  相似文献   

4.
Hyperthermia, to 42 degrees C, for treatment of cancer, was induced 23 times in 13 anesthetized patients utilizing an extracorporeal heat-exchange circuit. Sweating rate over the chest, abdomen, arm and forearm ranged from 0.2 to 0.9 mg sweat X min-1 X cm-2. Cardiac index (CI), stroke volume index (SVI), left ventricular stroke work index, and right ventricular stroke work index initially increased to 221 +/- 12.5, 162 +/- 9.6, 142 +/- 11, and 203 +/- 29% but later fell to 169-173, 113-120, 69, and 148-117% of control, respectively. Heart rate initially rose to 145 +/- 5.9% and then stabilized at 160-162% of control. Pulmonary arterial occlusion pressure and central venous pressure initially fell to 82 +/- 8 and 93 +/- 9% but later rose to 87-102 and 105-120% of control levels, respectively. The hemodynamic response to severe heat stress in anesthetized humans was characterized by peripheral vasodilation accompanied by compensatory increases in heart rate and CI. Ventricular function, as reflected by SVI and CI, declined with continued heat stress, despite reduced afterload and stable or increased filling pressures. Pulmonary arterial temperature rose fastest, followed by the esophageal, rectal, and bladder temperatures, respectively. Jugular bulb temperature also rose rapidly.  相似文献   

5.
The purpose of this investigation was to determine if antagonizing extracellular calcium influx altered posttetanic twitch potentiation (PTP). Whole muscles and muscle fiber bundles (less than or equal to 25 fibers) dissected from frog sartorius and semitendinosus muscles were mounted at optimal length in a normal Ringer solution (NR). To determine PTP, isometric twitches were evoked every 10 s (0.1 Hz) before and after a 2.5-s tetanic contraction (80 Hz). To antagonize calcium influx, low-calcium Ringer [LCR, calcium replaced by 3 mM magnesium and 1 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid], NR plus diltiazem (Dilt, 30 microM), NR plus nifedipine (Nif, 10 microM), and NR plus D 600 (30 microM) were also used (n = 8 for each condition). These conditions altered pretetanic twitch tension by only -1.2 +/- 2.4, 4.2 +/- 2.3, 4.7 +/- 3.7, and 1.6 +/- 3.7% (SE), (LCR, Dilt, Nif, and D 600, P greater than 0.05) but caused a noticeable decrease in tension at the end of the tetanus. Under NR conditions, twitches evoked immediately after the tetanus were potentiated by 49.5 +/- 0.4% with the peak rate of tension development (dP/dt) increased by 44.9 +/- 0.5% (P less than 0.05). Antagonizing calcium influx depressed the PTP response by 59.8 +/- 6.2, 55.9 +/- 10.1, 73.2 +/- 6.8, and 29.8 +/- 3.6% (P less than 0.05) and increased dP/dt by 65.8 +/- 11.1, 45.7 +/- 8.6, 55.6 +/- 4.4% and 49.0 +/- 10.5% (P less than 0.05). Addition of drugs immediately after the tetanus only slightly reduced PTP but accelerated recovery of the twitch.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Renal plasma flow (RPF) and glomerular filtration rate (GFR) are markedly increased during pregnancy. We recently reported that the renal hemodynamic changes observed during pregnancy in rats are associated with enhanced renal protein expression of neuronal nitric oxide synthase (nNOS). The purpose of this study was to determine the role of nNOS in mediating renal hemodynamic changes observed during pregnancy. To achieve this goal, we examined the effects of the nNOS inhibitor 7-nitroindazole (7-NI) on kidney function in normal conscious, chronically instrumented virgin (n = 6) and pregnant rats (n = 9) at day 16 of gestation. Infusion of 7-NI had no effect on RPF (4.7 +/- 0.7 vs. 4.8 +/- 0.9 ml/min), GFR (2.2 +/- 0.2 vs. 2.5 +/- 0.4 ml/min), or mean arterial pressure (MAP; 127 +/- 7 vs. 129 +/- 10 mmHg) in virgin rats. In contrast, 7-NI infused into pregnant rats decreased RPF (8.9 +/- 1.6 vs. 6.5 +/- 1.4 ml/min) and GFR (4.4 +/- 0.7 vs. 3.3 +/- 0.7 ml/min) while having no effect on MAP (123 +/- 4 vs. 123 +/- 3 mmHg). In summary, inhibition of nNOS in pregnant rats at midgestation results in significant decreases in RPF and GFR. nNOS inhibition in virgin rats had no effect on renal hemodynamics. These data suggest that nNOS may play a role in mediating the renal hemodynamic changes that occur during pregnancy.  相似文献   

7.
Left ventricular (LV) end-diastolic pressure (LVEDP) increase due to volume expansion (VExp) enhances mechanosensitive vagal cardiac afferent C-fiber activity (CNFA), thus decreasing renal sympathetic nerve activity (RSNA). Hypotensive hemorrhage (hHem) attenuates RSNA despite decreased LVEDP. We hypothesized that CNFA increases with any change in LVEDP. Coronary perfusion pressure (CPP), supposedly affected in both conditions, might also be a stimulus of CNFA. VExp and hHem were performed in anesthetized male Sprague-Dawley rats while blood pressure, heart rate, and RSNA were measured. Cervical vagotomy abolished RSNA response in both reflex responses. Single-unit CNFA was recorded while LVEDP was changed. Rapid changes (+/- 4, +/-6, +/-8 mmHg) were obtained by graded occlusion of the caval vein and descending aorta. Prolonged changes were obtained by VExp and hHem. Furthermore, CNFA was recorded in a modified Langendorff heart while CPP was changed (70, 100, 40 mmHg). Rapid LVEDP changes increased CNFA [caval vein occlusion: +16 +/- 3 Hz (approximately +602%); aortic occlusion: +15 +/- 3 Hz (approximately +553%); 70 units; P < 0.05]. VExp and hHem (n = 6) increased CNFA [VExp: +10 +/- 4 Hz (approximately +1,033%); hHem: +10 +/- 2 Hz (approximately +1,225%); P < 0.05]. An increase in CPP increased CNFA [+2 +/- 1 Hz (approximately +225%); P < 0.05], whereas a decrease in CPP decreased CNFA [-0.8 +/- 0.4 Hz (approximately -50%); P < 0.05]. All C fibers recorded originated from the LV. CNFA increased with any LVEDP change but changed equidirectionally with CPP. Thus neither LVEDP nor CPP fully accounts directly for afferent C-fiber and reflex sympathetic responses. The intrinsic afferent stimuli and receptive fields accounting for reflex sympathoinhibition still remain cryptic.  相似文献   

8.
The effect of increased arterial pressure (Pa) on microvessel pressure (Pc) and edema following microvascular obstruction (100-micron glass spheres) was examined in the isolated ventilated dog lung lobe pump perfused with blood. Lobar vascular resistance (PVR) increased 2- to 10-fold following emboli when either Pa or flow was held constant. Microbead obstruction increased the ratio of precapillary to total PVR from 0.60 +/- 0.05 to 0.84 +/- 0.02 (SE) or to 0.75 +/- 0.06 (n = 6), as determined by the venous occlusion and the isogravimetric capillary pressure techniques, respectively. Isogravimetric Pc (5.0 +/- 0.7) did not differ from Pc obtained by venous occlusion (3.8 +/- 0.2 Torr, n = 6). After embolism, Pc in constant Pa decreased from 6.2 +/- 0.3 to 4.4 +/- 0.3 Torr (n = 16). In the constant-flow group, embolism doubled Pa while Pc increased only 40% (6.7 +/- 0.6 to 9.2 +/- 1.4 Torr, n = 6) with no greater edema formation than in the constant Pa groups. These data indicate poor transmission of Pa to filtering capillaries. Microembolism, even when accompanied by elevated Pa and increased flow velocity of anticoagulated blood of low leukocyte and platelet counts, caused little edema. Our results suggest that mechanical effects alone of lung microvascular obstruction cause minimal pulmonary edema.  相似文献   

9.
Both hypoxia and hyperoxia have major effects on cardiovascular function. However, both states affect ventilation and many previous studies have not controlled CO(2) tension. We investigated whether hemodynamic effects previously attributed to modified O(2) tension were still apparent under isocapnic conditions. In eight healthy men, we studied blood pressure (BP), heart rate (HR), cardiac index (CI), systemic vascular resistance index (SVRI) and arterial stiffness (augmentation index, AI) during 1 h of hyperoxia (mean end-tidal O(2) 79.6 +/- 2.0%) or hypoxia (pulse oximeter oxygen saturation 82.6 +/- 0.3%). Hyperoxia increased SVRI (18.9 +/- 1.9%; P < 0.001) and reduced HR (-10.3 +/- 1.0%; P < 0.001), CI (-10.3 +/- 1.7%; P < 0.001), and stroke index (SI) (-7.3 +/- 1.3%; P < 0.001) but had no effect on AI, whereas hypoxia reduced SVRI (-15.2 +/- 1.2%; P < 0.001) and AI (-10.7 +/- 1.1%; P < 0.001) and increased HR (18.2 +/- 1.2%; P < 0.001), CI (20.2 +/- 1.8%; P < 0.001), and pulse pressure (13.2 +/- 2.3%; P = 0.02). The effects of hyperoxia on CI and SVRI, but not the other hemodynamic effects, persisted for up to 1 h after restoration of air breathing. Although increased oxidative stress has been proposed as a cause of the cardiovascular response to altered oxygenation, we found no significant changes in venous antioxidant or 8-iso-prostaglandin F(2alpha) levels. We conclude that both hyperoxia and hypoxia, when present during isocapnia, cause similar changes in cardiovascular function to those described with poikilocapnic conditions.  相似文献   

10.
The purpose of this study was to compare the influence of prolonged vibration of a hand muscle on the amplitude of the stretch reflex, motor unit discharge rate, and force fluctuations during steady, submaximal contractions. Thirty-two young adults performed 10 isometric contractions at a constant force (5.0 +/- 2.3% of maximal force) with the first dorsal interosseus muscle. Each contraction was held steady for 10 s, and then stretch reflexes were evoked. Subsequently, 20 subjects had vibration applied to the relaxed muscle for 30 min, and 12 subjects received no vibration. The muscle vibration induced a tonic vibration reflex. The intervention (vibration or no vibration) was followed by 2 sets of 10 constant-force contractions with applied stretches (After and Recovery trials). The mean electromyogram amplitude of the short-latency component of the stretch reflex increased by 33% during the After trials (P < 0.01) and by 38% during the Recovery trials (P < 0.01). The standard deviation of force during the steady contractions increased by 21% during the After trials (P < 0.05) and by 28% during the Recovery trials (P < 0.01). The discharge rate of motor units increased from 10.3 +/- 2.7 pulses/s (pps) before vibration to 12.2 +/- 3.1 pps (P < 0.01) during the After trials and to 11.9 +/- 2.6 pps during the Recovery trials (P < 0.01). There was no change in force fluctuations or stretch reflex magnitude for the subjects in the Control group. The results indicate that prolonged vibration increased the short-latency component of the stretch reflex, the discharge rate of motor units, and the fluctuations in force during contractions by a hand muscle. These adjustments were necessary to achieve the target force due to the vibration-induced decrease in the force capacity of the muscle.  相似文献   

11.
Effects of anesthetics on systemic hemodynamics in mice   总被引:1,自引:0,他引:1  
The aim of this study was to compare the systemic hemodynamic effects of four commonly used anesthetic regimens in mice that were chronically instrumented for direct and continuous measurements of cardiac output (CO). Mice (CD-1, Swiss, and C57BL6 strains) were instrumented with a transit-time flow probe placed around the ascending aorta for CO measurement. An arterial catheter was inserted into the aorta 4 or 5 days later for blood pressure measurements. After full recovery, hemodynamic parameters including stroke volume, heart rate, CO, mean arterial pressure (MAP), and total peripheral resistance were measured with animals in the conscious state. General anesthesia was then induced in these mice using isoflurane (Iso), urethane, pentobarbital sodium, or ketamine-xylazine (K-X). The doses and routes of administration of these agents were given as required for general surgical procedures in these animals. Compared with the values obtained for animals in the conscious resting state, MAP and CO decreased during all anesthetic interventions, and hemodynamic effects were smallest for Iso (MAP, -24 +/- 3%; CO, -5 +/- 7%; n = 15 mice) and greatest for K-X (MAP, -51 +/- 6%; CO, -37 +/- 9%; n = 8 mice), respectively. The hemodynamic effects of K-X were fully antagonized by administration of the alpha(2)-receptor antagonist atipamezole (n = 8 mice). These results indicate that the anesthetic Iso has fewer systemic hemodynamic effects in mice than the nonvolatile anesthetics.  相似文献   

12.
The modulation of cardiovascular sympathetic responses by neuropeptide Y (NPY) and peptide YY (PYY) was assessed in vivo, in pithed rats. Both peptides (0.02-2 nmol/kg) caused similar dose-dependent pressor responses, resistant to adrenergic blockade but antagonized by the calcium channel blocker, nifedipine. Only NPY, at the lowest dose, slightly accelerated heart rate (by 10 +/- 4 beats/min). At the pressor dose (0.6 nmol/kg) but not subpressor dose (0.2 nmol/kg), the increase in blood pressure induced by stimulation of the sympathetic outflow (ST: 0.3 Hz, 50 V, 1 min) was attenuated by PYY (by 40%), whereas ST-evoked tachycardia was reduced by NPY (by 35%). Neither NPY- nor PYY-pretreatment affected ST-induced increments in plasma norepinephrine (NE) and epinephrine concentrations. In addition, regional hemodynamic effects of NPY were studied in conscious rats instrumented with Doppler flow probes. The hypertension caused by NPY was attended by reflex bradycardia and marked rise in peripheral vascular resistance in renal (+ 233 +/- 59%), superior mesenteric (+ 183 +/- 65%) and hindquarter (+ 65 +/- 10%) circulation. The pattern of hemodynamic responses of NPY was similar to that of NE but, unlike the latter, persisted after adrenergic blockade.  相似文献   

13.
In eight anesthetized and tracheotomized rabbits, we studied the transfer impedances of the respiratory system during normocapnic ventilation by high-frequency body-surface oscillation from 3 to 15 Hz. The total respiratory impedance was partitioned into pulmonary and chest wall impedances to characterize the oscillatory mechanical properties of each component. The pulmonary and chest wall resistances were not frequency dependent in the 3- to 15-Hz range. The mean pulmonary resistance was 13.8 +/- 3.2 (SD) cmH2O.l-1.s, although the mean chest wall resistance was 8.6 +/- 2.0 cmH2O.l-1.s. The pulmonary elastance and inertance were 0.247 +/- 0.095 cmH2O/ml and 0.103 +/- 0.033 cmH2O.l-1.s2, respectively. The chest wall elastance and inertance were 0.533 +/- 0.136 cmH2O/ml and 0.041 +/- 0.063 cmH2O.l-1.s2, respectively. With a linear mechanical behavior, the transpulmonary pressure oscillations required to ventilate these tracheotomized animals were at their minimal value at 3 Hz. As the ventilatory frequency was increased beyond 6-9 Hz, both the minute ventilation necessary to maintain normocapnia and the pulmonary impedance increased. These data suggest that ventilation by body-surface oscillation is better suited for relatively moderate frequencies in rabbits with normal lungs.  相似文献   

14.
The purpose of the study was to describe hemodynamic response and regional blood flows through various organs and tissues (microsphere technique) in dogs (n = 8), at rest and during mild (4 km/h, 13% slope; heart rate = 154 bpm), moderate (4 km/h, 26% slope; heart rate = 201 bpm), and severe (4 km/h, 39% slope; heart rate = 266 bpm) exercise on treadmill. Cardiac output (rest: 3.2 +/- 0.3; 39% slope: 10.2 +/- 1.3 l/min; mean +/- SE), systolic aortic pressure (rest: 122 +/- 4; 39% slope: 158 +/- 9 mm Hg), and left atrial pressure (rest: 5 +/- 0.7; 39% slope: 11.0 +/- 0.6 mm Hg) increased linearly with workload. On the contrary stroke volume increased from rest (35 +/- 2 ml) to mild (38 +/- 2 ml) and moderate (42 +/- 3 ml) exercise but decreased in response to the severe workload (38 +/- 5 ml). Regional blood flows across the brain, femoral bone, adrenal glands and temporalis muscle were not modified during exercise. On the contrary, a marked increase in regional blood flow was observed through the flexor and extensor muscles of the limb (X 5 to X 15), the muscles of the back (X 4) and the diaphragm (X 2.5). The small inconsistent increase in nutritional tongue blood flow probably underestimated the increased perfusion through arteriovenous shunts in the mucosa for heat-loss purposes. Myocardial blood flow increased in a linear fashion with work load in both ventricles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
When given during closed-chest resuscitation, cariporide (4-isopropyl-methylsulfonylbenzoyl-guanidine methanesulfonate; a selective inhibitor of the Na(+)/H(+) exchanger isoform-1) enables generation of viable perfusion pressures with less depth of compression. We hypothesized that this effect results from greater blood flows generated for a given depth of compression. Two series of 14 rats each underwent 10 min of untreated ventricular fibrillation followed by 8 min of chest compression before defibrillation was attempted. Compression depth was adjusted to maintain an aortic diastolic pressure (ADP) between 26 and 28 mmHg in the first series and between 36 and 38 mmHg in the second series. Within each series, rats were randomized to receive cariporide (3 mg/kg) or NaCl (0.9%; control) before chest compression was started. Blood flow was measured using 15-mum fluorescent microspheres. Less depth of compression was required to maintain the target ADP when cariporide was present in both series 1 (13.6 +/- 1.2 vs. 16.6 +/- 1.2 mm; P < 0.001) and series 2 (15.3 +/- 1.0 vs. 18.9 +/- 1.5 mm; P < 0.001). Despite less compression depth, the cardiac index in cariporide-treated rats was comparable to control rats in series 1 (11.1 +/- 0.7 vs. 11.3 +/- 1.4 ml.min(-1).kg(-1); P = not significant) but higher in series 2 (15.5 +/- 2.3 vs. 9.9 +/- 1.4 ml.min(-1).kg(-1); P < 0.05). Increases in compression depth (from series 1 to series 2) increased myocardial, cerebral, and adrenal blood flow in cariporide-treated rats. We conclude that cariporide enhances the efficacy of closed-chest resuscitation by leftward shift of the flow-depth relationship.  相似文献   

16.
The effect of amiodarone (30 mg/kg p.o. each day for 3 weeks) on noradrenaline (NA) overflow into coronary sinus (CS) blood during left stellate stimulation (15 V, 2-ms square waves, 30 s duration at 1, 2, 4, and 8 Hz in random order) was investigated in an open-chest dog preparation. CS blood samples were taken before and during the stimulation period for plasma NA and hematocrit determinations. CS blood flow was monitored (extracorporal circulation with an electromagnetic flow meter) and used for NA output computation. The right atrium was paced throughout the experimental period. However, because AV block occurred at a high pacing rate in some amiodarone-treated dogs, pacing rate was lower in that group than in control dogs (132 +/- 13 vs. 161 +/- 10 min-1, ns). Mean arterial pressure was also lower in the treated group (95 +/- 9 vs. 110 +/- 13 mmHg, but increased in every dog upon stimulation (p less than 0.05). Basal left ventricular dP/dtmax was comparable in the two groups of dogs and increased in a similar fashion upon stimulation (p less than 0.05). The increase in plasma NA concentration upon stimulation was comparable between the control and the amiodarone-treated group (0.38 +/- 0.08 vs 0.40 +/- 0.12 ng/mL at 1 Hz and 12.7 +/- 3.1 vs 11.3 +/- 2.3 ng/mL at 8 Hz, ns). The increase in NA output was also comparable (7.0 +/- 1.6 vs. 10.7 +/- 5.4 ng/min at 1 Hz and 356 +/- 124 vs. 334 +/- 102 ng/min at 8 Hz, ns). Amiodarone did not alter the myocardial NA content. We conclude that amiodarone, administered orally for 3 weeks, does not interfere with neural NA release, or with the positive inotropic response, following sympathetic nerve stimulation in dogs.  相似文献   

17.
Respiratory impedance (Zrs) was measured between 0.25 and 32 Hz in seven anesthetized and paralyzed patients by applying forced oscillation of low amplitude at the inlet of the endotracheal tube. Effective respiratory resistance (Rrs; in cmH2O.l-1.s) fell sharply from 6.2 +/- 2.1 (SD) at 0.25 Hz to 2.3 +/- 0.6 at 2 Hz. From then on, Rrs decreased slightly with frequency down to 1.5 +/- 0.5 at 32 Hz. Respiratory reactance (Xrs; in cmH2O.l-1.s) was -22.2 +/- 5.9 at 0.25 Hz and reached zero at approximately 14 Hz and 2.3 +/- 0.8 at 32 Hz. Effective respiratory elastance (Ers = -2pi x frequency x Xrs; in cmH2O/1) was 34.8 +/- 9.2 at 0.25 Hz and increased markedly with frequency up to 44.2 +/- 8.6 at 2 Hz. We interpreted Zrs data in terms of a T network mechanical model. We represented the proximal branch by central airway resistance and inertance. The shunt pathway accounted for bronchial distensibility and alveolar gas compressibility. The distal branch included a Newtonian resistance component for tissues and peripheral airways and a viscoelastic component for tissues. When the viscoelastic component was represented by a Kelvin body as in the model of Bates et al. (J. Appl. Physiol. 61: 873-880, 1986), a good fit was obtained over the entire frequency range, and reasonable values of parameters were estimated. The strong frequency dependence of Rrs and Ers observed below 2 Hz in our anesthetized paralyzed patients could be mainly interpreted in terms of tissue viscoelasticity. Nevertheless, the high Ers we found with low volume excursions suggests that tissues also exhibit plasticlike properties.  相似文献   

18.
Tumour-promoting phorbol esters have insulin-like effects on glucose transport and lipogenesis in adipocytes and myocytes. It is believed that insulin activates the glucose-transport system through translocation of glucose transporters from subcellular membranes to the plasma membrane. The aim of the present study was to investigate if phorbol esters act through the same mechanism as insulin on glucose-transport activity of rat adipocytes. We compared the effects of the tumour-promoting phorbol ester tetradecanoylphorbol acetate (TPA) and of insulin on 3-O-methylglucose transport and on the distribution of D-glucose-inhibitable cytochalasin-B binding sites in isolated rat adipocytes. Insulin (100 mu units/ml) stimulated 3-O-methylglucose uptake 9-fold, whereas TPA (1 nM) stimulated the uptake only 3-fold (mean values of five experiments, given as percentage of equilibrium reached after 4 s: basal 7 +/- 1.3%, insulin 60 +/- 3.1%, TPA 22 +/- 2.3%). In contrast, both agents stimulated glucose-transporter translocation to the same extent [cytochalasin B-binding sites (pmol/mg of protein; n = 7): plasma membranes, basal 6.2 +/- 1.0, insulin 13.4 +/- 2.0, TPA 12.7 +/- 2.7; low-density membranes, basal 12.8 +/- 2.1, insulin 6.3 +/- 0.9, TPA 8.9 +/- 0.7; high-density membranes, 6.9 +/- 1.1; insulin 12.5 +/- 1.0, TPA 8.1 +/- 0.9]. We conclude from these data: (1) TPA stimulates glucose transport in fat-cells by stimulation of glucose-carrier translocation; (2) insulin and TPA stimulate the carrier translocation to the same extent, whereas the stimulation of glucose uptake is 3-fold higher with insulin, suggesting that the stimulatory effect of insulin on glucose-transport activity involves other mechanisms in addition to carrier translocation.  相似文献   

19.
Chemical signaling in autonomic neuromuscular transmission involves agents that function as neurotransmitters and/or neuromodulators. Using high performance liquid chromatography techniques with fluorescence and electrochemical detection we observed that, in addition to ATP and norepinephrine (NE), electrical field stimulation (EFS, 4-16 Hz, 0.1-0.3 ms, 15 V, 60-120 s) of isolated vascular and non-vascular preparations co-releases a previously unidentified compound with apparent nucleotide or nucleoside structure. Extensive screening of more than 25 nucleotides and nucleosides followed by detailed peak identification revealed that beta-nicotinamide adenine dinucleotide (beta-NAD) is released in tissue superfusates upon EFS of canine mesenteric artery (CMA), canine urinary bladder, and murine urinary bladder in the amounts of 7.1 +/- 0.7, 26.5 +/- 4.5, and 15.1 +/- 3.2 fmol/mg of tissue, respectively. Smaller amounts of the beta-NAD metabolites cyclic adenosine 5'-diphosphoribose (cADPR) and ADPR were also present in the superfusates collected during EFS of CMA (2.5 +/- 0.9 and 5.8 +/- 0.8 fmol/mg of tissue, respectively), canine urinary bladder (1.8 +/- 0.5 and 9.0 +/- 6.0 fmol/mg of tissue, respectively), and murine urinary bladder (1.4 +/- 0.1 and 6.2 +/- 2.4 fmol/mg of tissue, respectively). The three nucleotides were also detected in the samples collected before EFS (0.2-1.6 fmol/mg of tissue). Exogenous beta-NAD, cADPR, and ADPR (all 100 nm) reduced the release of NE in CMA at 16 Hz from 27.8 +/- 6.0 fmol/mg of tissue to 15.5 +/- 5.0, 12 +/- 3.0, and 10.0 +/- 4.0 fmol/mg of tissue, respectively. In conclusion, we detected constitutive and nerve-evoked overflow of beta-NAD, cADPR, and ADPR in vascular and non-vascular smooth muscles, beta-NAD being the prevailing compound. These substances modulate the release of NE, implicating novel nucleotide mechanisms of autonomic nervous system control of smooth muscle.  相似文献   

20.
We measured the effective resistance (Reff) and elastance (Eeff) of the chest wall in four subjects, relaxed at functional residual capacity (FRC), during sinusoidal volume changes (5% vital capacity up to 4 Hz) delivered at the mouth. Subjects sat in a head-out body plethysmograph, and transthoracic pressure was measured with an esophageal balloon. Changes in Reff and in Eeff with frequency were nearly the same in all subjects. Reff (in cmH2O X l-1 X s) was 2.9 +/- 0.8 at 0.2 Hz and fell sharply to minimum values (0.5-0.9) at 1-4 Hz. Eeff (in cmH2O X l-1) increased from approximately 10 at the lowest frequency to a plateau of about 15 at 1-3 Hz and decreased above 3 Hz. In the same subjects, we measured the relative magnitude and phase between the displacements of different parts of the chest wall with magnetometers during identical sinusoidal forcing. Results indicate that the chest wall expands and deflates uniformly at frequencies up to 1 Hz. Thereafter the abdomen makes relatively larger excursions, and the relative magnitude and phase of displacement at different points on the chest wall show complex changes. We conclude that the frequency dependence of Reff and Eeff below 1 Hz is not due to nonuniformities in displacement of different parts of the chest wall. The frequency dependency of Reff is consistent with an increasing contribution of rate-independent plastic dissipation to the pressure difference in phase with flow as breathing frequency decreases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号