首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protective effect of Vitamins C, E and beta-carotene against gamma-ray-induced DNA damage in human lymphocytes in vitro was investigated. Cultured lymphocytes were exposed to increasing concentration of these vitamins either before or after irradiation with 2Gy of gamma-rays and DNA damage was estimated using micronucleus assay. A radioprotective effect was observed when antioxidant vitamins were added to cultured cells before as well after irradiation; the strongest effect was observed when they were added no later than 1h after irradiation. The radioprotective effect of vitamins also depended on their concentration; Vitamins C added at low concentration (1 microg/ml) before exposure of the cells to radiation prevented induction of micronuclei. Vitamin E at the concentration above 2 microg/ml decreased the level of radiation-induced micronuclei when compared to the cells irradiated without vitamin treatment. beta-Carotene was effective at all tested concentrations from 1 to 5 microg/ml and reduced the number of micronuclei in irradiated cells. The vitamins had no effect on radiation-induced cytotoxicity as measured by nuclear division index. The radioprotective action of antioxidant Vitamins C, E and beta-carotene was dependent upon their concentration as well as time and sequence of application.  相似文献   

2.
Rats were exposed to a total dose of 0.75 Gy of gamma radiation from a 60Co source, receiving three doses of 0.25 Gy at weekly intervals. During two days before each irradiation, the animals received daily intragastric doses of 26 mg pantothenol or 15 mg beta-carotene per kg body mass. The animals were killed after the third irradiation session, and their blood and livers were analyzed. As found previously (Slyshenkov, V.S., Omelyanchik, S.N., Moiseenok, A.G., Trebukhina, R.V. & Wojtczak, L. (1998) Free Radical Biol. Med. 24, 894-899), in livers of animals not supplied with either pantothenol or beta-carotene and killed one hour after the irradiation, a large accumulation of lipid peroxidation products, as conjugated dienes, ketotrienes and thiobarbituric acid-reactive substances, could be observed. The contents of CoA, pantothenic acid, total phospholipids, total glutathione and GSH/GSSG ratio were considerably decreased, whereas the NAD/NADH ratio was increased. All these effects were alleviated in animals supplied with beta-carotene and were completely abolished in animals supplied with pantothenol. In the present paper, we extended our observations of irradiation effects over a period of up to 7 days after the last irradiation session. We found that most of these changes, with the exception of GSH/GSSG ratio, disappeared spontaneously, whereas supplementation with beta-carotene shortened the time required for the normalization of biochemical parameters. In addition, we found that the activities of glutathione reductase, glutathione peroxidase, catalase and NADP-dependent malate (decarboxylating) dehydrogenase ('malic enzyme') in liver were also significantly decreased one hour after irradiation but returned to the normal level within 7 days. Little or no decrease in these activities, already 1 h after the irradiation, could be seen in animals supplemented with either beta-carotene or pantothenol. It is concluded that pantothenol is an excellent radioprotective agent against low-dose gamma radiation.  相似文献   

3.
The aim of the present work was to evaluate the modulatory role of beta-carotene on the radiation-induced changes in certain biochemical and cytogenetic parameters. beta-Carotene was given by gavage at a dose of 5 mg/kg body weight for 7 consecutive days before whole body gamma irradiation with 7 Gy (single dose). The levels of beta-carotene in plasma, thiobarbituric acid-reactive substances (TBARS) in plasma and liver, the activities of superoxide dismutase (SOD) and catalase in blood and liver were the selected parameters. Furthermore, the frequency of micronuclei (MN) of polychromatic erythrocytes (PCEs), normochromatic erythrocytes (NCEs), the ratio of PCEs/NCEs and the mitotic index (MI) of bone marrow cells were also evaluated. The biochemical and cytogenetic determinations were carried out 1, 24, and 72 h after radiation exposure.The results obtained revealed that administration of beta-carotene pre-irradiation significantly inhibited the decrease in plasma beta-carotene, significantly reduced the levels of TBARS in plasma and liver. Significant protection of the radiation-induced changes in the activities of SOD and catalase was also recorded in the blood and liver of beta-carotene-treated and -irradiated rats. beta-Carotene resulted in significant inhibition in the frequency of radiation-induced MN, as well as in the ratio of PCEs/NCEs and the MI of bone marrow cells. These results suggest that beta-carotene as a natural product with its antioxidant capacity and capability of quenching singlet oxygen, could play a modulatory role against the cellular damage affected by free radicals induced by whole body irradiation.  相似文献   

4.
5.
Ultraviolet (UV) radiation is one of the major risk factors of cataractogenesis. UV radiation induced damage to the eye lens is believed to be mediated through reactive oxygen species. Antioxidant defense systems, enzymatic and non-enzymatic, resist this damage. In the present study, the levels of rat lens endogenous antioxidants, L-ascorbic acid, alpha-tocopherol and beta-carotene, have been determined by HPLC upon in vitro UVB irradiation. UVB irradiation for 24 h (300 nm; 100 μW/cm(2)) of three months old rat lens suspended in RPMI medium, leads to 69-89% decrease in endogenous levels of these antioxidants. The addition of ascorbic acid (2 mM), alpha-tocopherol (2.5 μM) or beta-carotene (10 μM), separately to the medium during irradiation significantly prevented the decrease in their endogenous levels, thereby suggesting a protective role for these antioxidant micronutrients against photodamage to the eye lens.  相似文献   

6.
The photoprotective potential of the dietary antioxidants vitamin C, vitamin E, lycopene, beta-carotene, and the rosemary polyphenol, carnosic acid, was tested in human dermal fibroblasts exposed to ultraviolet-A (UVA) light. The carotenoids were prepared in special nanoparticle formulations together with vitamin C and/or vitamin E. Nanoparticle formulations, in contrast to dimethylsulphoxide, stablized lycopene in the cell culture medium and allowed efficient cellular uptake. The presence of vitamin E in the formulation further increased the stability and cellular uptake of lycopene. UVA irradiation of the human skin fibroblasts led to a 10-15-fold rise in metalloproteinase 1 (MMP-1) mRNA. This rise was suppressed in the presence of low microM concentrations of vitamin E, vitamin C, or carnosic acid but not with beta-carotene or lycopene. Indeed, in the presence of 0.5-1.0 microM beta-carotene or lycopene, the UVA-induced MMP-1 mRNA was further increased by 1.5-2-fold. This increase was totally suppressed when vitamin E was included in the nanoparticle formulation. Heme-oxygenase 1 (HO-1) mRNA expression was strongly induced by UVA irradiation but none of the antioxidants inhibited this effect at the concentrations used in this study. Indeed, beta-carotene or lycopene (0.5-1.0 microM) led to a further 1.5-fold rise in the UVA-induced HO-1 mRNA levels. In conclusion, vitamin C, vitamin E, and carnosic acid showed photoprotective potential. Lycopene and beta-carotene did not protect on their own but in the presence of vitamin E, their stability in culture was improved and the rise in MMP-1 mRNA expression was suppressed, suggesting a requirement for antioxidant protection of the carotenoids against formation of oxidative derivatives that can influence the cellular and molecular responses.  相似文献   

7.
Studies on the development of functional powder from citrus peel   总被引:1,自引:0,他引:1  
The suitability of citrus peels, generated as a by-product of the juice industry, as a source of antioxidants was investigated. Citrus peel powder was prepared by lyophilizing 70% ethanol extract from citrus peels. Extraction was carried out at room temperature (20 degrees C) for 72 h. The extract was subjected to gamma-irradiation treatment (20 kGy). The aqueous solutions of citrus peel powder were examined for color characteristics and antioxidant potential in terms of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, beta-carotene bleaching and nitrite scavenging activities. There were significant changes in Hunter color values due to irradiation. The a*- and b*-values decreased due to radiation treatment. DPPH radical scavenging, beta-carotene bleaching and nitrite scavenging activities were not affected by irradiation treatment. Nitrite scavenging activity was the highest in the extract at pH 1.2 followed by pH 4.2 and 6.0. These functional properties of the aqueous solution were found to be stable in heat treatment. It could significantly improve oxidative stability of lipids in fish meat system. Based on these results there may be opportunities to use citrus peel powder as a functional component in the food processing industry with gamma irradiation treatment improving its color characteristics without adversely influencing the functional properties.  相似文献   

8.
The ability of beta-carotene to serve as precursor to retinoic acid was examined in vitro with cytosol prepared from rat tissues. The rate of retinoic acid synthesis from 10 microM beta-carotene ranged from 120 to 224 pmol/h/mg of protein with intestinal cytosol, and from 344 to 488 pmol/h/mg of protein with cytosols prepared from kidney, lung, testes, and liver. Retinol generated during beta-carotene metabolism was not the major substrate for retinoic acid synthesis. At low substrate concentrations (2.5 microM), the rates of retinoic acid synthesis in intestinal cytosol from beta-carotene or retinol were equivalent, and at higher concentrations (10 microM) the rates of retinoic acid synthesis from beta-carotene or retinol in intestine, testes, lung, and kidney were comparable. Thus, beta-carotene metabolism may be an important source of retinoic acid in retinoid target tissues, particularly in species such as humans that are capable of accumulating high concentrations of tissue carotenoids. Retinal, considered an initial retinoid product of beta-carotene metabolism, was not detected as a product of beta-carotene metabolism in vitro. A ratio of retinol and retinoic acid different from that observed during beta-carotene metabolism in vitro was observed with incubations of retinal under identical conditions. These data indicated that beta-carotene metabolism is not merely a simple process of producing retinal and releasing it into solution to be metabolized independently.  相似文献   

9.
Carotenoids induce apoptosis in the T-lymphoblast cell line Jurkat E6.1   总被引:9,自引:0,他引:9  
Epidemiologically, a high-carotenoid intake via a fruit- and vegetable-rich diet is associated with a decreased risk of various forms of cancer. The mechanisms by which carotenoids exert this protective effect are controversial. In this study, we examined the potency of a range of carotenoids commonly found in human plasma to induce apoptosis in Jurkat E6.1 malignant T-lymphoblast cells. At a concentration of 20 microM, the order of potency to induce apoptosis after 24 h was: beta-carotene > lycopene > lutein > beta-cryptoxanthin = zeaxanthin. Canthaxanthin failed to induce apoptosis under these conditions. beta-Carotene induced apoptosis in a time- and concentration-dependent manner with a lowest effective concentration of about 3 microM. Pre-conditioning of beta-carotene for 72 h destroyed its pro-apoptotic activity almost completely, whereas degradation for 6 h or less did not, indicating that either beta-carotene itself and/or an early degradation product of beta-carotene are the death-inducing compounds. Apoptosis induced by beta-carotene was characterized by chromatin condensation and nuclear fragmentation, DNA degradation, PARP cleavage and caspase-3 activation. The antioxidant BO-653 inhibited the degradation of beta-carotene in vitro and significantly increased its cytotoxicity, indicating that a pro-oxidant effect of beta-carotene is unlikely to cause its pro-apoptotic activity. The induction of apoptosis in transformed cells by carotenoids may explain their protective effect against cancer formation in humans. Possible pathways for induction of apoptosis by carotenoids are discussed.  相似文献   

10.
As to earlier observations that beta-carotene prevents the development of gastric mucosal injury produced by different noxious agent, however, its cytoprotective effect can be abolished by acute surgical vagotomy. The aim of this study was to evaluate the possible correlation between the gastric mucosal cytoprotective effect of beta-carotene and its gastric mucosal level in rats treated with IND. The gastric mucosal damage was produced by the administration of IND (20 mg/kg s.c.). The instillation of beta-carotene and acute surgical vagotomy (ASV) or SHAM operation were carried out 30 min before IND treatment. The rats were sacrificed 4 h after IND application, and the number and severity of gastric mucosal erosions were noted. The blood rats was collected quantitatively, the liver and the gastric mucosa were removed, and the beta-carotene and vitamin A level of the gastric mucosa, serum and liver were measured with HPLC. It was found that: 1. Beta-carotene induced gastric cytoprotection in SHAM-operated rats treated with IND but its effect disappeared after ASV. 2. Although the beta-carotene level of the gastric mucosa increased its concentration was not elevated in the serum of intact and vagotomized animals either. 3. Vitamin A Formation was not detected in the liver of animals with or without ASV. It was concluded that the lack of intake of beta-carotene into the gastric mucosa can not play etiologic role in the failure of gastric cytoprotection of rats with acute bilateral surgical vagotomy.  相似文献   

11.
Modulating the amount of radiation-induced apoptosis by administering antioxidant vitamins offers a possible way to influence radiation-induced side effects in normal tissues. Therefore, we investigated the effect of beta-carotene, vitamin C and alpha-tocopherol on radiation-induced apoptosis in cells in culture. Human T-lymphoblastic MOLT-3 cells were irradiated with a dose of 3 Gy 1 h after or immediately prior to the addition of vitamins in three concentrations (0.01 microM, 1 microM and 100 microM). Eight hours later, apoptosis was scored morphologically by staining the nuclear DNA with Hoechst 33342. When given prior to irradiation, beta-carotene and vitamin E reduced the amount of radiation-induced apoptosis significantly at concentrations of 0.01 microM and 1 microM. In contrast, vitamin C did not show any protective effect when given at these two concentrations and caused a slight but significant radiosensitization at 100 microM. At 0.01 microM, all combinations of two vitamins showed a protective effect. This was also observed for the combination of all three vitamins at concentrations of 0.01 and 1 microM. When given immediately after irradiation, each of the three vitamins showed a protective effect at 0.01 microM. In addition, the combination of alpha-tocopherol and vitamin C reduced radiation-induced apoptosis slightly when given at 1 microM. In all other cases, no statistically significant modulation of radiation-induced apoptosis was observed. In our experimental system, the protective effect of beta-carotene and vitamin E was dependent on concentration and occurred only in the micromolar and sub-micromolar concentration range, while vitamin C alone, but not in combinations, had a sensitizing effect, thus arguing for a careful consideration of vitamin concentrations in clinical settings.  相似文献   

12.
Thrombopoietin is the major regulator of platelet production and a stimulator of multilineage hematopoietic recovery following irradiation. The efficacy of three different schedules of thrombopoietin administration was tested on blood cell counts, hematopoietic bone marrow progenitors, and 30-day animal survival in C57BL6/J mice receiving a total body irradiation, with doses ranging from 7 to 10 Gy. A single dose of murine thrombopoietin was injected 2 h before, 2 h after, or 24 h after irradiation. Thrombopoietin promoted multilineage hematopoietic recovery in comparison to placebo up to 9 Gy at the level of both blood cells and bone marrow progenitors, whatever the schedule of administration. The injection of thrombopoietin 2 h before or 2 h after irradiation equally led to the best results concerning hematopoietic recovery. On the other hand, thrombopoietin administration promoted 30-day survival up to 9 Gy with the highest efficacy obtained when thrombopoietin was injected either 2 h before or 2 h after irradiation. However, when its injection was delayed at 24 h, thrombopoietin had almost no effect on survival of 9 Gy irradiated mice. Altogether, our results show that the time schedule for thrombopoietin injection is of critical importance and when thrombopoietin is administered before or shortly after irradiation, it efficiently promotes mice survival to supra-lethal irradiation (up to 9 Gy) in relation with hematopoietic recovery.  相似文献   

13.
Experiments were conducted to examine the effect of cyclodextrin-encapsulated beta-carotene on basal or cholesterol (cyclodextrin-encapsulated), LH and dibutyryl cyclic AMP (dbcAMP)-stimulated progesterone production by bovine corpus luteum cells isolated from mid-luteal heifer ovaries by collagenase digestion. Cells were cultured with serum-free DMEM/Ham's F12 medium in serum pre-treated plastic culture dishes for periods of up to 11 days. Medium was replaced after 24h and thereafter every 48 h. Beta-carotene was added to cultures in a carrier molecule, dimethyl-beta-cyclodextrin, to facilitate dissolution. All treatments were started on day 3 of culture. Treatment of cells with 1 or 2 micromol/l beta-carotene resulted in sharp inhibition of progesterone production. On the contrary, treatment of cells with 0.1 micromol/l beta-carotene resulted in significant stimulation (P<0.05) of both basal and cholesterol-stimulated progesterone secretion. The effect of beta-carotene on LH or dbcAMP-stimulated progesterone production was also examined. Treatment of cells with LH or dbcAMP always resulted in stimulation of progesterone secretion (P<0.001). However, cells treated with LH plus beta-carotene or dbcAMP plus beta-carotene both produced significantly (P<0.01) less progesterone relative to those cells treated with LH or dbcAMP alone on days 7, 9 and 11 of culture. These results indicate that beta-carotene can enhance luteal steroidogenesis when present at low concentrations but is inhibitory at higher concentrations and that encapsulation of beta-carotene in cyclodextrin is an effective method of supplying it to cells in culture.  相似文献   

14.
We present a sensitive tracer method, suitable for in vivo human research, that uses beta-[(14)C]carotene coupled with accelerator mass spectrometry (AMS) detection. Using this approach, the concentration-time course of a physiological (306 microgram 200 nCi) oral dose of beta-[(14)C]carotene was determined for 209 days in plasma. Analytes included beta-[(14)C]carotene, [(14)C]retinyl esters, [(14)C]retinol, and several [(14)C]retinoic acids. There was a 5.5-h lag between dosing and the appearance of (14)C in plasma. Labeled beta-carotene and [(14)C]retinyl esters rose and displayed several maxima with virtually identical kinetic profiles over the first 24-h period; elevated [(14)C]retinyl ester concentrations were sustained in the plasma compartment for >21 h postdosing. The appearance of [(14)C]retinol in plasma was also delayed 5.5 h postdosing and its concentration rose linearly for 28 h before declining. Cumulative urine and stool were collected for 17 and 10 days, respectively, and 57.4% of the dose was recovered in the stool within 48 h postdosing. The stool was the major excretion route for the absorbed dose. The turnover times (1/k(el)) for beta-carotene and retinol were 58 and 302 days, respectively. Area under the curve analysis of the plasma response curves suggested a molar vitamin A value of 0.53 for beta-carotene, with a minimum of 62% of the absorbed beta-carotene being cleaved to vitamin A.In summary, AMS is an excellent tool for defining the in vivo metabolic behavior of beta-carotene and related compounds at physiological concentrations. Further, our data suggest that retinyl esters derived from beta-carotene may undergo hepatic resecretion with VLDL in a process similar to that observed for beta-carotene.  相似文献   

15.
The bioavailability of beta-carotene from cassava (Manihot esculenta Crantz) leaves was assayed in vitamin A deficient Wistar rats (Rattus norvegicus). Rats were separated into three groups and fed with a modified AIN-93G--vitamin A deficient--diet. Deficient rat received this diet without any additional vitamin A source. Controls received the diet with 7200 microg of synthetic beta-carotene (control), while experimentals (test) received 19.5 g of cassava leaves powder per kg of diet. The cassava leaves with beta-carotene promotes similar growth and tissue weight in rats to the synthetic beta-carotene. The relative bioavailability, estimated as the Retinol Accumulation Factor (RAF), was 16.5 and 27.5 for control and test groups, respectively, indicating that control and test rats should have an intake of 16.5 microg or 27.5 microg of beta-carotene from synthetic form or cassava leaves powder for each 1 microg of hepatic retinol stored, respectively. The cassava leaves beta-carotene bioavailability was lower than the synthetic beta-carotene probably because the beta-carotene from the leaf matrix may be bounded to protein complex or inside organelles, which impair carotenoid absorption. Our findings showed that beside the hepatic retinol recovery, cassava leaf beta-carotene could maintain rat growth and avoid vitamin A deficient symptoms.  相似文献   

16.
The developmental patterns of expression of beta-carotene cleavage enzyme activity were compared with those of retinal reductase and NAD-dependent retinol dehydrogenase activities in chick duodenum during the perinatal period. The beta-carotene cleavage enzyme activity was not detected in the duodenum before hatching, but it increased rapidly during 24 h after hatching. On the other hand, a considerable level of beta-carotene cleavage enzyme activity was observed in the liver of embryonic stages and its activity gradually rose during the perinatal period. Comparison of kinetic constants for the beta-carotene cleavage enzyme activities in the duodenum and the liver indicated that the enzyme in the duodenum possessed a lower affinity for beta-carotene than that in the liver. The retinal reductase activity was detected in the microsomes of the duodenum at the earliest time examined, i.e. day 16 of embryogenesis and its activity began to rise on the last day of embryogenesis, which was followed by a gradual increase until 1 day of age. The NAD-dependent retinol dehydrogenase activity was also seen in the microsomes of the duodenum in embryonic stages and its activity increased in parallel with the retinal reductase activity around the hatching period. These developmental inductions of beta-carotene cleavage enzyme and retinal reductase activities in the duodenum coincided with those of cellular retinol-binding protein, type II (CRBPII) and lecithin: retinol acyltransferase (LRAT). These results suggest that a co-ordinated induction mechanism should be operative for beta-carotene cleavage enzyme and retinal reductase, both of which are inevitable in the process of beta-carotene absorption and metabolism.  相似文献   

17.
Epidemiological studies suggest that beta-carotene is able to modulate the risk of cancer. A number of in vitro studies reported that beta-carotene inhibits the growth of cancer cells; however, so far little is known about the molecular mechanisms of the antiproliferative effect of beta-carotene. Here we have investigated the effects of two beta-carotene preparations, (i) beta-carotene dissolved in tetrahydrofuran (final concentration in cell culture medium: 0.5%) and (ii) beta-carotene incorporated in a water dispersible bead form, on cultured human colon carcinoma cells HT29. The treatment of cells with beta-carotene up to 30 microM for 72 h led to a significant increase in the cellular beta-carotene concentration and formation of retinol. Beta-Carotene showed only low cytotoxicity for confluent cells tested up to 30 microM, but at dietary relevant concentrations for the intestinal tract (10, 30 microM) beta-carotene was strongly cytotoxic for growing cells and induced apoptosis in HT29 cells as assessed by the Annexin-V assay (the maximal effect was observed 15 h after treatment with beta-carotene). Exposure of cells to retinol at concentrations yielding cellular retinol levels similar to those observed by beta-carotene treatment had no antiproliferative or cytotoxic effect. Furthermore, beta-carotene did not affect the activation of the extracellular signal-regulated kinases (ERK1 and ERK2) that are essential for cellular growth. In summary, beta-carotene can inhibit growth of human colon carcinoma cells in vitro by induction of apoptosis in proliferating cells.  相似文献   

18.
Luteal cells were isolated from mid-luteal heifer ovaries by collagenase digestion. Cells were cultured with DMEM/Ham's F12 medium in serum pre-treated plastic culture dishes for periods of up to 11 days. As beta-carotene is almost completely insoluble in all polar solvents, it was added to cultures in either dimethyl sulphoxide (DMSO), tetrahydrofuran (THF) or as high-density lipoprotein (HDL) containing high or low beta-carotene concentrations. Medium was replaced after 24 h, thereafter medium was changed every 48 h. Treatment of cells with DMSO alone or with beta-carotene (5 micromol/l) in DMSO both resulted in significant (P<0.01) stimulation of progesterone production. beta-Carotene (5 micromol/l) in THF did not alter progesterone production but 50 micromol/l beta-carotene in THF resulted in significant inhibition (P<0.02) of progesterone production on days 3 and 7. Cultures were also supplemented with bovine HDL preparations containing equal concentrations of cholesterol (25 microg/ml) but high or low beta-carotene (12.4 or 0.44 microg/mg of cholesterol). Both HDL preparations significantly stimulated progesterone production (P<0. 001) but the high beta-carotene HDL was significantly (P<0.02) more effective than the low beta-carotene HDL. However, when given together with bovine luteinizing hormone (bLH) or dibutyryl cAMP (dbcAMP), the high beta-carotene HDL stimulated progesterone production less than did the low HDL (P<0.01). Uptake and depletion of beta-carotene by luteal cells were also examined in culture. beta-Carotene supplementation increased luteal cell beta-carotene from an initial level of 373 ng per 10(6) cells to 2030 ng per 10(6) cells by day 6. In contrast, the levels in control cells decreased to 14% of starting values during the same period. Cells treated with HDL containing high beta-carotene on day 1 or days 1 and 3 were then incubated with or without bLH or dbcAMP for a further 2 days to investigate the effect of bLH and dbcAMP on depletion of beta-carotene by luteal cells. beta-Carotene depletion in the luteal cells was significantly higher (P<0.05) in LH- and dbcAMP-treated cells than in the control cells in both groups. These results indicate that the use of solvents such as DMSO or THF may have undesirable effects due to alteration of cell membrane permeability. Supplementation with bLH or dbcAMP may increase the metabolism of beta-carotene in luteal cells. bLH or dbcAMP together with high beta-carotene HDL may, when combined with the effect of increased beta-carotene metabolism, give less stimulation than with low beta-carotene HDL.  相似文献   

19.
This study investigated the individual and combined effects of beta-carotene with a common flavonoid (naringin, quercetin or rutin) on DNA damage induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a potent tobacco-related carcinogen in human. A human lung cancer cell line, A549, was pre-incubated with beta-carotene, a flavonoid, or both for 1h followed by incubation with NNK for 4 h. Then, we determined DNA strand breaks and the level of 7-methylguanine (7-mGua), a product of NNK metabolism by cytochrome P450 (CYP). We showed that beta-carotene at 20 microM significantly enhanced NNK-induced DNA strand breaks and 7-mGua levels by 90% (p < 0.05) and 70% (p < 0.05), respectively, and that the effect of beta-carotene was associated with an increased metabolism of NNK by CYP because the concomitant addition of 1-aminobenzotriazole, a CYP inhibitor, with beta-carotene to cells strongly inhibited NNK-induced DNA strand breaks. In contrast to beta-carotene, incubation of cells with naringin, quercetin or rutin added at 23 microM led to significant inhibition of NNK-induced DNA strand breaks, and the effect was in the order of quercetin > naringin > rutin. However, these flavonoids did not significantly affect the level of 7-mGua induced by NNK. Co-incubation of beta-carotene with any of these flavonoids significantly inhibited the enhancing effect of beta-carotene on NNK-induced DNA strand breaks; the effects of flavonoids were dose-dependent and were also in the order of quercetin > naringin > rutin. Co-incubation of beta-carotene with any of these flavonoids also significantly inhibited the loss of beta-carotene incorporated into the cells, and the effects of the flavonoids were also in the order of quercetin > naringin > rutin. The protective effects of these flavonoids may be attributed to their antioxidant activities because they significantly decreased intracellular ROS, and the effects were also in the order of quercetin > naringin > rutin. These in vitro results suggest that a combination of beta-carotene with naringin, rutin, or quercetin may increase the safety of beta-carotene.  相似文献   

20.
The photodegradation of carotenoids by UVA irradiation in the presence of sulfides was investigated. The sulfides accelerated the photodegradation of carotenoids. A larger number of sulfur atoms of coexistent sulfides was more favorable to the acceleration effect of sulfides on the photodegradation of beta-carotene, but the alk(en)yl group of sulfides was less favorable to the acceleration effect of sulfur compounds. The acceleration effect depended on light intensity, temperature, and the initial concentrations of beta-carotene and sulfide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号