首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To study molecular mechanisms underlying neuronal cell death, we have used sympathetic neurons from superior cervical ganglia which undergo programmed cell death when deprived of nerve growth factor. These neurons have been microinjected with expression vectors containing cDNAs encoding selected proteins to test their regulatory influence over cell death. Using this procedure, we have shown previously that sympathetic neurons can be protected from NGF deprivation by the protooncogene Bcl-2. We now report that the E1B19K protein from adenovirus and the p35 protein from baculovirus also rescue neurons. Other adenoviral proteins, E1A and E1B55K, have no effect on neuronal survival. E1B55K, known to block apoptosis mediated by p53 in proliferative cells, failed to rescue sympathetic neurons suggesting that p53 is not involved in neuronal death induced by NGF deprivation. E1B19K and p35 were also coinjected with Bcl-Xs which blocks Bcl-2 function in lymphoid cells. Although Bcl-Xs blocked the ability of Bcl- 2 to rescue neurons, it had no effect on survival that was dependent upon expression of E1B19K or p35.  相似文献   

2.
《The Journal of cell biology》1993,123(5):1207-1222
The time course of molecular events that accompany degeneration and death after nerve growth factor (NGF) deprivation and neuroprotection by NGF and other agents was examined in cultures of NGF-dependent neonatal rat sympathetic neurons and compared to death by apoptosis. Within 12 h after onset of NGF deprivation, glucose uptake, protein synthesis, and RNA synthesis fell precipitously followed by a moderate decrease of mitochondrial function. The molecular mechanisms underlying the NGF deprivation-induced decrease of protein synthesis and neuronal death were compared and found to be different, demonstrating that this decrease of protein synthesis is insufficient to cause death subsequently. After these early changes and during the onset of neuronal atrophy, inhibition of protein synthesis ceased to halt neuronal degeneration while readdition of NGF or a cAMP analogue remained neuroprotective for 6 h. This suggests a model in which a putative killer protein reaches lethal levels several hours before the neurons cease to respond to readdition of NGF with survival and become committed to die. Preceding loss of viability by 5 h and concurrent with commitment to die, the neuronal DNA fragmented into oligonucleosomes. The temporal and pharmacological characteristics of DNA fragmentation is consistent with DNA fragmentation being part of the mechanism that commits the neuron to die. The antimitotic and neurotoxin cytosine arabinoside induced DNA fragmentation in the presence of NGF, supporting previous evidence that it mimicked NGF deprivation-induced death closely. Thus trophic factor deprivation- induced death occurs by apoptosis and is an example of programmed cell death.  相似文献   

3.
Sympathetic neurons undergo apoptosis when deprived of nerve growth factor (NGF). Inhibitors of RNA or protein synthesis block this death, suggesting that gene expression is important for apoptosis in this system. We have identified SM-20 as a new gene that increases in expression in sympathetic neurons after NGF withdrawal. Expression of SM-20 also increases during neuronal death caused by cytosine arabinoside or the phosphatidylinositol 3-kinase inhibitor LY294002. In addition, SM-20 protein synthesis is elevated in NGF-deprived neurons compared with neurons maintained with NGF. Importantly, expression of SM-20 in sympathetic neurons causes cell death in the presence of NGF. These results suggest that SM-20 may function to regulate cell death in neurons.  相似文献   

4.
Shortly after neurons begin to innervate their targets in the developing vertebrate nervous system they become dependent on the supply of a neurotrophic factor, such as nerve growth factor (NGF) for survival. Recently, Martin et al. (1988) have shown that inhibiting protein synthesis prevents the death of NGF-deprived sympathetic neurons, suggesting that NGF promotes neuronal survival by suppressing an active cell death program. To determine if other neurotrophic factors may regulate neuronal survival by a similar mechanism we examined the effects of inhibiting protein and RNA synthesis in other populations of embryonic neurons that require different neurotrophic factors, namely: 1) trigeminal mesencephalic neurons, a population of proprioceptive neurons that are supported by brain-derived neurotrophic factor; 2) dorsomedial trigeminal ganglion neurons, a population of cutaneous sensory neurons that are supported by NGF; 3) and ciliary ganglion neurons, a population of parasympathetic neurons that are supported by ciliary neuronotrophic factor. Blocking either protein or RNA synthesis rescued all three populations of neurons from cell death induced by neurotrophic factor deprivation in vitro. Thus, at least three different neurotrophic factors appear to promote survival by a similar mechanism that may involve the suppression of an endogenous cell death program.  相似文献   

5.
To examine whether multiple pathways of cell death exist in sympathetic neurons, we studied the cell death pathway induced by staurosporine (STS) in sympathetic neurons and compared it with the well-characterized NGF deprivation-induced death pathway. Increasing concentrations of STS were found to induce sympathetic neuronal death with different biochemical and morphological characteristics. One hundred nM STS induced metabolic changes, loss of cytochrome c, and caspase-dependent morphological degeneration which closely resembled the apoptotic death induced by NGF deprivation. In contrast, sympathetic neurons treated with 1 microM STS showed no loss of cytochrome c but exhibited extensive, caspase-independent, chromatin changes that were not TUNEL positive. One microM STS-treated sympathetic neurons had greatly reduced metabolic activities and became committed to die rapidly, yet maintained soma structure and appeared viable by other criteria even up to 48 h after STS treatment, illustrating the need to assess cell death by multiple criteria. Lastly, in contrast to the cell death-inducing activities of 100 nM STS or 1 microM STS, very low concentrations of STS (1 nM STS) inhibited sympathetic neuronal death by acting either at or prior to c-jun phosphorylation in the NGF deprivation-induced PCD pathway.  相似文献   

6.
Developing neurons deprived of trophic support undergo apoptosis mediated by activation of c-Jun N-terminal kinases (JNK) and c-Jun, induction of the Bcl-2 homology 3-only protein BimEL, Bax-dependent loss of mitochondrial cytochrome c , and caspase activation. However, the mechanisms that regulate each of these events are only partially understood. Here we show that the prolyl isomerase Pin1 functions as a positive regulator of neuronal death through a c-Jun-dependent mechanism. Ectopic Pin1 promoted caspase-dependent death of NGF-maintained neurons that was associated with an accumulation of Ser63-phosphorylated c-Jun in neuronal nuclei and was partially dependent on Bax. Downregulating Pin1 prior to NGF withdrawal suppressed the accumulation of phosphorylated c-Jun, inhibited the release of cytochrome c , and significantly delayed cell death. Pin1 knockdown inhibited NGF deprivation-induced death to a similar extent in Bim (+/+) and Bim (−/−) neurons. The protective effect of Pin1 knockdown was significantly greater than that caused by loss of Bim and nearly identical to that caused by a dominant negative form of c-Jun. Finally, cell death induced by ectopic Pin1 was largely blocked by expression of dominant negative c-Jun. These results suggest a novel mechanism by which Pin1 promotes cell death involving activation of c-Jun.  相似文献   

7.
《The Journal of cell biology》1996,135(5):1341-1354
Sympathetic neurons undergo programmed cell death (PCD) when deprived of NGF. We used an inhibitor to examine the function of interleukin-1 beta-converting enzyme (ICE) family proteases during sympathetic neuronal death and to assess the metabolic and genetic status of neurons saved by such inhibition. Bocaspartyl(OMe)-fluoromethylketone (BAF), a cell-permeable inhibitor of the ICE family of cysteine proteases, inhibited ICE and CPP32 (IC50 approximately 4 microM) in vitro and blocked Fas-mediated apoptosis in thymocytes (EC50 approximately 10 microM). At similar concentrations, BAF also blocked the NGF deprivation-induced death of rat sympathetic neurons in culture. Compared to NGF-maintained neurons, BAF-saved neurons had markedly smaller somas and maintained only basal levels of protein synthesis; readdition of NGF restored growth and metabolism. Although BAF blocked apoptosis in sympathetic neurons, it did not prevent the fall in protein synthesis or the increase in the expression of c-jun, c- fos, and other mRNAs that occur during neuronal PCD, implying that the ICE-family proteases function downstream of these events during PCD.NGF and BAF rescued sympathetic neurons with an identical time course, suggesting that NGF, in addition to inhibiting metabolic and genetic events associated with neuronal PCD, can act posttranslationally to abort apoptosis at a time point indistinguishable from the activation of cysteine proteases. Both poly-(ADP ribose) polymerase and pro-ICE and Ced-3 homolog-1 (ICH-1) appear to be cleaved in a BAF-inhibitable manner, although the majority of pro-CPP32 appears unchanged, suggesting that ICH-1 is activated during neuronal PCD. Potential implications of these findings for anti-apoptotic therapies are discussed.  相似文献   

8.
Studies in non-neuronal cells show that c-Jun N-terminal kinases (JNK) play a key role in apoptotic cell death. In some neurons JNK is also thought to initiate cell death by the activation of c-Jun. JNK inhibition has been achieved pharmacologically by inhibiting upstream kinases, but there has been no direct demonstration that inhibition of JNK can prevent neuronal death. We have therefore examined whether the JNK binding domain (JBD) of JNK-interacting protein-1 (JIP-1, a scaffold protein and specific inhibitor of JNK) can inhibit c-Jun phosphorylation and support the survival of sympathetic neurons deprived of NGF. We show that expression of the JBD in >80% of neurons was sufficient to prevent the phosphorylation of c-Jun and its nuclear accumulation as well as abrogate neuronal cell death induced by NGF deprivation. JBD expression also preserved the capacity of mitochondria to reduce MTT. Interestingly, although the PTB domain of JIP was reported to interact with rhoGEF, expression of the JBD domain was sufficient to localize the protein to the membrane cortex and growth cones. Hence, JNK activation is a key event in apoptotic death induced by NGF withdrawal, where its point of action lies upstream of mitochondrial dysfunction.  相似文献   

9.
Axotomized neurons have several characteristics that are different from intact neurons. Here we show that, unlike established cultures, the axotomized sympathetic neurons deprived of NGF become committed to die before caspase activation, since the same proportion of NGF-deprived neurons are rescued by NGF regardless of whether caspases are inhibited by the pan-caspase inhibitor Boc-Asp(O-methyl)-CH(2)F (BAF). Despite prolonged Akt and ERK signaling induced by NGF after BAF treatment has prevented death, the neurons fail to increase protein synthesis, recover ATP levels, or grow. Within 3 d, all the mitochondria disappear without apparent removal of any other organelles or loss of membrane integrity. Although NGF does rescue intact BAF-treated 6-d cultures after NGF deprivation, rescue by NGF fails when these neurons are axotomized before NGF deprivation and BAF treatment. Moreover, cytosolic cytochrome c rapidly kills axotomized neurons. We propose that axotomy induces signals that make sympathetic neurons competent to die prematurely. NGF cannot repair these NGF-deprived, BAF-treated neurons because receptor signaling (which is normal) is uncoupled from protein renewal, and the mitochondria (which are damaged) go on to be eliminated. Hence, the order of steps underlying neuronal death commitment is mutable and open to regulation.  相似文献   

10.
The neuronal cell population of lumbosacral sympathetic ganglia from 7-day-old chick embryos is characterized by a high proportion of cells with the ability to proliferate in culture (Rohrer and Thoenen, 1987). It is now demonstrated that neither proliferation nor survival of these neurons depend on the presence of nerve growth factor (NGF). However, neuronal survival did depend on the culture substrate used: on laminin, E7 neurons survived and their number increased due to proliferation, whereas on fibronectin (FN) or a substrate of molecules from heart cell-conditioned medium (HCM) a significant number of the cells died during early culture periods. Less than 70 and 50% of the number of neurons surviving on a laminin substrate were found on FN and HCM, respectively, after 3 days in culture. Although NGF did not affect neuronal survival, a small increase in neurite extension on these substrates was observed in the presence of NGF. Furthermore, although NGF did not prevent neuronal death after extended culture periods, this could be prevented by elevated extracellular potassium concentrations. Sympathetic neurons of E8 chick embryos however showed a strikingly different response to NGF compared with those of E7: whereas neuronal survival on laminin was not influenced by NGF, a significant effect of NGF on survival and on neurite extension was observed for E8 neurons on a HCM substrate. In contrast to cells from E7 and E8 embryos, the majority of neurons from E11 chick embryos required NGF for survival even on a laminin substrate as described previously (D. Edgar, R. Timpl, and H. Thoenen, 1984, EMBO J. 3, 1463-1468). These results demonstrate that while sympathetic neurons from E7 chick embryos do not depend on the soluble neurotrophic factor NGF for survival in vitro, they are dependent on molecules of the extracellular matrix. With increasing age, the survival requirements demonstrated in vitro change toward the classical pattern of NGF dependency. Low amounts of laminin-like immunoreactivity were shown to be present in sympathetic ganglia of E7 chick embryos which were then shown to increase as development proceeded. These data indicate that laminin may play a role in the survival and development of chick sympathetic neurons not only in vitro, but also in vivo.  相似文献   

11.
The generation and degeneration of sympathetic neurons in the third thoracic ganglion (segment 19) of the chick were studied between embryonic days (E) 7-18 using 3H-Thymidine autoradiography and routine cell counts. Cumulative radiolabelling experiments indicated that few sympathetic neurons were generated on E6-7. 10% of the sympathetic neurons were generated on E8 and a further 20% on E9. The final 70% of neurons completed the mitotic cycle between E10-12. Cell counts demonstrated that the neuronal population increased from 10,166 +/- 423 (mean +/- SEM) to 22,291 +/- 767 between E8-10 and remained stable up to E14. The population subsequently declined by 37%, to 14,157 +/- 831, by E18. Pyknotic neurons were found at all stages of development, but were most apparent between E7-15. The effects of Nerve Growth Factor (NGF) on the number of both surviving and pyknotic neurons in the ganglion were also examined. E9 embryos treated with NGF from E5-8 showed a 57% increase in the number of sympathetic neurons. This increase therefore occurred prior to the decline in neuronal number and was not accompanied by a decrease in the number of visibly pyknotic neurons. It is therefore possible that early NGF treatment increases the number of sympathetic neurons through a mechanism other than the attenuation of cell death.  相似文献   

12.
Large numbers of neurons are eliminated by apoptosis during nervous system development. For instance, in the mouse dorsal root ganglion (DRG), the highest incidence of cell death occurs between embryonic days 12 and 14 (E12-E14). While the cause of cell death and its biological significance in the nervous system is not entirely understood, it is generally believed that limiting quantities of neurotrophins are responsible for neuronal death. Between E12 and E14, developing DRG neurons pass through tissues expressing high levels of axonal guidance molecules such as Semaphorin 3A (Sema3A) while navigating to their targets. Here, we demonstrate that Sema3A acts as a death-inducing molecule in neurotrophin-3 (NT-3)-, brain-derived neurotrophic factor (BDNF)- and nerve growth factor (NGF)-dependent E12 and E13 cultured DRG neurons. We show that Sema3A most probably induces cell death through activation of the c-Jun N-terminal kinase (JNK)/c-Jun signaling pathway, and that this cell death is blocked by a moderate increase in NGF concentration. Interestingly, increasing concentrations of other neurotrophic factors, such as NT-3 or BDNF, do not elicit similar effects. Our data suggest that the number of DRG neurons is determined by a fine balance between neurotrophins and Semaphorin 3A, and not only by neurotrophin levels.  相似文献   

13.
Young sympathetic neurons die when deprived of nerve growth factor (NGF). Under such circumstances, cell death is appropriate to the developing nervous system and requires RNA and protein synthesis. We have hypothesized the existence of an endogenous death program within neurons that is suppressed by trophic factors. The extent and timing of required changes in the synthetic events that comprise the death program are unknown. In an effort to characterize the biochemical events that mediate the death program further, we performed several experiments on embryonic rat sympathetic neurons in vitro. The death program was blocked with cycloheximide when total protein synthesis was inhibited > or = 80%. When protein synthesis was inhibited within 22 +/- 4 h of NGF deprivation, death was prevented in half the neurons. Hence, we define the commitment point for protein synthesis to be 22 +/- 4 h. Analogously, the commitment point for RNA synthesis was 26 +/- 4 h and that for NGF rescue, 24 +/- 4 h. We tested the ability of a wide variety of chemicals to interfere with the death program. Most compounds tested were unable to prevent neuronal death. Some treatments, however, did save NGF-deprived neurons and were subsequently characterized. These included ultraviolet light and agents that raise intracellular concentrations of cAMP. Finally, we looked for the neuronal expression in vitro and in vivo of genes that have been associated with programmed death in other cell types, including TRPM-2/SGP-2, polyubiquitin, TGF beta-1, c-fos, and c-myc. None of these genes showed significant activation associated with neuronal death.  相似文献   

14.
Caspase 2 was initially identified as a neuronally expressed developmentally down-regulated gene (HUGO gene nomenclature CASP2) and has been shown to be required for neuronal death induced by several stimuli, including NGF (nerve growth factor) deprivation and Aβ (β-amyloid). In non-neuronal cells the PIDDosome, composed of caspase 2 and two death adaptor proteins, PIDD (p53-inducible protein with a death domain) and RAIDD {RIP (receptor-interacting protein)-associated ICH-1 [ICE (interleukin-1β-converting enzyme)/CED-3 (cell-death determining 3) homologue 1] protein with a death domain}, has been proposed as the caspase 2 activation complex, although the absolute requirement for the PIDDosome is not clear. To investigate the requirement for the PIDDosome in caspase-2-dependent neuronal death, we have examined the necessity for each component in induction of active caspase 2 and in execution of caspase-2-dependent neuronal death. We find that both NGF deprivation and Aβ treatment of neurons induce active caspase 2 and that induction of this activity depends on expression of RAIDD, but is independent of PIDD expression. We show that treatment of wild-type or PIDD-null neurons with Aβ or NGF deprivation induces formation of a complex of caspase 2 and RAIDD. We also show that caspase-2-dependent execution of neurons requires RAIDD, not PIDD. Caspase 2 activity can be induced in neurons from PIDD-null mice, and NGF deprivation or Aβ use caspase 2 and RAIDD to execute death of these neurons.  相似文献   

15.
Nanomolar β‐amyloid peptide (Aβ) can induce neuronal loss in culture by activating microglia to phagocytose neurons. We report here that this neuronal loss is mediated by the bridging protein lactadherin/milk‐fat globule epidermal growth factor‐like factor 8 (MFG‐E8), which is released by Aβ‐activated microglia, binds to co‐cultured neurons and opsonizes neurons for phagocytosis by microglia. Aβ stimulated microglial phagocytosis, but did not opsonize neurons for phagocytosis. Aβ (250 nM) induced delayed neuronal loss in mixed glial‐neuronal mouse cultures that required microglia and occurred without increasing neuronal apoptosis or necrosis. This neuronal death/loss was prevented by antibodies to MFG‐E8 and was absent in cultures from Mfge8 knockout mice (leaving viable neurons), but was reconstituted by addition of recombinant MFG‐E8. Thus, nanomolar Aβ caused neuronal death by inducing microglia to phagocytose otherwise viable neurons via MFG‐E8. The direct neurotoxicity of micromolar Aβ was not affected by MFG‐E8. The essential role of MFG‐E8 in Aβ‐induced phagoptosis, suggests this bridging protein as a potential therapeutic target to prevent neuronal loss in Alzheimer's disease.  相似文献   

16.
Naturally occurring sympathetic neuron death is the result of two apoptotic signaling events: one normally suppressed by NGF/TrkA survival signals, and a second activated by the p75 neurotrophin receptor. Here we demonstrate that the p53 tumor suppressor protein, likely as induced by the MEKK-JNK pathway, is an essential component of both of these apoptotic signaling cascades. In cultured neonatal sympathetic neurons, p53 protein levels are elevated in response to both NGF withdrawal and p75NTR activation. NGF withdrawal also results in elevation of a known p53 target, the apoptotic protein Bax. Functional ablation of p53 using the adenovirus E1B55K protein inhibits neuronal apoptosis as induced by either NGF withdrawal or p75 activation. Direct stimulation of the MEKK-JNK pathway using activated MEKK1 has similar effects; p53 and Bax are increased and the subsequent neuronal apoptosis can be rescued by E1B55K. Expression of p53 in sympathetic neurons indicates that p53 functions downstream of JNK and upstream of Bax. Finally, when p53 levels are reduced or absent in p53+/− or p53−/− mice, naturally occurring sympathetic neuron death is inhibited. Thus, p53 is an essential common component of two receptor-mediated signal transduction cascades that converge on the MEKK-JNK pathway to regulate the developmental death of sympathetic neurons.  相似文献   

17.
The signaling pathways that mediate the ability of NGF to support survival of dependent neurons are not yet completely clear. However previous work has shown that the c-Jun pathway is activated after NGF withdrawal, and blocking this pathway blocks neuronal cell death. In this paper we show that over-expression in sympathetic neurons of phosphatidylinositol (PI) 3-kinase or its downstream effector Akt kinase blocks cell death after NGF withdrawal, in spite of the fact that the c-Jun pathway is activated. Yet, neither the PI 3-kinase inhibitor LY294002 nor a dominant negative PI 3-kinase cause sympathetic neurons to die if they are maintained in NGF. Thus, although NGF may regulate multiple pathways involved in neuronal survival, stimulation of the PI 3-kinase pathway is sufficient to allow cells to survive in the absence of this factor.  相似文献   

18.
Binding of nerve growth factor (NGF) to the p75 neurotrophin receptor (p75) in cultured hippocampal neurons has been reported to cause seemingly contrasting effects, namely ceramide-dependent axonal outgrowth of freshly plated neurons, versus Jun kinase (Jnk)-dependent cell death in older neurons. We now show that the apoptotic effects of NGF in hippocampal neurons are observed only from the 2nd day of culture onward. This switch in the effect of NGF is correlated with an increase in p75 expression levels and increasing levels of ceramide generation as the cultures mature. NGF application to neuronal cultures from p75(exonIII-/-) mice had no effect on ceramide levels and did not affect neuronal viability. The neutral sphingomyelinase inhibitor, scyphostatin, inhibited NGF-induced ceramide generation and neuronal death, whereas hippocampal neurons cultured from acid sphingomyelinase(-/-) mice were as susceptible to NGF-induced death as wild type neurons. The acid ceramidase inhibitor, (1S,2R)-d-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol, enhanced cell death, supporting a role for ceramide itself and not a downstream lipid metabolite. Finally, scyphostatin inhibited NGF-induced Jnk phosphorylation in hippocampal neurons. These data indicate an initiating role of ceramide generated by neutral sphingomyelinase in the diverse neuronal responses induced by binding of neurotrophins to p75.  相似文献   

19.
Nerve growth factor (NGF) deprivation induces a Bax-dependent, caspase-dependent programmed cell death in sympathetic neurons. We examined whether the release of cytochrome c was accompanied by the loss of mitochondrial membrane potential during sympathetic neuronal death. NGF- deprived, caspase inhibitor-treated mouse sympathetic neurons maintained mitochondrial membrane potential for 25-30 h after releasing cytochrome c. NGF- deprived sympathetic neurons became committed to die, as measured by the inability of cells to be rescued by NGF readdition, at the time of cytochrome c release. In the presence of caspase inhibitor, however, this commitment to death was extended beyond the point of cytochrome c release, but only up to the subsequent point of mitochondrial membrane potential loss. Caspase-9 deficiency also arrested NGF-deprived sympathetic neurons after release of cytochrome c, and permitted these neurons to be rescued with NGF readdition. Commitment to death in the NGF-deprived, caspase- 9-deficient sympathetic neurons was also coincident with the loss of mitochondrial membrane potential. Thus, caspase inhibition extended commitment to death in trophic factor-deprived sympathetic neurons and allowed recovery of neurons arrested after the loss of cytochrome c, but not beyond the subsequent loss of mitochondrial membrane potential.  相似文献   

20.
Numerous studies reveal that phosphatidylinositol (PI) 3-kinase and Akt protein kinase are important mediators of cell survival. However, the survival-promoting mechanisms downstream of these enzymes remain uncharacterized. Glycogen synthase kinase-3 beta (GSK-3 beta), which is inhibited upon phosphorylation by Akt, was recently shown to function during cell death induced by PI 3-kinase inhibitors. In this study, we tested whether GSK-3 beta is critical for the death of sympathetic neurons caused by the withdrawal of their physiological survival factor, the nerve growth factor (NGF). Stimulation with NGF resulted in PI 3-kinase-dependent phosphorylation of GSK-3 beta and inhibition of its protein kinase activity, indicating that GSK-3 beta is targeted by PI 3-kinase/Akt in these neurons. Expression of the GSK-3 beta inhibitor Frat1, but not a mutant Frat1 protein that does not bind GSK-3 beta, rescued neurons from death caused by inhibiting PI 3-kinase. Similarly, expression of Frat1 or kinase-deficient GSK-3 beta reduced death caused by inhibiting Akt. In NGF-maintained neurons, overexpression of GSK-3 beta caused a small but significant decrease in survival. However, expression of neither Frat1, kinase-deficient GSK-3 beta, nor GSK-3-binding protein inhibited NGF withdrawal-induced death. Thus, although GSK-3 beta function is required for death caused by inactivation of PI 3-kinase and Akt, neuronal death caused by NGF withdrawal can proceed through GSK-3 beta-independent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号