首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of Kv1.3 voltage-gated potassium channels in rat and human prostate epithelial cells has been previously reported. We examined, by immunohistochemistry, Kv1.3 levels in 10 normal human prostate, 18 benign prostatic hyperplasia (BPH) and 147 primary human prostate cancer (Pca) specimens. We found high epithelial expression of Kv1.3 in all normal prostate, 16 BPH and 77 (52%) Pca specimens. Compared to normal, Kv1.3 levels were reduced in 1 (6%) BPH specimen and in 70 (48%) Pca specimens. We found a significant inverse correlation between Kv1.3 levels and tumor grade (r = -0.25, P = 0.003) as well as tumor stage (r = -0.27, P = 0.001). Study of an additional 30 primary Pca specimens showed that 15 (50%) had reduced Kv1.3 immunostaining compared to matched normal prostate tissue. Our data suggest that in Pca reduced Kv1.3 expression occurs frequently and may be associated with a poor outcome.  相似文献   

2.
The presence of Kv1.3 voltage-gated potassium channels in rat and human prostate epithelial cells has been previously reported. We examined, by immunohistochemistry, Kv1.3 levels in 10 normal human prostate, 18 benign prostatic hyperplasia (BPH) and 147 primary human prostate cancer (Pca) specimens. We found high epithelial expression of Kv1.3 in all normal prostate, 16 BPH and 77 (52%) Pca specimens. Compared to normal, Kv1.3 levels were reduced in 1 (6%) BPH specimen and in 70 (48%) Pca specimens. We found a significant inverse correlation between Kv1.3 levels and tumor grade (r = −0.25, P = 0.003) as well as tumor stage (r = −0.27, P = 0.001). Study of an additional 30 primary Pca specimens showed that 15 (50%) had reduced Kv1.3 immunostaining compared to matched normal prostate tissue. Our data suggest that in Pca reduced Kv1.3 expression occurs frequently and may be associated with a poor outcome.  相似文献   

3.
Three-dimensional quantitative ultrasound spectroscopic imaging of prostate was investigated clinically for the noninvasive detection and extent characterization of disease in cancer patients and compared to whole-mount, whole-gland histopathology of radical prostatectomy specimens. Fifteen patients with prostate cancer underwent a volumetric transrectal ultrasound scan before radical prostatectomy. Conventional-frequency (~ 5 MHz) ultrasound images and radiofrequency data were collected from patients. Normalized power spectra were used as the basis of quantitative ultrasound spectroscopy. Specifically, color-coded parametric maps of 0-MHz intercept, midband fit, and spectral slope were computed and used to characterize prostate tissue in ultrasound images. Areas of cancer were identified in whole-mount histopathology specimens, and disease extent was correlated to that estimated from quantitative ultrasound parametric images. Midband fit and 0-MHz intercept parameters were found to be best associated with the presence of disease as located on histopathology whole-mount sections. Obtained results indicated a correlation between disease extent estimated noninvasively based on midband fit parametric images and that identified histopathologically on prostatectomy specimens, with an r2 value of 0.71 (P < .0001). The 0-MHz intercept parameter demonstrated a lower level of correlation with histopathology. Spectral slope parametric maps offered no discrimination of disease. Multiple regression analysis produced a hybrid disease characterization model (r2 = 0.764, P < .05), implying that the midband fit biomarker had the greatest correlation with the histopathologic extent of disease. This work demonstrates that quantitative ultrasound spectroscopic imaging can be used for detecting prostate cancer and characterizing disease extent noninvasively, with corresponding gross three-dimensional histopathologic correlation.  相似文献   

4.
Although the basic functions of the prostate gland are conserved among mammals, its morphology varies greatly among species. Comparative studies between mouse and human are important because mice are widely used to study prostate cancer, a disease that occurs in a region-restricted manner within the human prostate. An informatics-based approach was used to identify prostate-specific human genes as candidate markers of region-specific identity that might distinguish prostatic ducts prone to prostate cancer from ducts that rarely give rise to cancer. Subsequent analysis of normal and cancerous human prostates demonstrated that the genes microseminoprotein-beta (MSMB) and transglutaminase 4 (TGM4) were expressed in distinct groups of ducts in the normal human prostate, and only MSMB was detected in areas of prostate cancer. The mouse orthologs of MSMB and TGM4 were then used for expression studies in mice along with the mouse ventrally expressed gene spermine binding protein (SBP). All three genes were informative markers of region-specific epithelial identity with distinct expression patterns that collectively accounted for all ducts in the mouse prostate. Together with the human data, this suggested that MSMB expression defines an anatomical domain in the mouse prostate that is molecularly most similar to human prostate cancers. Computer-assisted serial section reconstruction was used to visualize the complete expression domains for MSMB, SBP, and TGM4 in the mouse prostate. This showed that MSMB is expressed in prostatic ducts that comprise 21% of the mouse dorso-lateral prostate. Finally, the expression of MSMB, SBP, and TGM4 was evaluated in a mouse prostate cancer model created by the prostate epithelium-specific deletion of the tumor suppressor PTEN. MSMB and TGM4 were rapidly and dramatically down-regulated in response to PTEN deletion suggesting that this model of prostate cancer includes a more rapid de-differentiation of the prostatic epithelium than is observed in organ-confined human prostate cancers.  相似文献   

5.
Hu P  Chu GC  Zhu G  Yang H  Luthringer D  Prins G  Habib F  Wang Y  Wang R  Chung LW  Zhau HE 《PloS one》2011,6(12):e28670
The potential application of multiplexed quantum dot labeling (MQDL) for cancer detection and prognosis and monitoring therapeutic responses has attracted the interests of bioengineers, pathologists and cancer biologists. Many published studies claim that MQDL is effective for cancer biomarker detection and useful in cancer diagnosis and prognosis, these studies have not been standardized against quantitative biochemical and molecular determinations. In the present study, we used a molecularly characterized human prostate cancer cell model exhibiting activated c-Met signaling with epithelial to mesenchymal transition (EMT) and lethal metastatic progression to bone and soft tissues as the gold standard, and compared the c-Met cell signaling network in this model, in clinical human prostate cancer tissue specimens and in a castration-resistant human prostate cancer xenograft model. We observed c-Met signaling network activation, manifested by increased phosphorylated c-Met in all three. The downstream survival signaling network was mediated by NF-κB and Mcl-1 and EMT was driven by receptor activator of NF-κB ligand (RANKL), at the single cell level in clinical prostate cancer specimens and the xenograft model. Results were confirmed by real-time RT-PCR and western blots in a human prostate cancer cell model. MQDL is a powerful tool for assessing biomarker expression and it offers molecular insights into cancer progression at both the cell and tissue level with high degree of sensitivity.  相似文献   

6.
Septins are a family of GTP-binding cytoskeleton proteins expressed in many solid tumors. Septin 9 (SEPT9) in particular was found overexpressed in diverse carcinomas. Herein, we studied the expression of SEPT9 isoform 1 protein (SEPT9_i1) in human prostate cancer specimens. We utilized immunohistochemical staining to study the expression of SEPT9_i1 protein. Staining level was analyzed in association with clinical characteristics and the pathological Gleason grade and score. Fifty human prostate cancer specimens (42 primary tumors and 8 metastatic lesions) were stained by SEPT9_i1 antibody and analyzed. SEPT9_i1 protein was expressed in prostate cancer cells but absent in normal epithelial cells. The intensity of staining was correlated proportionally to pretreatment prostate-specific antigen (PSA) blood levels and Gleason score (P < 0.05). SEPT9_i1 was highly expressed in all metastatic lesions. A significant assocation between SEPT9_i1 expression and high Gleason score on multivariate linear regression analysis was found. We conclude that SEPT9_i1 is expressed in high-grade prostate tumors suggesting it has a significant role in prostate tumorigenesis and that it could serve as a molecular marker for prostate tumor progression.  相似文献   

7.
A novel full-inversion-based technique for quantitative ultrasound elastography was investigated in a pilot clinical study on five patients for non-invasive detection and localization of prostate cancer and quantification of its extent. Conventional-frequency ultrasound images and radiofrequency (RF) data (~5 MHz) were collected during mechanical stimulation of the prostate using a transrectal ultrasound probe. Pre and post-compression RF data were used to construct the strain images. The Young's modulus (YM) images were subsequently reconstructed using the derived strain images and the stress distribution estimated iteratively using finite element (FE) analysis. Tumor regions determined based on the reconstructed YM images were compared to whole-mount histopathology images of radical prostatectomy specimens. Results indicated that tumors were significantly stiffer than the surrounding tissue, demonstrating a relative YM of 2.5 ± 0.8 compared to normal prostate tissue. The YM images had a good agreement with the histopathology images in terms of tumor location within the prostate. On average, 76% ± 28% of tumor regions detected based on the proposed method were inside respective tumor areas identified in the histopathology images. Results of a linear regression analysis demonstrated a good correlation between the disease extents estimated using the reconstructed YM images and those determined from whole-mount histopathology images (r2 = 0.71). This pilot study demonstrates that the proposed method has a good potential for detection, localization and quantification of prostate cancer. The method can potentially be used for prostate needle biopsy guidance with the aim of decreasing the number of needle biopsies. The proposed technique utilizes conventional ultrasound imaging system only while no additional hardware attachment is required for mechanical stimulation or data acquisition. Therefore, the technique may be regarded as a non-invasive, low cost and potentially widely-available clinical tool for prostate cancer diagnosis.  相似文献   

8.
Expression of the N-methyl-D-aspartate receptor (NMDAr) and its involvement in cellular proliferation is well-known in tumors of neuronal tissue, such as glioma and neuroblastoma. We have investigated NMDAr expression in the normal, hyperplastic and neoplastic human prostate by immunohistochemistry. Low stromal NMDAr immunostaining was observed in 2 of 12 (17%) normal prostate specimens, but epithelial NMDAr staining was not seen. Of 18 benign prostatic hyperplasia (BPH) specimens, none had stromal NMDAr staining, but 2 had low and 1 had high epithelial NMDAr immunoreactivity. Moderate to high NMDAr immunostaining was observed in the stroma of 60 of 145 (41%) prostate cancer (PCa) specimens. Epithelial NMDAr staining was low in 26 (18%) and moderate to high in 36 (25%) of 145 PCa specimens. We have also examined the effects of the NMDAr antagonist memantine on the growth of ten human cancer cell lines: four prostate, two breast and four colon. The NMDAr antagonist memantine inhibited in-vitro growth of all ten cell lines, with half-maximal growth-inhibition at 5 to 20 μg/ml (23 to 92 μM) memantine. An NMDA agonist, L-cysteinesulfinic acid, stimulated cellular proliferation of all ten cell lines, with maximal growth-stimulation (30% to 75%, depending on the cell line) observed between doses of 33 to 66 μM. Our data provide evidence for the expression and activity of NMDAr in prostate cancer.  相似文献   

9.
Han Y  Haun Y  Deng J  Gao F  Pan B  Cui D 《Biotechnology progress》2006,22(4):1084-1089
Fabricating a single-chain variable fragment specific for human seminoprotein is very important in antibody-directed enzyme prodrug therapy and NMR imaging for prostate cancer. Here a single-chain Fv specific for gamma-seminoprotein was expressed by RTS. Its activity and the efficiency of entry into prostate cancer cells are investigated by immunoprecipitation and Western blotting and immunofluorescent staining, as well as entry of conjugated magnetic beads into cells. Results showed that ScFv peptides specific for gamma-seminoprotein were successfully prepared, which can bind with the prostate cells specifically and can bring magnetic beads into prostate cancer cells within 15 min, the amount of magnetic beads inside prostate cancer cells increased as the culture time prolonged. ScFv-conjugated magnetic beads did not enter into control cells. In conclusion, the ScFv peptide against human gamma-seminoprotein with biological activity was successfully fabricated, which can take magnetic beads to prostate cancer cells specifically and not to the control cells. This ScFv peptide against human gamma-seminoprotein should be useful in improving the detection and therapy of prostate cancer at early stages and NMR imaging.  相似文献   

10.
The enzyme spermidine/spermine N(1)-acetyltransferase (SSAT) regulates the catabolism and export of intracellular polyamines. We have previously shown that activation of polyamine catabolism by conditional overexpression of SSAT has antiproliferative consequences in LNCaP prostate carcinoma cells. Growth inhibition was causally linked to high metabolic flux arising from a compensatory increase in polyamine biosynthesis. Here we examined the in vivo consequences of SSAT overexpression in a mouse model genetically predisposed to develop prostate cancer. TRAMP (transgenic adenocarcinoma of mouse prostate) female C57BL/6 mice carrying the SV40 early genes (T/t antigens) under an androgen-driven probasin promoter were cross-bred with male C57BL/6 transgenic mice that systemically overexpress SSAT. At 30 weeks of age, the average genitourinary tract weights of TRAMP mice were approximately 4 times greater than those of TRAMP/SSAT bigenic mice, and by 36 weeks, they were approximately 12 times greater indicating sustained suppression of tumor outgrowth. Tumor progression was also affected as indicated by a reduction in the prostate histopathological scores. By immunohistochemistry, SV40 large T antigen expression in the prostate epithelium was the same in TRAMP and TRAMP/SSAT mice. Consistent with the 18-fold increase in SSAT activity in the TRAMP/SSAT bigenic mice, prostatic N(1)-acetylspermidine and putrescine pools were remarkably increased relative to TRAMP mice, while spermidine and spermine pools were minimally decreased due to a compensatory 5-7-fold increase in biosynthetic enzymes activities. The latter led to heightened metabolic flux through the polyamine pathway and an associated approximately 70% reduction in the SSAT cofactor acetyl-CoA and a approximately 40% reduction in the polyamine aminopropyl donor S-adenosylmethionine in TRAMP/SSAT compared with TRAMP prostatic tissue. In addition to elucidating the antiproliferative and metabolic consequences of SSAT overexpression in a prostate cancer model, these findings provide genetic support for the discovery and development of specific small molecule inducers of SSAT as a novel therapeutic strategy targeting prostate cancer.  相似文献   

11.
12.
13.
The cancer stem cell (CSC) model has been considerably revisited over the last two decades. During this time CSCs have been identified and directly isolated from human tissues and serially propagated in immunodeficient mice, typically through antibody labeling of subpopulations of cells and fractionation by flow cytometry. However, the unique clinical features of prostate cancer have considerably limited the study of prostate CSCs from fresh human tumor samples. We recently reported the isolation of prostate CSCs directly from human tissues by virtue of their HLA class I (HLAI)-negative phenotype. Prostate cancer cells are harvested from surgical specimens and mechanically dissociated. A cell suspension is generated and labeled with fluorescently conjugated HLAI and stromal antibodies. Subpopulations of HLAI-negative cells are finally isolated using a flow cytometer. The principal limitation of this protocol is the frequently microscopic and multifocal nature of primary cancer in prostatectomy specimens. Nonetheless, isolated live prostate CSCs are suitable for molecular characterization and functional validation by transplantation in immunodeficient mice.  相似文献   

14.
Ionic interactions are essential for the biological functions of the polyamines spermidine and spermine in mammalian physiology. Here, we describe a simple gram scale method to prepare 1,12-diamino-3,6,9-triazadodecane (SpmTrien), an isosteric charge-deficient spermine analogue. The protonation sites of SpmTrien were determined at pH range of 2.2–11.0 using two-dimensional 1H-15N NMR spectroscopy, which proved to be more feasible than conventional methods. The macroscopic pK a values of SpmTrien (3.3, 6.3, 8.5, 9.5 and 10.3) are significantly lower than those of 1,12-diamino-4,9-diazadodecane (spermine). The effects of SpmTrien and its parent molecule, 1,8-diamino-3,6-diazaoctane (Trien), on cell growth and polyamine metabolism were investigated in DU145 prostate carcinoma cells. SpmTrien downregulated the biosynthetic enzymes ornithine decarboxylase (ODC) and S-adenosyl-l-methionine decarboxylase and decreased intracellular polyamine levels, whereas the effects of Trien alone were minor. Interestingly, both SpmTrien and Trien were able to partially overcome growth arrest induced by an ODC inhibitor, α-difluoromethylornithine, indicating that they are able to mimic some functions of the natural polyamines. Thus, SpmTrien is a novel tool to influence polyamine interaction sites at the molecular level and offers a new means to study the contribution of the protonation of spermine amino group(s) in the regulation of polyamine-dependent biological processes.  相似文献   

15.

Introduction

The androgen receptor (AR) is the master regulator of prostate cancer cell metabolism. Degarelix is a novel gonadotrophin-releasing hormone blocker, used to decrease serum androgen levels in order to treat advanced human prostate cancer. Little is known of the rapid metabolic response of the human prostate cancer tissue samples to the decreased androgen levels.

Objectives

To investigate the metabolic responses in benign and cancerous tissue samples from patients after treatment with Degarelix by using HRMAS 1H NMR spectroscopy.

Methods

Using non-destructive HR-MAS 1H NMR spectroscopy we analysed the metabolic changes induced by decreased AR signalling in human prostate cancer tissue samples. Absolute concentrations of the metabolites alanine, lactate, glutamine, glutamate, citrate, choline compounds [t-choline = choline + phosphocholine (PC) + glycerophosphocholine (GPC)], creatine compounds [t-creatine = creatine (Cr) + phosphocreatine (PCr)], taurine, myo-inositol and polyamines were measured in benign prostate tissue samples (n = 10), in prostate cancer specimens from untreated patients (n = 7) and prostate cancer specimens from patients treated with Degarelix (n = 6).

Results

Lactate, alanine and t-choline concentrations were significantly elevated in high-grade prostate cancer samples when compared to benign samples in untreated patients. Decreased androgen levels resulted in significant decreases of lactate and t-choline concentrations in human prostate cancer biopsies.

Conclusions

The reduced concentrations of lactate and t-choline metabolites due to Degarelix could in principle be monitored by in vivo 1H MRS, which suggests that it would be possible to monitor the effects of physical or chemical castration in patients by that non-invasive method.
  相似文献   

16.
S Levasseur  T Poleck  M Shaw  P Guinan  G Burke 《Life sciences》1987,41(14):1679-1683
The effects of two inhibitors of ornithine decarboxylase activity, alpha-difluoromethylornithine (DMFO) and (2R,5R) 6-heptyne-2,5 diamine (HDA), and an inhibitor of S-adenosylmethionine decarboxylase, methylglyoxal bis-guanylhydrazone (MGBG), were tested on casein kinase activity and endogenous phosphorylation in the cytosol fractions of mouse thyroid and a rat prostate tumor model, Dunning R 3327 MAT LyLu subline. When tested at 5 mM, spermine, DMFO, HDA, and MGBG stimulated mouse thyroid casein kinase activity by 230%, 14%, 65% and 106%, respectively. Similar responses were observed in prostate tumor cytosol. In mouse thyroid cytosol, spermine stimulates 32P incorporation primarily into 3 proteins (MW: 107, 88, and 56 kDa). At 5 mM, MGBG partially reproduces the effects of spermine; HDA is less effective and DMFO is without effect. Similar effects were observed on 3 proteins in prostate tumor cytosol with molecular weights of 91, 41, and 32 kDa. These data provide additional support for the hypothesis that the observed synergistic inhibitory effect of DMFO and MGBG on cell growth may not be due solely to the inhibition of polyamine biosynthesis. Our findings suggest that MGBG-mediated reduction in the phosphorylation of casein kinase substrate should be considered as one locus of action.  相似文献   

17.
Rat ventral prostate contains an acidic protein which can bind spermine selectively. The relative binding affinities of various aliphatic amines for the protein are, in decreasing order, spermine > thermine >> spermidine > putrecine > 1,10-diaminodecane, cadaverine and 1,12-diaminododecane. The binding protein has an isoelectric point at pH 4.3 and a sedimentation coefficient of 3 S. Its molecular weight is approx. 30 000. Histones and nuclear chromatin preparations of the prostate can interact with the binding protein.The spermine-binding activity of the purified prostate protein can be inactivated by treatment with intestinal alkaline phosphatases. The phosphatase-treated preparation can then be reactivated by beef heart protein kinase in the presence of cyclic AMP and ATP.The spermine-binding activity of the prostate cytosol protein fraction decreases after castraction, but increases very rapidly after the castrated rats are injected with 5α-dihydrotesterone. This finding raises the possibility that, in the prostate, certain androgen actions may be dependent on the androgen-induced increase in the acidic protein binding of polyamines and their translocation to a functional cellular site such as nuclear chromatin.In the prostate cytosol, spermine also binds to 4-S tRNAs and to a unique RNA which has a sedimentation coefficient of 1.5 S.  相似文献   

18.
19.
During human prostate cancer progression, the majority of normally expressed integrins are suppressed with the exception of the alpha6, alpha3, and beta1 integrins. We have shown that in prostate cancer, the alpha6 integrin is found paired with the beta1 integrin and that a novel form of the alpha6 integrin that lacks a large portion of the extracellular domain (alpha6p) exists. The alpha6pbeta1 integrin is found in human prostate cancer tissue specimens as well as tissue culture cell lines and is formed on the cell surface. This review discusses the mechanism of alpha6pbeta1 production and the potential functions of this integrin variant. Our current working model predicts that the alpha6pbeta1 integrin maintains the intracellular cytoskeletal connections associated with the heterodimer while allowing for an alteration in cell adhesion. The mechanism provides a selective advantage for cancer cell metastasis.  相似文献   

20.
In contrast to damage of genomic DNA and despite its potential to affect cell physiology, RNA damage is a poorly examined field in biomedical research. Potential triggers of RNA damage as well as its pathophysiological implications remain largely unknown. While less lethal than mutations in genome, such non-acutely lethal insults to cells have been recently associated with underlying mechanisms of several human chronic diseases. We investigated whether RNA damage could be related to the exposure of particular xenobiotics by testing the RNA-damaging activity of a series of chemicals with different mechanisms of action. Cultured human T-lymphoblastoid cells were treated with ethyl methanesulfonate (EMS), H(2)O(2), doxorubicin, spermine, or S-nitroso-N-acetylpenicillamine (SNAP). Furthermore, we studied the potential protective activity of a pomegranate extract against RNA damage induced by different chemicals. Special attention has been paid to the protective mechanisms of the extract. The protective effect of pomegranate can be mediated by alterations of the rates of toxic agent absorption and uptake, by trapping of electrophiles as well as free radicals, and protection of nucleophilic sites in RNA. We used two different treatment protocols (pre- and co-treatment) for understanding the mechanism of the inhibitory activity of pomegranate. We demonstrated that total RNA is susceptible to chemical attack. A degradation of total RNA could be accomplished with doxorubicin, H(2)O(2), spermine and SNAP. However, EMS, a well-known DNA-damaging agent, was devoid of RNA-damaging properties, while spermine and SNAP, although lacking of DNA-damaging properties, were able to damage RNA. Pomegranate reduced the RNA-damaging effect of doxorubicin, H(2)O(2), and spermine. Its inhibitory activity could be related with its ability to forms complexes with doxorubicin and H(2)O(2), or interacts with the intracellular formation of reactive species mediating their toxicity. For spermine, an alteration of the rates of spermine absorption and uptake can also be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号