首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Golgi apparatus performs crucial functions in the sorting and processing of proteins destined for secretion from eukaryotic cells. In filamentous fungi, organization of the Golgi apparatus reflects the unique challenges brought about by the highly polarized nature of hyphal growth. Recent results show that Golgi compartments are spatially segregated within hyphal tip cells in a manner that depends upon the integrity of the cytoskeleton. Moreover, loss of normal Golgi organization stops polarized hyphal extension and triggers de‐polarization of the hyphal tip. These results emphasize the point that a spatially organized and dynamic Golgi apparatus represents an adaptation that is as important for hyphal extension as is the presence of a Spitzenkörper. In addition, they also identify regulatory mechanisms that could enable controlled de‐polarization of hyphae during development or infection‐related morphogenesis.  相似文献   

2.
The importance of polarized growth for fungi has elicited significant effort directed at better understanding underlying mechanisms of polarization, with a focus on yeast systems. At sites of tip growth, multiple protein complexes assemble and coordinate to ensure that incoming building material reaches the appropriate destination sites, and polarized growth is maintained. One of these complexes is the polarisome that consists of Spa2, Bud6, Pea2, and Bni1 in Saccharomyces cerevisiae. Filamentous hyphae differ in their development and life style from yeasts and likely regulate polarized growth in a different way. This is expected to reflect on the composition and presence of protein complexes that assemble at the hyphal tip. In this study we searched for polarisome homologues in the model filamentous fungus Aspergillus nidulans and characterized the S. cerevisiae Spa2 and Bud6 homologues, SpaA and BudA. Compared to the S. cerevisiae Spa2, SpaA lacks domain II but has three additional domains that are conserved within filamentous fungi. Gene replacement strains and localization studies show that SpaA functions exclusively at the hyphal tip, while BudA functions at sites of septum formation and possibly at hyphal tips. We show that SpaA is not required for the assembly or maintenance of the Spitzenk?rper. We propose that the core function of the polarisome in polarized growth is maintained but with different contributions of polarisome components to the process.  相似文献   

3.
Formins are downstream effector proteins of Rho-type GTPases and are involved in the organization of the actin cytoskeleton and actin cable assembly at sites of polarized cell growth. Here we show using in vivo time-lapse microscopy that deletion of the Candida albicans formin homolog BNI1 results in polarity defects during yeast growth and hyphal stages. Deletion of the second C. albicans formin, BNR1, resulted in elongated yeast cells with cell separation defects but did not interfere with the ability of bnr1 cells to initiate and maintain polarized hyphal growth. Yeast bni1 cells were swollen, showed an increased random budding pattern, and had a severe defect in cytokinesis, with enlarged bud necks. Induction of hyphal development in bni1 cells resulted in germ tube formation but was halted at the step of polarity maintenance. Bni1-green fluorescent protein is found persistently at the hyphal tip and colocalizes with a structure resembling the Spitzenk?rper of true filamentous fungi. Introduction of constitutively active ras1G13V in the bni1 strain or addition of cyclic AMP to the growth medium did not bypass bni1 hyphal growth defects. Similarly, these agents were not able to suppress hyphal growth defects in the wal1 mutant which is lacking the Wiskott-Aldrich syndrome protein (WASP) homolog. These results suggest that the maintenance of polarized hyphal growth in C. albicans requires coordinated regulation of two actin cytoskeletal pathways, including formin-mediated secretion and WASP-dependent endocytosis.  相似文献   

4.
A key multiprotein complex involved in regulating the actin cytoskeleton and secretory machinery required for polarized growth in fungi, is the polarisome. Recognized core constituents in budding yeast are the proteins Spa2, Pea2, Aip3/Bud6, and the key effector Bni1. Multicellular fungi display a more complex polarized morphogenesis than yeasts, suggesting that the filamentous fungal polarisome might fulfill additional functions. In this study, we compared the subcellular organization and dynamics of the putative polarisome components BUD-6 and BNI-1 with those of the bona fide polarisome marker SPA-2 at various developmental stages of Neurospora crassa. All three proteins exhibited a yeast-like polarisome configuration during polarized germ tube growth, cell fusion, septal pore plugging and tip repolarization. However, the localization patterns of all three proteins showed spatiotemporally distinct characteristics during the establishment of new polar axes, septum formation and cytokinesis, and maintained hyphal tip growth. Most notably, in vegetative hyphal tips BUD-6 accumulated as a subapical cloud excluded from the Spitzenkörper (Spk), whereas BNI-1 and SPA-2 partially colocalized with the Spk and the tip apex. Novel roles during septal plugging and cytokinesis, connected to the reinitiation of tip growth upon physical injury and conidial maturation, were identified for BUD-6 and BNI-1, respectively. Phenotypic analyses of gene deletion mutants revealed additional functions for BUD-6 and BNI-1 in cell fusion regulation, and the maintenance of Spk integrity. Considered together, our findings reveal novel polarisome-independent functions of BUD-6 and BNI-1 in Neurospora, but also suggest that all three proteins cooperate at plugged septal pores, and their complex arrangement within the apical dome of mature hypha might represent a novel aspect of filamentous fungal polarisome architecture.  相似文献   

5.
In filamentous fungi, growth polarity (i.e. hyphal extension) and formation of septa require polarized deposition of new cell wall material. To explore this process, we analyzed a conditional Neurospora crassa mutant, mcb, which showed a complete loss of growth polarity when incubated at the restrictive temperature. Cloning and DNA sequence analysis of the mcb gene revealed that it encodes a regulatory subunit of cAMP-dependent protein kinase (PKA). Unexpectedly, the mcb mutant still formed septa when grown at the restrictive temperature, indicating that polarized deposition of wall material during septation is a process that is, at least in part, independent of polarized deposition during hyphal tip extension. However, septa formed in the mcb mutant growing at the restrictive temperature are mislocalized. Both polarized growth and septation are actin-dependent processes, and a concentration of actin patches is observed at growing hyphal tips and sites where septa are being formed. In the mcb mutant growing at the restrictive temperature, actin patches are uniformly distributed over the cell cortex; however, actin patches are still concentrated at sites of septation. Our results suggest that the PKA pathway regulates hyphal growth polarity, possibly through organizing actin patches at the cell cortex.  相似文献   

6.
Cell growth necessitates extensive membrane remodeling events including vesicle fusion or fission, processes that are regulated by coat proteins. The hyphal cells of filamentous fungi concentrate both exocytosis and endocytosis at the apex. This investigation focuses on clathrin in Aspergillus nidulans, with the aim of understanding its role in membrane remodeling in growing hyphae. We examined clathrin heavy chain (ClaH‐GFP) which localized to three distinct subcellular structures: late Golgi (trans‐Golgi equivalents of filamentous fungi), which are concentrated just behind the hyphal tip but are intermittently present throughout all hyphal cells; the region of concentrated endocytosis just behind the hyphal apex (the “endocytic collar”); and small, rapidly moving puncta that were seen trafficking long distances in nearly all hyphal compartments. ClaH localized to distinct domains on late Golgi, and these clathrin “hubs” dispersed in synchrony after the late Golgi marker PHOSBP. Although clathrin was essential for growth, ClaH did not colocalize well with the endocytic patch marker fimbrin. Tests of FM4‐64 internalization and repression of ClaH corroborated the observation that clathrin does not play an important role in endocytosis in A. nidulans. A minor portion of ClaH puncta exhibited bidirectional movement, likely along microtubules, but were generally distinct from early endosomes.  相似文献   

7.
One kind of the most extremely polarized cells in nature are the indefinitely growing hyphae of filamentous fungi. A continuous flow of secretion vesicles from the hyphal cell body to the growing hyphal tip is essential for cell wall and membrane extension. Because microtubules (MT) and actin, together with their corresponding motor proteins, are involved in the process, the arrangement of the cytoskeleton is a crucial step to establish and maintain polarity. In Saccharomyces cerevisiae and Schizosaccharomyces pombe, actin-mediated vesicle transportation is sufficient for polar cell extension, but in S. pombe, MTs are in addition required for the establishment of polarity. The MT cytoskeleton delivers the so-called cell-end marker proteins to the cell pole, which in turn polarize the actin cytoskeleton. Latest results suggest that this scenario may principally be conserved from S. pombe to filamentous fungi. In addition, in filamentous fungi, MTs could provide the tracks for long-distance vesicle movement. In this review, we will compare the interaction of the MT and the actin cytoskeleton and their relation to the cortex between yeasts and filamentous fungi. In addition, we will discuss the role of sterol-rich membrane domains in combination with cell-end marker proteins for polarity establishment.  相似文献   

8.
Actin plays multiple complex roles in cell growth and cell shape. Recently it was demonstrated that actin patches, which represent sites of endocytosis, are present in a sub-apical collar at growing tips of hyphae and germ tubes of filamentous fungi. It is now clear that this zone of endocytosis is necessary for filamentous growth to proceed. In this review evidence for the role of these endocytic sites in hyphal growth is examined. One possibility if that the role of the sub-apical collar is associated with endocytic recycling of polarized material at the hyphal tip. The 'Apical Recycling Model' accounts for this role and predicts the need for a balance between endocytosis and exocytosis at the hyphal tip to control growth and cell shape. Other cell differentiation events, including appressorium formation and Aspergillus conidiophore development may also be explained by this model.  相似文献   

9.
In filamentous fungi, the stabilization of a polarity axis is likely to be a pivotal event underlying the emergence of a germ tube from a germinating spore. Recent results implicate the polarisome in this process and also suggest that it requires localized membrane organization. Here, we employ a chemical genetic approach to demonstrate that ceramide synthesis is necessary for the formation of a stable polarity axis in the model fungus Aspergillus nidulans. We demonstrate that a novel compound (HSAF) produced by a bacterial biocontrol agent disrupts polarized growth and leads to loss of membrane organization and formin localization at hyphal tips. We show that BarA, a putative acyl-CoA-dependent ceramide synthase that is unique to filamentous fungi mediates the effects of HSAF. Moreover, A. nidulans possesses a second likely ceramide synthase that is essential and also regulates hyphal morphogenesis. Our results suggest that filamentous fungi possess distinct pools of ceramide that make independent contributions to polarized hyphal growth, perhaps through the formation of specialized lipid microdomains that regulate organization of the cytoskeleton.  相似文献   

10.
Filamentous fungi are extremely polarized organisms, exhibiting continuous growth at their hyphal tips. The hyphal form is related to their pathogenicity in animals and plants, and their high secretion ability for biotechnology. Polarized growth requires a sequential supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeleton. Therefore, the arrangement of the cytoskeleton is a crucial step to establish and maintain the cell polarity. This review summarizes recent findings unraveling the mechanism of polarized growth with special emphasis on the role of actin and microtubule cytoskeleton and polarity marker proteins. Rapid insertions of membranes via highly active exocytosis at hyphal tips could quickly dilute the accumulated polarity marker proteins. Recent findings by a super-resolution microscopy indicate that filamentous fungal cells maintain their polarity at the tips by repeating transient assembly and disassembly of polarity sites.  相似文献   

11.
Ras is a highly conserved GTPase protein that is essential for proper polarized morphogenesis of filamentous fungi. Localization of Ras proteins to the plasma membrane and endomembranes through posttranslational addition of farnesyl and palmitoyl residues is an important mechanism through which cells provide specificity to Ras signal output. Although the Aspergillus fumigatus RasA protein is known to be a major regulator of growth and development, the membrane distribution of RasA during polarized morphogenesis and the role of properly localized Ras signaling in virulence of a pathogenic mold remain unknown. Here we demonstrate that Aspergillus fumigatus RasA localizes primarily to the plasma membrane of actively growing hyphae. We show that treatment with the palmitoylation inhibitor 2-bromopalmitate disrupts normal RasA plasma membrane association and decreases hyphal growth. Targeted mutations of the highly conserved RasA palmitoylation motif also mislocalized RasA from the plasma membrane and led to severe hyphal abnormalities, cell wall structural changes, and reduced virulence in murine invasive aspergillosis. Finally, we provide evidence that proper RasA localization is independent of the Ras palmitoyltransferase homolog, encoded by erfB, but requires the palmitoyltransferase complex subunit, encoded by erfD. Our results demonstrate that plasma membrane-associated RasA is critical for polarized morphogenesis, cell wall stability, and virulence in A. fumigatus.  相似文献   

12.
Actin has a pivotal function in hyphal morphogenesis in filamentous fungi, but it is not certain whether its function is equivalent to that of a morphogen, or if it is simply part of a mechanism that executes orders given by another regulatory entity. To address this question we selected for cytochalasin A resistance and isolated act1, the first actin mutant in Neurospora crassa. This mutant branches apically and shows an altered distribution of actin at the tip. Based on the properties of this mutant, we propose a model of tip growth and branching in which actin effects tip growth by regulating the rate of vesicle flow from proximal to distal regions of a hypha, thereby controlling the tip-high gradient of cytoplasmic calcium. The actin-controlled calcium gradient at the tip is necessary for maintenance of tip growth as well as the dominance of one polarized site at the hyphal tip. The phenotype of act1 indicates that actin controls the balance between lateral and apical branching.  相似文献   

13.
The extremely polarized growth form of filamentous fungi imposes a huge challenge on the cellular transport machinery, because proteins and lipids required for hyphal extension need to be continuously transported to the growing tip. Recently, it was shown that endocytosis is also important for hyphal growth. Here, we found that the Aspergillus nidulans kinesin-3 motor protein UncA transports vesicles and is required for fast hyphal extension. Most surprisingly, UncA-dependent vesicle movement occurred along a subpopulation of microtubules. Green fluorescent protein (GFP)-labeled UncArigor decorated a single microtubule, which remained intact during mitosis, whereas other cytoplasmic microtubules were depolymerized. Mitotic spindles were not labeled with GFP-UncArigor but reacted with a specific antibody against tyrosinated α-tubulin. Hence, UncA binds preferentially to detyrosinated microtubules. In contrast, kinesin-1 (conventional kinesin) and kinesin-7 (KipA) did not show a preference for certain microtubules. This is the first example for different microtubule subpopulations in filamentous fungi and the first example for the preference of a kinesin-3 motor for detyrosinated microtubules.  相似文献   

14.
Filamentous fungi undergo polarized hyphal growth throughout the majority of their life cycle. The Spitzenk?rper is a structure unique to filamentous fungi that participates in hyphal growth and is composed largely of vesicles. An important class of proteins involved in vesicle assembly and trafficking are the ADP-ribosylation factors (Arfs). In Saccharomyces cerevisiae, Arf1p and Arf2p are involved in secretion. Aspergillus nidulans ArfA is a homolog of ScArf1p and ScArf2p with 75% of amino acid sequence similarity to each. ArfA::GFP localizes to cellular compartments consistent with Golgi equivalents. An N-terminal myristoylation motif is critical for localization of ArfA. Treatment with Brefeldin A, an inhibitor of Golgi transport, leads to ArfA::GFP diffusing through the cytosol and accumulating into a subcellular compartment further suggesting the ArfA localizes to and functions in the Golgi network. Costaining with FM4-64 revealed that ArfA::GFP likely localized to subcellular compartments participating in exocytosis. We were unable to recover arfA gene disruption strains indicating that the gene is essential in A. nidulans. The overexpression of ArfA protein partially suppresses the polarity defect phenotype of an N-myristoyltransferase mutant. Taken together, these results suggest that ArfA participates in hyphal growth through the secretory system.  相似文献   

15.
Rho GTPases are signalling molecules regulating morphology and multiple cellular functions including metabolism and vesicular trafficking. To understand the connection between polarized growth and secretion in the industrial model organism Aspergillus niger, we investigated the function of all Rho family members in this organism. We identified six Rho GTPases in its genome and used loss-of-function studies to dissect their functions. While RhoA is crucial for polarity establishment and viability, RhoB and RhoD ensure cell wall integrity and septum formation respectively. RhoC seems to be dispensable for A. niger. RacA governs polarity maintenance via controlling actin but not microtubule dynamics, which is consistent with its localization at the hyphal apex. Both deletion and dominant activation of RacA (Rac(G18V)) provoke an actin localization defect and thereby loss of polarized tip extension. Simultaneous deletion of RacA and CftA (Cdc42) is lethal; however, conditional overexpression of RacA in this strain can substitute for CftA, indicating that both proteins concertedly control actin dynamics. We finally identified NoxR as a RacA-specific effector, which however, is not important for apical dominance as reported for A. nidulans but for asexual development. Overall, the data show that individual Rho GTPases contribute differently to growth and morphogenesis within filamentous fungi.  相似文献   

16.
17.
The filamentous fungus Aspergillus nidulans grows by polarized extension of hyphal tips. The actin cytoskeleton is essential for polarized growth, but the role of microtubules has been controversial. To define the role of microtubules in tip growth, we used time-lapse microscopy to measure tip growth rates in germlings of A. nidulans and in multinucleate hyphal tip cells, and we used a green fluorescent protein-alpha-tubulin fusion to observe the effects of the antimicrotubule agent benomyl. Hyphal tip cells grew approximately 5 times faster than binucleate germlings. In germlings, cytoplasmic microtubules disassembled completely in mitosis. In hyphal tip cells, however, microtubules disassembled through most of the cytoplasm in mitosis but persisted in a region near the hyphal tip. The growth rate of hyphal tip cells did not change significantly in mitosis. Benomyl caused rapid disassembly of microtubules in tip cells and a 10x reduction in growth rate. When benomyl was washed out, microtubules assembled quickly and rapid tip growth resumed. These results demonstrate that although microtubules are not strictly required for polarized growth, they are rate-limiting for the growth of hyphal tip cells. These data also reveal that A. nidulans exhibits a remarkable spatial regulation of microtubule disassembly within hyphal tip cells.  相似文献   

18.
Polarisome is a protein complex that plays an important role in polarized growth in fungi by assembling actin cables towards the site of cell growth. For proper morphogenesis, the polarisome must localize to the right place at the right time. However, the mechanisms that control polarisome localization remain poorly understood. In this study, using the polymorphic fungus Candida albicans as a model, we have discovered that the cyclin‐dependent kinase (CDK) Cdc28 phosphorylates the polarisome scaffold protein Spa2 to govern polarisome localization during both yeast and hyphal growth. In a yeast cell cycle, Cdc28‐Clb2 phosphorylates Spa2 and controls the timing of polarisome translocation from the bud tip to the bud neck. And during hyphal development, Cdc28‐Clb2 and the hyphal‐specific Cdc28‐Hgc1 cooperate to enhance Spa2 phosphorylation to maintain the polarisome at the hyphal tip. Blocking the CDK phosphorylation causes premature tip‐to‐neck translocation of Spa2 during yeast growth and inappropriate septal localization of Spa2 in hyphae and abnormal hyphal morphology under certain inducing conditions. Together, our results generate new insights into the mechanisms by which fungi regulate polarisome localization in the control of polarized growth.  相似文献   

19.
Tip growth of filamentous fungi depends on continuous polarized growth and requires the actin and microtubule (MT) cytoskeleton. Cortical proteins at polarity sites, also known as cell end markers, play important roles in polarity maintenance. Deletion of the cell end marker teaA results in zigzag hyphal morphologies, which is contrary to the normal rectilinear growth pattern. Here we studied the role of TeaA and MTs in the establishment of polarity during tip growth of Aspergillus nidulans, including conidia germination, second germtube formation, hyphal branching and conidiophore development. TeaA is delivered to the cortex by growing MTs. In conidia TeaA appeared at the germination site prior to germtube formation, and deletion of teaA resulted in germination at multiple sites, increased branching and abnormal conidiophores. The formation of a second germtube opposite the first conidial germtube depended on the presence of a septum at the base of the first germtube. An MT-organizing centre, associated to the septum, produced microtubules, which delivered TeaA towards the opposite side of the conidium. These results suggest a new function for TeaA in polarity establishment. It can be a positive function, but TeaA could also suppress polarity sites in the vicinity of the first germtube.  相似文献   

20.
Polarized growth in filamentous fungi needs a continuous supply of proteins and lipids to the growing hyphal tip. One of the important membrane compounds in fungi is ergosterol. At the apical plasma membrane ergosterol accumulations, which are called sterol-rich plasma membrane domains (SRDs). The exact roles and formation mechanism of the SRDs remained unclear, although the importance has been recognized for hyphal growth. Transport of ergosterol to hyphal tips is thought to be important for the organization of the SRDs. Oxysterol binding proteins, which are conserved from yeast to human, are involved in nonvesicular sterol transport. In Saccharomyces cerevisiae seven oxysterol-binding protein homologues (OSH1 to -7) play a role in ergosterol distribution between closely located membranes independent of vesicle transport. We found five homologous genes (oshA to oshE) in the filamentous fungi Aspergillus nidulans. The functions of OshA-E were characterized by gene deletion and subcellular localization. Each gene-deletion strain showed characteristic phenotypes and different sensitivities to ergosterol-associated drugs. Green fluorescent protein-tagged Osh proteins showed specific localization in the late Golgi compartments, puncta associated with the endoplasmic reticulum, or diffusely in the cytoplasm. The genes expression and regulation were investigated in a medically important species Aspergillus fumigatus, as well as A. nidulans. Our results suggest that each Osh protein plays a role in ergosterol distribution at distinct sites and contributes to proper fungal growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号