首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A few foldback (FB) transposable elements have, between their long terminal inverted repeats, central loop sequences which have been shown to be different from FB inverted repeat sequences. We have investigated loop sequences from two such FB elements by analyzing their genomic distribution and sequence conservation and, in particular, by determining if they are normally associated with FB elements. One of these FB loop sequences seems to be present in a few conserved copies found adjacent to FB inverted repeat sequences, suggesting that it represents an integral component of some FB elements. The other loop sequence is less well-conserved and not usually associated with FB inverted repeats. This sequence is a member of another family of transposable elements, the HB family, and was found inserted in an FB element only by chance. We compare the complete DNA sequences of two HB elements and examine the ends of four HB elements.  相似文献   

2.
3.
R Levis  M Collins  G M Rubin 《Cell》1982,30(2):551-565
The DNA insertions that cause the highly unstable mutations wC and wDZL share extensive homology with the FB family of transposable elements. FB elements carry long, internally repetitious, inverted terminal repeats and thus differ in structure from other transposable elements. Our results suggest that FB elements may excise and cause chromosomal rearrangements at unusually high frequencies. The wC insertion is a single FB element. The wDZL insertion differs in that it contains two FB elements, one at each terminus. The wC and wDZL insertions contain 4.0 and 6.5 kilobase nonhomologous segments between their terminal repeats. In contrast to the middle repetitive FB elements, the central segment of the wDZL insertion is single-copy and present at a fixed location in the wild-type genome. It has apparently been transposed by the action of flanking FB elements, causing the wDZL mutation at its new location.  相似文献   

4.
HeT-A elements are a new family of transposable elements in Drosophila that are found exclusively in telomeric regions and in the pericentric heterochromatin. Transposition of these elements onto broken chromosome ends has been implicated in chromosome healing. To monitor the fate of HeT-A elements that had attached to broken ends of the X chromosome, we examined individual X chromosomes from a defined population over a period of 17 generations. The ends of the X chromosomes with new HeT-A additions receded at the same rate as the broken ends before the HeT-A elements attached. In addition, some chromosomes, approximately 1% per generation, had acquired new HeT-A sequences of an average of 6 kb at their ends with oligo(A) tails at the junctions. Thus, the rate of addition of new material per generation matches the observed rate of terminal loss (70-75 bp) caused by incomplete replication at the end of the DNA molecule. One such recently transposed HeT-A element which is at least 12 kb in length has been examined in detail. It contains a single open reading frame of 2.8 kb which codes for a gag-like protein.  相似文献   

5.
Putative nonautonomous transposable elements related to the autonomous transposons Tc1, Tc2, Tc5, andmariner were identified in theC. elegans database by computational analysis. These elements are found throughout theC. elegans genome and are defined by terminal inverted repeats with regions of sequence similarity, or identity, to the autonomous transposons. Similarity between loci containing related nonautonomous elements ends at, or near, the boundaries of the terminal inverted repeats. In most cases the terminal inverted repeats of the putative nonautonomous transposable elements are flanked by potential target-site duplications consistent with the associated autonomous elements. The nonautonomous elements identified vary considerably in size (from 100 by to 1.5 kb in length) and copy number in the available database and are localized to introns and flanking regions of a wide variety ofC. elegans genes. Correspondence to: W. Belknap  相似文献   

6.
Long terminal repeats (LTRs) of two members of mdg1 family were sequenced. In the both cases, they are represented by perfect direct repeats 442 and 444 bp in length. Sixteen nucleotides in the LTRs of two different mdg1 elements are different. Each LTR contains slightly mismatched 16-nucleotide inverted repeats located at the ends of the LTR. Six base pairs closest to the termini of LTR form perfect inverted repeats. On the gene-distal sides of LTRs, short 4-nucleotide direct repeats are located, probably representing the duplication of a target DNA sequence arising from insertion of mdg. They are different in the two cases analyzed. Just as the other analyzed eukaryotic transposable elements, mdg1 starts with TGT and ends with ACA. Within the both strands of LTR, the sequences similar to Hogness box (a putative signal for RNA initiation, or a selector) and AATAAA blocks (putative polyadenylation signals) are present. The LTR of mdg1 contains many short direct and inverted repetitive sequences. These include a 10-nucleotide sequence forming a perfect direct repeat with the first ten nucleotides of the LTR. A region of LTR about 70 bp long is represented by simple repetitive sequences (TAT).  相似文献   

7.
The transposable element family TU of the sea urchin Strongylocentrotus purpuratus, a higher eucaryote, has recently been described (D. Liebermann, B. Hoffman-Liebermann, J. Weinthal, G. Childs, R. Maxson, A. Mauron, S.N. Cohen, and L. Kedes, Nature [London] 306:342-347, 1983). A member of this family, TU4, has an insertion, called ISTU4, of non-TU DNA. ISTU4 is a member of a family of repetitive sequences, which are present in some 1,000 copies per haploid S. purpuratus genome (B. Hoffman-Liebermann, D. Liebermann, L.H. Kedes, and S.N. Cohen, Mol. Cell. Biol. 5:991-1001, 1985). We analyzed this insertion to determine whether it is itself a transposable element. The nucleotide sequence of ISTU4 was determined and showed an unusual structure. There are four, approximately 150 nucleotides long, imperfect direct repeats followed by a single truncated version of these repeats. This region is bounded at either side by approximately 100-nucleotide-long sequences that are not related to each other or to the repeats. Nucleotide sequences at the boundaries of ISTU4-homologous and flanking regions in five genomic clones show that ISTU4 represents a family of sequences with discrete ends, which we call Tsp elements. We showed that the genomic locus that carries a Tsp element in one individual was empty in other individuals and conclude that Tsp elements are a new and different type of transposable element. Tsp elements lack two features common to most other transposable elements: Tsp integration does not result in the duplication of host DNA, and there are no inverted repeats at their termini, although short inverted repeats are present at a distance from the termini.  相似文献   

8.
Eucaryotic transposable genetic elements with inverted terminal repeats   总被引:22,自引:0,他引:22  
S Potter  M Truett  M Phillips  A Maher 《Cell》1980,20(3):639-647
DNA carrying inverted repeats was tested for transposition within the Drosophila genome. Five Bam HI segments containing related inverted repeats were isolated from D. melanogaster and analyzed by electron microscopy and restriction mapping. Southern blot experiments using single-copy flanking sequences as probes allowed the study of DNA arrangements at specific sites in the genomes of five closely related strains. We found that in some genomes the sequences with inverted repeats were present at a particular site, whereas in other genomes they were absent from this site. These results indicated that three of the sequences are transposable genetic elements. In one case we have purified the two corresponding DNA segments, with and without the sequence containing inverted repeats, thereby confirming the mobility of this sequence. These DNA elements were found to be distinct in two ways from copia and others previously described: first, they contain inverted terminal repeats, and second, they have a more heterogeneous construction.  相似文献   

9.
Yu Z  Wright SI  Bureau TE 《Genetics》2000,156(4):2019-2031
While genome-wide surveys of abundance and diversity of mobile elements have been conducted for some class I transposable element families, little is known about the nature of class II transposable elements on this scale. In this report, we present the results from analysis of the sequence and structural diversity of Mutator-like elements (MULEs) in the genome of Arabidopsis thaliana (Columbia). Sequence similarity searches and subsequent characterization suggest that MULEs exhibit extreme structure, sequence, and size heterogeneity. Multiple alignments at the nucleotide and amino acid levels reveal conserved, potentially transposition-related sequence motifs. While many MULEs share common structural features to Mu elements in maize, some groups lack characteristic long terminal inverted repeats. High sequence similarity and phylogenetic analyses based on nucleotide sequence alignments indicate that many of these elements with diverse structural features may remain transpositionally competent and that multiple MULE lineages may have been evolving independently over long time scales. Finally, there is evidence that MULEs are capable of the acquisition of host DNA segments, which may have implications for adaptive evolution, both at the element and host levels.  相似文献   

10.
11.
The nucleotide sequence of the integrated avian myeloblastosis virus long terminal repeat has been determined. The sequence is 385 base pairs long and is present at both ends of the viral DNA. The cell-virus junctions at each end consist of a 6-base-pair direct repeat of cell DNA next to the inverted repeat of viral DNA. The long terminal repeat also contains promoter-like sequences, an mRNA capping site, and polyadenylation signals. Several features of this long terminal repeat suggest a structural and functional similarity with sequences of transposable and other genetic elements. Comparison of these sequences with long terminal repeats of other avian retroviruses indicates that there is a great variation in the 3' unique sequence (U3), whereas the 5' specific sequences (U5) and the R region are highly conserved.  相似文献   

12.
A cosmid genomic library from a known gypsy-induced forked mutation, f1, was screened by 32P-labeled gypsy transposable element. Of more than 250 positive clones we randomly selected 21 for in situ hybridization to wild-type polytene chromosomes. Two clones hybridized to region 15F on the X-chromosome, the cytological position of forked. A third clone hybridized to at least 17 sites on the chromosomes indicating the presence of repetitive sequences in the gypsy flanking DNA. All clones labeled the centromeric regions heavily. Ten clones, including the two hybridizing at 15F, were chosen for further analysis, and restriction mapping allowed us to place them into three groups: (1) full-length, (2) slightly diverging, and (3) highly diverging gypsy elements. Group (2) is missing the XbaI site in both their long terminal repeats (LTRs) as well as the middle HindIII site; four of these gypsy elements also have a approximately 100-bp deletion at the 5' LTR. The group (3) gypsy transposons are missing one LTR and also have highly diverging DNA sequences. The restriction analyses further imply that most of these different gypsy elements are present in more than one copy in the genome of the f1 stock used in this study. The results raise intriguing questions regarding the significance of transposable elements in evolution and biological functions.  相似文献   

13.
Pardue ML  DeBaryshe PG 《Genetica》1999,107(1-3):189-196
Telomeres in Drosophila melanogaster are composed of multiple copies of two retrotransposable elements, HeT-A and TART instead of the short DNA repeats generated by telomerase in most organisms. Transpositions of HeT-A and yield arrays of repeats larger and more irregular than the repeats produced by telomeras; nevertheless, these transpositions are, in principle, equivalent to the telomere-building action of telomerase. Both telomerase and transposition of HeT-A and TART extend chromosomes by RNA-templated addition of specific sequences. We have proposed that HeT-A has evolved from genes encoding telomerase components. Although both HeT-A and TART share some novel features, TART probably has a different origin from HeT-A. HeT-A and TART are clearly identifiable as non-long terminal repeat (non-LTR) retrotransposons. Both telomere elements transpose only to the ends of chromosomes (apparently to any chromosome end in D. melanogaster) and each contains a large segment of untranslated sequence. HeT-A and TART are the first examples of transposable elements with a clear role in chromosome structure. This has interesting implications for the evolution of both chromosomes and transposable elements. The finding also raises the possibility that other transposable elements with bona fide roles in the cell will be detected, not only in Drosophila, but also in other organisms. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Composite transposable elements in the Xenopus laevis genome.   总被引:7,自引:1,他引:6       下载免费PDF全文
Members of two related families of transposable elements, Tx1 and Tx2, were isolated from the genome of Xenopus laevis and characterized. In both families, two versions of the elements were found. The smaller version in each family (Tx1d and Tx2d) consisted largely of two types of 400-base-pair tandem internal repeats. These elements had discrete ends and short inverted terminal repeats characteristic of mobile DNAs that are presumed to move via DNA intermediates, e.g., Drosophila P and maize Ac elements. The longer versions (Tx1c and Tx2c) differed from Tx1d and Tx2d by the presence of a 6.9-kilobase-pair internal segment that included two long open reading frames (ORFs). ORF1 had one cysteine-plus-histidine-rich sequence of the type found in retroviral gag proteins. ORF2 showed more substantial homology to retroviral pol genes and particularly to the analogs of pol found in a subclass of mobile DNAs that are supposed retrotransposons, such as mammalian long interspersed repetitive sequences, Drosophila I factors, silkworm R1 elements, and trypanosome Ingi elements. Thus, the Tx1 elements present a paradox by exhibiting features of two classes of mobile DNAs that are thought to have very different modes of transposition. Two possible resolutions are considered: (i) the composite versions are actually made up of two independent elements, one of the retrotransposon class, which has a high degree of specificity for insertion into a target within the other, P-like element; and (ii) the composite elements are intact, autonomous mobile DNAs, in which the pol-like gene product collaborates with the terminal inverted repeats to cause transposition of the entire unit.  相似文献   

15.
The defective parvovirus Adeno-associated virus (AAV) is absolutely dependent upon coinfection with either Adenovirus or Herpes Simplex Virus (HSV) for its multiplication. We have compared the terminal repeats of HSV-1F strain DNA with the terminal 200 nucleotides of AAV DNA. Our findings demonstrate similarities between portions of the HSV inverted repeats found at the L/S junction and the termini of AAV. By computer analysis we have determined potential secondary folding patterns for both genomes. The following points can be made about the a, b, and c repeats in HSV: (1) Regions b and c are complementary over a significant portion of their length. (2) The ends of a can fold back on themselves to form large secondary structures. Moreover, when the b and c homology is used to align the ends of a, the b/a and c/a junctions are within 1 base of each other. (3) The short direct repeats within a are essentially a large loop with little secondary structure. The potential implications of this structure are discussed and a model for HSV DNA replication is presented.  相似文献   

16.
Repetitive DNA and chromosome evolution in plants   总被引:32,自引:0,他引:32  
Most higher plant genomes contain a high proportion of repeated sequences. Thus repetitive DNA is a major contributor to plant chromosome structure. The variation in total DNA content between species is due mostly to variation in repeated DNA content. Some repeats of the same family are arranged in tandem arrays, at the sites of heterochromatin. Examples from the Secale genus are described. Arrays of the same sequence are often present at many chromosomal sites. Heterochromatin often contains arrays of several unrelated sequences. The evolution of such arrays in populations is discussed. Other repeats are dispersed at many locations in the chromosomes. Many are likely to be or have evolved from transposable elements. The structures of some plant transposable elements, in particular the sequences of the terminal inverted repeats, are described. Some elements in soybean, antirrhinum and maize have the same inverted terminal repeat sequences. Other elements of maize and wheat share terminal homology with elements from yeast, Drosophila, man and mouse. The evolution of transposable elements in plant populations is discussed. The amplification, deletion and transposition of different repeated DNA sequences and the spread of the mutations in populations produces a turnover of repetitive DNA during evolution. This turnover process and the molecular mechanisms involved are discussed and shown to be responsible for divergence of chromosome structure between species. Turnover of repeated genes also occurs. The molecular processes affecting repeats imply that the older a repetitive DNA family the more likely it is to exist in different forms and in many locations within a species. Examples to support this hypothesis are provided from the Secale genus.  相似文献   

17.
The wheat insertion sequence Wis 2-1A possesses all the structural features characteristic of retrotransposons. Its long-terminal repeats (LTRs) are unusually long (1,755 bp) compared with those of other retrotransposons. Sequence analysis revealed that they differ from each other by only six point mutations. They contain a few tandem direct repeats, which could be explained by slippage mechanisms during replication. Almost half (44%) of the length of the LTRs is occupied by hairpin structures, which may relate to their large size. Possible origins of these inverted repeats are proposed, including the insertion and imprecise excision of transposable elements and errors when the DNA replication intermediate switches RNA template during retrotransposon replication.  相似文献   

18.
Interactions between the termini of adeno-associated virus DNA   总被引:10,自引:0,他引:10  
  相似文献   

19.
20.
Microsatellites, transposable elements and the X chromosome   总被引:4,自引:0,他引:4  
Variability at microsatellite (MS) loci is generally perceived as resulting from an interaction between mutation and genetic drift and, to a lesser extent, selection and recombination. Less investigated has been the reason for MS accumulation in genomes. We present here a simple model that could account for the variation in density of MS loci, assuming that they are created either through replication slippage or in association with transposable elements. Microsatellites then evolve under the forces cited above. We use this framework to revisit two results obtained from high-density genomic maps of the human and mouse genomes built with thousands of CA repeats: MS loci are (1) less variable and (2) less dense on the X chromosome than on autosomes. The first result is most likely explained by differential mutation on the X chromosome and the autosomes. The second result may be explained by differential mutation, provided the distributions of MS loci are still not at equilibrium. Selection, acting either directly on large allele size or indirectly on the transposable elements associated with MS, may explain the same result. The framework developed here is a first step toward more rigorous models, calling for additional data.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号