首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Diploid a/alpha Saccharomyces cerevisiae cells cease mitotic growth and enter meiosis in response to starvation. Expression of meiotic genes depends on the IME1 gene product, which accumulates only in meiotic cells. We report here an analysis of the regulatory region of IME2, an IME1-dependent meiotic gene. Deletion and substitution studies identified a 48-bp IME1-dependent upstream activation sequence (UAS). Activity of the UAS also requires the RIM11, RIM15, and RIM16 gene products, which are required for expression of the chromosomal IME2 promoter and for meiosis. Through a selection for suppressors that permit UAS activity in an ime1 deletion mutant, we identified recessive mutations in three genes, SIN3 (also called RPD1, UME4, and SDI1), RPD3, and UME6 (also called CAR80), that were previously known as negative regulators of other early meiotic genes. Mutational analysis of the IME2 UAS reveals two critical sequence elements: a G+C-rich sequence (called URS1), previously identified at many meiotic genes, and a newly described element, the T4C site, that we found at a subset of meiotic genes. In agreement with prior studies, URS1 mutations lead to elevated IME2 UAS activity in the absence of IME1. However, the URS1 mutations prevent any further stimulation of UAS activity by IME1. Repression through URS1 has been shown to require the UME6 gene product. We find that activation of the IME2 UAS by IME1 also requires the UME6 gene product. Thus, UME6 and the URS1 site both have dual negative and positive roles at the IME2 UAS. We propose that IME1 modifies UME6 to convert it from a negulator to a positive Regulor.  相似文献   

3.
The Saccharomyces cerevisiae RIM15 gene was identified previously through a mutation that caused reduced ability to undergo meiosis. We report here an analysis of the cloned RIM15 gene, which specifies a 1,770-residue polypeptide with homology to serine/threonine protein kinases. Rim15p is most closely related to Schizosaccharomyces pombe cek1+. Analysis of epitope-tagged derivatives indicates that Rim15p has autophosphorylation activity. Deletion of RIM15 causes reduced expression of several early meiotic genes (IME2, SPO13, and HOP1) and of IME1, which specifies an activator of early meiotic genes. However, overexpression of IME1 does not permit full expression of early meiotic genes in a rim15delta mutant. Ime1p activates early meiotic genes through its interaction with Ume6p, and analysis of Rim15p-dependent regulatory sites at the IME2 promoter indicates that activation through Ume6p is defective. Two-hybrid interaction assays suggest that Ime1p-Ume6p interaction is diminished in a rim15 mutant. Glucose inhibits Ime1p-Ume6p interaction, and we find that Rim15p accumulation is repressed in glucose-grown cells. Thus, glucose repression of Rim15p may be responsible for glucose inhibition of Ime1p-Ume6p interaction.  相似文献   

4.
5.
6.
7.
RSC is a nucleosome-remodeling complex of Saccharomyces cerevisiae essential for growth that can alter histone-DNA interaction by using the energy of ATP hydrolysis. Nps1p/Sth1p is an ATPase subunit of RSC. A mutation in the conserved ATPase domain of Nps1p causes a sporulation defect with decreased expression of early meiotic genes, especially IME2. This defect is partially suppressed by the overexpression of either IME1 or IME2. A homozygous diploid of a novel temperature-sensitive nps1 mutation, nps1-13, harboring amino acid substitutions within the bromodomain, was unable to sporulate. Overexpression of IME, IME2, or both of these genes allowed the completion of meiosis I and meiosis II in nps1-13 but not the formation of mature asci. In nps1-13 carrying YEpIME1, the expression of a group of sporulation-specific genes, which express at the middle stages of sporulation and are required for spore-wall formation, notably diminished, and several late sporulation genes expressed at the early stages of sporulation. These results suggest that Nps1p/RSC plays important roles during the spore development process by controlling gene expression for initiating both meiosis and spore morphogenesis, and ensures proper expression timing of late meiotic genes.  相似文献   

8.
9.
10.
Many yeast genes that are essential for meiosis are expressed only in meiotic cells. Known regulators of early meiotic genes include IME1, which is required for their expression, and SIN3 and UME6, which prevent their expression in nonmeiotic cells. We report here the molecular characterization of the RIM11 gene, which we find is required for expression of several early meiotic genes. A close functional relationship between RIM11 and IME1 is supported by two observations. First, sin3 and ume6 mutations are epistatic to rim11 mutations; prior studies have demonstrated their epistasis to ime1 mutations. Second, overexpression of RIM11 can suppress an ime1 missense mutation (ime1-L321F) but not an ime1 deletion. Sequence analysis indicates that RIM11 specifies a protein kinase related to rat glycogen synthase kinase 3 and the Drosophila shaggy/zw3 gene product. Three partially defective rim11 mutations alter residues involved in ATP binding or catalysis, and a completely defective rim11 mutation alters a tyrosine residue that corresponds to the site of an essential phosphorylation for glycogen synthase kinase 3. Immune complexes containing a hemagglutinin (HA) epitope-tagged RIM11 derivative, HA-RIM11, phosphorylate two proteins, p58 and p60, whose biological function is undetermined. In addition, HA-RIM11 immune complexes phosphorylate a functional IME1 derivative but not the corresponding ime1-L321F derivative. We propose that RIM11 stimulates meiotic gene expression through phosphorylation of IME1.  相似文献   

11.
12.
Two signals activate meiosis in yeast: starvation and expression of the a1 and alpha 2 products of the mating-type locus. Prior studies suggest that these signals stimulate expression of an activator of meiosis, the IME1 (inducer of meiosis) product. We have cloned a gene, IME2, with properties similar to those of IME1: both genes are required for meiosis, and both RNAs are induced in meiotic cells. Elevated dosage of IME1 or IME2 stimulates the meiotic recombination pathway without starvation; thus, the IME products may be part of the switch that activates meiosis. IME1 was found to be required for IME2 expression, and a multicopy IME2 plasmid permitted meiosis in an ime1 deletion mutant. Accordingly, we propose that the IME1 product stimulates meiosis mainly through activation of IME2 expression.  相似文献   

13.
14.
CAK1 encodes an essential protein kinase in Saccharomyces cerevisiae that is required for activation of the Cdc28p Cdk. CAK1 also has several CDC28-independent functions that are unique to meiosis. The earliest of these functions is to induce S phase, which is regulated differently in meiosis than in mitosis. In mitosis, Cdc28p controls its own S-phase-promoting activity by signaling the destruction of its inhibitor, Sic1p. In meiosis, Sic1p destruction is signaled by the meiosis-specific Ime2p protein kinase. Our data show that Cak1p is required to activate Ime2p through a mechanism that requires threonine 242 and tyrosine 244 in Ime2p's activation loop. This activation promotes autophosphorylation and accumulation of multiply phosphorylated forms of Ime2p during meiotic development. Consistent with Cak1p's role in activating Ime2p, cells lacking Cak1p are deficient in degrading Sic1p. Deletion of SIC1 or overexpression of IME2 can partially suppress the S-phase defect in cak1 mutant cells, suggesting that Ime2p is a key target of Cak1p regulation. These data show that Cak1p is required for the destruction of Sic1p in meiosis, as in mitosis, but in meiosis, it functions through a sporulation-specific kinase.  相似文献   

15.
In the budding yeast Saccharomyces cerevisiae initiation and progression through the mitotic cell cycle are determined by the sequential activity of the cyclin-dependent kinase Cdc28. The role of this kinase in entry and progression through the meiotic cycle is unclear, since all cdc28 temperature-sensitive alleles are leaky for meiosis. We used a "heat-inducible Degron system" to construct a diploid strain homozygous for a temperature-degradable cdc28-deg allele. We show that this allele is nonleaky, giving no asci at the nonpermissive temperature. We also show, using this allele, that Cdc28 is not required for premeiotic DNA replication and commitment to meiotic recombination. IME2 encodes a meiosis-specific hCDK2 homolog that is required for the correct timing of premeiotic DNA replication, nuclear divisions, and asci formation. Moreover, in ime2Delta diploids additional rounds of DNA replication and nuclear divisions are observed. We show that the delayed premeiotic DNA replication observed in ime2Delta diploids depends on a functional Cdc28. Ime2Delta cdc28-4 diploids arrest prior to initiation of premeiotic DNA replication and meiotic recombination. Ectopic overexpression of Clb1 at early meiotic times advances premeiotic DNA replication, meiotic recombination, and nuclear division, but the coupling between these events is lost. The role of Ime2 and Cdc28 in initiating the meiotic pathway is discussed.  相似文献   

16.
17.
18.
The cyclin-dependent kinase Cdk1 and the related kinase Ime2 act in concert to trigger progression of the meiotic cell cycle in the yeast Saccharomyces cerevisiae. These kinases share several functions and substrates during meiosis, but their regulation seems to be clearly different. In contrast to Cdk1, no cyclin seems to be involved in the regulation of Ime2 activity. Ime2 is a highly unstable protein, and we aimed to elucidate the relevance of Ime2 instability. We first determined the sequence elements required for Ime2 instability by constructing a set of deletions in the IME2 gene. None of the small deletions in Ime2 affected its instability, but deletion of a 241 amino acid C-terminal region resulted in a highly stabilized protein. Thus, the C-terminal domain of Ime2 is important for mediating protein instability. The stabilized, truncated Ime2 protein is highly active in vivo. Replacement of the IME2 gene with the truncated IME2ΔC241 in diploid strains did not interfere with meiotic nuclear divisions, but caused abnormalities in spore formation, as manifested by the appearance of many asci with a reduced spore number such as triads and dyads. The truncated Ime2 caused a reduction of spore number in a dominant manner. We conclude that downregulation of Ime2 kinase activity mediated by the C-terminal domain is required for the efficient production of normal four-spore asci. Our data suggest a role for Ime2 in spore number control in S. cerevisiae.  相似文献   

19.
In the yeast Saccharomyces cerevisiae, meiosis and spore formation require the induction of sporulation-specific genes. Two genes are thought to activate the sporulation program: IME1 and IME2 (inducer of meiosis). Both genes are induced upon entry into meiosis, and IME1 is required for IME2 expression. We report here that IME1 is essential for expression of four sporulation-specific genes. In contrast, IME2 is not absolutely essential for expression of the sporulation-specific genes, but contributes to their rapid induction. Expression of IME2 from a heterologous promoter permits the expression of these sporulation-specific genes, meiotic recombination, and spore formation in the absence of IME1. We propose that the IME1 and IME2 products can each activate sporulation-specific genes independently. In addition, the IME1 product stimulates sporulation-specific gene expression indirectly through activation of IME2 expression.  相似文献   

20.
The IME1 gene is essential for initiation of meiosis in the yeast Saccharomyces cerevisiae, although it is not required for growth. Here we report that in stationary-phase cultures containing low concentration of glucose, cells overexpressing IME1 undergo the early meiotic events, including DNA replication, commitment to recombination, and synaptonemal complex formation and dissolution. In contrast, later meiotic events, such as chromosome segregation, commitment to meiosis, and spore formation, do not occur. Thus, nutrients can repress the late stages of meiosis independently of their block of initiation. Cells arrested at this midpoint in meiosis are relatively stable and can resume meiotic differentiation if transferred to sporulation conditions. Resumption of meiosis does not require repression of IME1 expression, since IME1 RNA levels stay high after transfer of the arrested cells to sporulation medium. These results suggest that meiosis in S. cerevisiae is a paradigm of a differentiation pathway regulated by signal transduction at both early and late stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号