首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metazoan replication-dependent histone mRNAs are the only eukaryotic mRNAs that are not polyadenylated. The cleavage of histone pre-mRNA to form the unique 3' end requires the U7 snRNP and the stem-loop binding protein (SLBP) that binds the 3' end of histone mRNA. U7 snRNP contains three novel proteins, Lsm10 and Lsm11, which are part of the core U7 Sm complex, and ZFP100, a Zn finger protein that helps stabilize binding of the U7 snRNP to the histone pre-mRNA by interacting with the SLBP/pre-mRNA complex. Using a reporter gene that encodes a green fluorescent protein mRNA ending in a histone 3' end and mimics histone gene expression, we demonstrate that ZFP100 is the limiting factor for histone pre-mRNA processing in vivo. The overexpression of Lsm10 and Lsm11 increases the cellular levels of U7 snRNP but has no effect on histone pre-mRNA processing, while increasing the amount of ZFP100 increases histone pre-mRNA processing but has no effect on U7 snRNP levels. We also show that knocking down the known components of U7 snRNP by RNA interference results in a reduction in cell growth and an unsuspected cell cycle arrest in early G(1), suggesting that active U7 snRNP is necessary to allow progression through G(1) phase to S phase.  相似文献   

2.
Dominski Z  Marzluff WF 《Gene》1999,239(1):1-14
All metazoan messenger RNAs, with the exception of the replication-dependent histone mRNAs, terminate at the 3' end with a poly(A) tail. Replication-dependent histone mRNAs end instead in a conserved 26-nucleotide sequence that contains a 16-nucleotide stem-loop. Formation of the 3' end of histone mRNA occurs by endonucleolytic cleavage of pre-mRNA releasing the mature mRNA from the chromatin template. Cleavage requires several trans-acting factors, including a protein, the stem-loop binding protein (SLBP), which binds the 26-nucleotide sequence; and a small nuclear RNP, U7 snRNP. There are probably additional factors also required for cleavage. One of the functions of the SLBP is to stabilize binding of the U7 snRNP to the histone pre-mRNA. In the nucleus, both U7 snRNP and SLBP are present in coiled bodies, structures that are associated with histone genes and may play a direct role in histone pre-mRNA processing in vivo. One of the major regulatory events in the cell cycle is regulation of histone pre-mRNA processing, which is at least partially mediated by cell-cycle regulation of the levels of the SLBP protein.  相似文献   

3.
4.
5.
Metazoan replication-dependent histone mRNAs are not polyadenylated, and instead terminate in a conserved stem-loop structure generated by an endonucleolytic cleavage involving the U7 snRNP, which interacts with histone pre-mRNAs through base-pairing between U7 snRNA and a purine-rich sequence in the pre-mRNA located downstream of the cleavage site. Here we generate null mutations of the single Drosophila U7 gene and demonstrate that U7 snRNA is required in vivo for processing all replication-associated histone pre-mRNAs. Mutation of U7 results in the production of poly A+ histone mRNA in both proliferating and endocycling cells because of read-through to cryptic polyadenylation sites found downstream of each Drosophila histone gene. A similar molecular phenotype also results from mutation of Slbp, which encodes the protein that binds the histone mRNA 3' stem-loop. U7 null mutants develop into sterile males and females, and these females display defects during oogenesis similar to germ line clones of Slbp null cells. In contrast to U7 mutants, Slbp null mutations cause lethality. This may reflect a later onset of the histone pre-mRNA processing defect in U7 mutants compared to Slbp mutants, due to maternal stores of U7 snRNA. A double mutant combination of a viable, hypomorphic Slbp allele and a viable U7 null allele is lethal, and these double mutants express polyadenylated histone mRNAs earlier in development than either single mutant. These data suggest that SLBP and U7 snRNP cooperate in the production of histone mRNA in vivo, and that disruption of histone pre-mRNA processing is detrimental to development.  相似文献   

6.
Animal replication-dependent histone pre-mRNAs are processed at the 3′ end by endonucleolytic cleavage that is not followed by polyadenylation. The cleavage reaction is catalyzed by CPSF73 and depends on the U7 snRNP and its integral component, Lsm11. A critical role is also played by the 220-kDa protein FLASH, which interacts with Lsm11. Here we demonstrate that the N-terminal regions of these two proteins form a platform that tightly interacts with a unique combination of polyadenylation factors: symplekin, CstF64, and all CPSF subunits, including the endonuclease CPSF73. The interaction is inhibited by alterations in each component of the FLASH/Lsm11 complex, including point mutations in FLASH that are detrimental for processing. The same polyadenylation factors are associated with the endogenous U7 snRNP and are recruited in a U7-dependent manner to histone pre-mRNA. Collectively, our studies identify the molecular mechanism that recruits the CPSF73 endonuclease to histone pre-mRNAs, reveal an unexpected complexity of the U7 snRNP, and suggest that in animal cells polyadenylation factors assemble into two alternative complexes—one specifically crafted to generate polyadenylated mRNAs and the other to generate nonpolyadenylated histone mRNAs that end with the stem-loop.  相似文献   

7.
8.
9.
10.
11.
The response of eukaryotic cells to the formation of a double-strand break (DSB) in chromosomal DNA is highly conserved. One of the earliest responses to DSB formation is phosphorylation of the C-terminal tail of H2A histones located in nucleosomes near the break. Histone variant H2AX and core histone H2A are phosphorylated in mammals and budding yeast, respectively. We demonstrate the DSB-induced phosphorylation of histone variant H2Av in Drosophila melanogaster. H2Av is a member of the H2AZ family of histone variants. Ser137 within an SQ motif located near the C- terminus of H2Av was phosphorylated in response to γ-irradiation in both tissue culture cells and larvae. Phosphorylation was detected within 1 min of irradiation and detectable after only 0.3 Gy of radiation exposure. Photochemically induced DSBs, but not general oxidative damage or UV-induced nicking of DNA, caused H2Av phosphorylation, suggesting that phosphorylation is DSB specific. Imaginal disc cells from Drosophila expressing a mutant allele of H2Av with its C-terminal tail deleted, and therefore unable to be phosphorylated, were more sensitive to radiation-induced apoptosis than were wildtype controls, suggesting that phosphorylation of H2Av is important for repair of radiation-induced DSBs. These observations suggest that in addition to providing the function of an H2AZ histone, H2Av is also the functional homolog in Drosophila of H2AX.  相似文献   

12.
The replication-dependent histone mRNAs end in a conserved 26-nt sequence that forms a stem-loop structure. This sequence is required for histone pre-mRNA processing and plays a role in multiple aspects of histone mRNA metabolism. Two proteins that bind the 3' end of histone mRNA are found in Xenopus oocytes. xSLBP1 is found in the nucleus, where it functions in histone pre-mRNA processing, and in the cytoplasm, where it may control histone mRNA translation and stability. xSLBP2 is a cytoplasmic protein, inactive in histone pre-mRNA processing, whose expression is restricted to oogenesis and early development. These proteins are similar only in their RNA-binding domains (RBD). A chimeric protein (1-2-1) in which the RBD of xSLBP1 has been replaced with the RBD of xSLBP2 binds the stem-loop with an affinity similar to the original protein. The 1-2-1 protein efficiently localizes to the nucleus of the frog oocyte, but is not active in processing of histone pre-mRNA in vivo. This protein does not support processing in a nuclear extract, but inhibits processing by competing with the active SLBP by binding to the substrate. The 1-2-1 protein also inhibits processing of synthetic histone pre-mRNA injected into frog oocytes, but has no effect on processing of histone pre-mRNA transcribed from an injected histone gene. This result suggests that sequences in the RBD of xSLBP1 give it preferential access to histone pre-mRNA transcribed in vivo.  相似文献   

13.
We used nuclear extracts from Drosophila Kc cells to characterize 3' end processing of Drosophila histone pre-mRNAs. Drosophila SLBP plays a critical role in recruiting the U 7 snRNP to the pre-mRNA and is essential for processing all five Drosophila histone pre-mRNAs. The Drosophila processing machinery strongly prefers cleavage after a fourth nucleotide following the stem-loop and favors an adenosine over pyrimidines in this position. Increasing the distance between the stem-loop and the HDE does not result in a corresponding shift of the cleavage site, suggesting that in Drosophila processing the U 7 snRNP does not function as a molecular ruler. Instead, SLBP directs the cleavage site close to the stem-loop. The upstream cleavage product generated in Drosophila nuclear extracts contains a 3' OH, and the downstream cleavage product is degraded by a nuclease dependent on the U 7 snRNP, suggesting that the cleavage factor has been conserved between Drosophila and mammalian processing. A 2'O-methyl oligonucleotide complementary to the first 17 nt of the Drosophila U 7 snRNA was not able to deplete the U 7 snRNP from Drosophila nuclear extracts, suggesting that the 5' end of the Drosophila U 7 snRNA is inaccessible. This oligonucleotide selectively inhibited processing of only two Drosophila pre-mRNAs and had no effect on processing of the other three pre-mRNAs. Together, these studies demonstrate that although Drosophila and mammalian histone pre-mRNA processing share common features, there are also significant differences, likely reflecting divergence in the mechanism of 3' end processing between vertebrates and invertebrates.  相似文献   

14.
真核细胞的前体mRNA必须经过复杂的加工过程才能成熟,包括5’端加帽、剪接和3’端加工,其中3’加工包括3’端的切割和多聚腺苷酸化.该过程由前体mRNA上的顺式作用元件以及多个蛋白质因子控制.组成哺乳动物前体mRNA3’端加工机器的核心蛋白质复合体有切割和多聚腺苷酸化特异性因子、切割刺激因子、切割因子Ⅰ和切割因子Ⅱ.其他因子包括poly(A)聚合酶、poly(A)结合蛋白、偶对蛋白(symplekin)等.哺乳动物基因通常含有多个ploy(A)位点,选择性多聚腺苷酸化不仅可产生具有不同长度3’UTR的mRNA异构体,还可能改变基因的CDS区.作为真核生物基因表达调控的关键机制,选择性多聚腺苷酸化在细胞生长、增殖和分化中起着重要作用.本文综述了哺乳动物前体mRNA的3’端加工过程,3’端加工机器的组成及功能,探讨了选择性多聚腺苷酸化在多种人类疾病中的作用机制,以期为读者带来一些新的见解.  相似文献   

15.
Metazoan replication-dependent histone mRNAs are the only nonpolyadenylated cellular mRNAs. Formation of the histone mRNA 3' end requires the U7 snRNP, which contains Lsm10 and Lsm11, and FLASH, a processing factor that binds Lsm11. Here, we identify sequences in Drosophila FLASH (dFLASH) that bind Drosophila Lsm11 (dLsm11), allow localization of dFLASH to the nucleus and histone locus body (HLB), and participate in histone pre-mRNA processing in vivo. Amino acids 105-154 of dFLASH bind to amino acids 1-78 of dLsm11. A two-amino acid mutation of dLsm11 that prevents dFLASH binding but does not affect localization of U7 snRNP to the HLB cannot rescue the lethality or histone pre-mRNA processing defects resulting from an Lsm11 null mutation. The last 45 amino acids of FLASH are required for efficient localization to the HLB in Drosophila cultured cells. Removing the first 64 amino acids of FLASH has no effect on processing in vivo. Removal of 13 additional amino acids of dFLASH results in a dominant negative protein that binds Lsm11 but inhibits processing of histone pre-mRNA in vivo. Inhibition requires the Lsm11 binding site, suggesting that the mutant dFLASH protein sequesters the U7 snRNP in an inactive complex and that residues between 64 and 77 of dFLASH interact with a factor required for processing. Together, these studies demonstrate that direct interaction between dFLASH and dLsm11 is essential for histone pre-mRNA processing in vivo and for proper development and viability in flies.  相似文献   

16.
Formation of the 3' end of histone mRNA: getting closer to the end   总被引:1,自引:0,他引:1  
Dominski Z  Marzluff WF 《Gene》2007,396(2):373-390
Nearly all eukaryotic mRNAs end with a poly(A) tail that is added to their 3' end by the ubiquitous cleavage/polyadenylation machinery. The only known exceptions to this rule are metazoan replication-dependent histone mRNAs, which end with a highly conserved stem-loop structure. This distinct 3' end is generated by specialized 3' end processing machinery that cleaves histone pre-mRNAs 4-5 nucleotides downstream of the stem-loop and consists of the U7 small nuclear RNP (snRNP) and number of protein factors. Recently, the U7 snRNP has been shown to contain a unique Sm core that differs from that of the spliceosomal snRNPs, and an essential heat labile processing factor has been identified as symplekin. In addition, cross-linking studies have pinpointed CPSF-73 as the endonuclease, which catalyzes the cleavage reaction. Thus, many of the critical components of the 3' end processing machinery are now identified. Strikingly, this machinery is not as unique as initially thought but contains at least two factors involved in cleavage/polyadenylation, suggesting that the two mechanisms have a common evolutionary origin. The greatest challenge that lies ahead is to determine how all these factors interact with each other to form a catalytically competent processing complex capable of cleaving histone pre-mRNAs.  相似文献   

17.
We have examined the molecular mechanisms responsible for the shifts in histone protein phenotype during embryogenesis in the sea urchinStrongylocentrotus purpuratus. The H1, H2A, and H2B classes of histone synthesized at the earliest stages of cleavage are heterogeneous: These proteins are replaced at late embryogenesis by a different set of histone-like polypeptides, some of which are also heterogeneous. The H3 and H4 histones appear to be homogeneous classes and remain constant. We have isolated from both early and late embryos the individual messenger RNAs coding for each of the multiple protein subtypes. The RNAs were isolated by hybridization to cloned DNA segments coding for a single histone protein or by elution from polyacrylamide gels. Each RNA was then analyzed and identified by its mobility on polyacrylamide gels and by its template activity in the wheat germ cell-free protein synthesizing system. The mRNAs for each of the five early histone protein classes are heterogeneous in size and differ from the late stage templates. The late mRNAs consist of at least 11 separable types coding for the 5 classes of histones. Each of the 11 has been separated and identified. The late stage proteins were shown to be authentic histones since many of their templates hybridize with histone coding DNA. The early and late stage mRNAs are transcribed from different sets of histone genes since (1) late stage H1 and H2A mRNAs fail to hybridize to cloned early stage histone genes under ideal conditions for detecting homologous early stage hybrids, (2) late stage H2B, H3, and H4 RNA/DNA hybrids melt at 14, 11, and 11°C lower, respectively, than do homologous RNA/DNA hybrids, and (3) purified late stage mRNAs direct the synthesis of the variant histone proteins which are synthesized only during later stages. The time course of synthesis of the late stage mRNAs suggests that they appear many hours before the late histone proteins can be detected, possibly as early as fertilization. In addition, early mRNAs are synthesized in small quantities as late as 40 hr after fertilization, during gastrulation. Thus, the major modulations of histone gene expression are neither abrupt nor an absolute on-off switch, and may represent only a gradual and relative repression of early gene expression. Two histones are detected only transiently during early cleavage. The mRNA for one of them, a subtype of H2A, can be detected in the cytoplasm for as long as 40 hr after fertilization. However, template activity for the other, a subtype of H2B, can be detected only at the blastula stage. Thus, the histone genes represent a complex multigene family that is developmentally modulated.  相似文献   

18.
The only eukaryotic mRNAs that are not polyadenylated are the replication-dependent histone mRNAs in metazoans. The sea urchin genome contains two sets of histone genes that encode non-polyadenylated mRNAs. One of these sets is a tandemly repeated gene cluster with a 5.6-kb repeat unit containing one copy of each of the five alpha-histone genes and is present as a single large cluster which spans over 1 Mb. There is a second set of genes, consisting of 39 genes, containing two histone H1 genes, 34 genes encoding core histone proteins (H2a, H2b, H3 and H4) and three genes expressed only in the testis. Unlike vertebrates where these genes are clustered, the sea urchin late histone genes, expressed in embryos, larvae and adults, are dispersed throughout the genome. There are also genes encoding polyadenylated histone mRNAs, which encode histone variants, including all variants found in other metazoans, as well as a unique set of five cleavage stage histone proteins expressed in oocytes. The cleavage stage histone H1 is the orthologue of an oocyte-specific histone H1 protein found in vertebrates.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号