首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of high hydrostatic pressure (100–550 MPa, 15 min, ambient temperature) on the activity of 13 metabolic enzymes produced by all three strains of Listeria monocytogenes (NCTC 11994, a poultry isolate and Scott A) was examined using gel electrophoresis. The enzymes assayed exhibited a wide variation in barotolerance. The pressure resistance of each particular enzyme was not dependent on the strain from which it was derived. This would seem to indicate that these enzymes were not a determining factor in relation to previously observed differences in the overall pressure resistance of the three strains.  相似文献   

2.
Human butyrylcholinesterase is a nonspecific enzyme of clinical, pharmacological and toxicological significance. Although the enzyme is relatively stable, its activity is affected by numerous factors, including pressure. In this work, hydrostatic pressure dependence of the intrinsic tryptophan fluorescence in native and salted human butyrylcholinesterase was studied up to the maximum pressure at ambient temperature of about 1200 MPa. A correlated large shift toward long wavelengths and broadening observed at pressures between 200 and 700 MPa was interpreted as due to high pressure-induced denaturation of the protein, leading to an enhanced exposure of tryptophan residues into polar solvent environment. This transient process in native butyrylcholinesterase presumably involves conformational changes of the enzyme at both tertiary and secondary structure levels. Pressure-induced mixing of emitting local indole electronic transitions with quenching charge transfer states likely describes the accompanying fluorescence quenching that reveals different course from spectral changes. All the pressure-induced changes turned irreversible after passing a mid-point pressure of about 400 ± 50 MPa. Addition of either 0.1 M ammonium sulphate (a kosmotropic salt) or 0.1 M lithium thiocyanate (a chaotropic salt) to native enzyme similarly destabilized its structure.  相似文献   

3.
The application of high hydrostatic pressure to an in vitro rabbit reticulocyte, polypeptide-synthesizing system has been shown to inhibit synthesis either partially or totally depending upon the magnitude of pressure utilized (Scheck, A.C. and Landau, J.V. (1982) Biochim. Biophys. Acta 718, 21–25). This paper shows that the total inhibition of synthesis seen at 670 atm is similar to the inhibition of elongation produced by cycloheximide in that the polysome profiles remain intact. Partial inhibition at 300 atm shows a reduced rate of ribosome run-off with elongation being affected to the same, or greater extent than initiation. In no instance was disassociation of polysomes seen as a causative factor in the inhibition of synthesis by high pressure.  相似文献   

4.
Formation and stabilization of RNA structure in the cell depends on its interaction with solvent and metal ions. High hydrostatic pressure (HHP) is a convenient tool in an analysis of the role of small molecules in the structure stabilization of biological macromolecules. Analysis of HHP effect and various concentrations of ions showed that water induce formation of the active ribozyme structure. So, it is clear that water is the driving force of conformational changes of nucleic acid.  相似文献   

5.
6.
Lipases are important to high value product synthesis, modification, and enhancement. However, they are often unstable above 40 °C. While most current applications of high hydrostatic pressure (HHP) are for inactivating deleterious enzymes, there is evidence that HHP can stabilize and increase activity of some enzymes. This study examines the apparent kinetics of immobilized lipase-catalyzed synthesis of isoamyl acetate at HHP in hexane. HHP reduced thermal inactivation of lipase by up to 152% after 4 h at 80 °C and 400 MPa when compared to incubations at low pressure. No significant differences were found in activation energy (Ea) at different pressures, irrespectively of the pressurization and heating sequence, and were between 35.7 ± 3.5 and 47.8 ± 8.2 kJ mol?1, depending on the method. In all methods utilized, activity at 63.5 and 80 °C at 400 MPa was greater (from about 20 to 96% increase) than at low pressure. Activity increased by 110% at low pressure versus a 239% increase at 350 MPa when the temperature was increased from 40 to 80 °C. Increasing pressure up to 350 MPa increased lipase activity while pressures greater than 350 MPa maintained or decreased lipase activity. Activation volume (ΔV) appeared negative between ambient pressure and 200 MPa in contrast to a positive ΔV between 300 and 600 MPa. Apparent ΔV was 14.3 ± 1.7 or 15.2 ± 2.2 cm3 mol?1 at 40 or 80 °C, respectively, between 300 and 500 MPa.  相似文献   

7.
8.
High hydrostatic pressure (HHP) process, as a nonthermal process, can be used to inactivate microbes while minimizing chemical reactions in food. In this regard, a HHP level of 100 MPa (986.9 atm/1019.7 kgf/cm2) and more is applied to food. Conventional thermal process damages food components relating color, flavor, and nutrition via enhanced chemical reactions. However, HHP process minimizes the damages and inactivates microbes toward processing high quality safe foods. The first commercial HHP-processed foods were launched in 1990 as fruit products such as jams, and then some other products have been commercialized: retort rice products (enhanced water impregnation), cooked hams and sausages (shelf life extension), soy sauce with minimized salt (short-time fermentation owing to enhanced enzymatic reactions), and beverages (shelf life extension). The characteristics of HHP food processing are reviewed from viewpoints of nonthermal process, history, research and development, physical and biochemical changes, and processing equipment.  相似文献   

9.
High hydrostatic pressure enhanced the specific activity of regulatory enzymes of the Benson-Calvin cycle (fructose-1,6-bisphosphatase, glyceraldehyde-3-P dehydrogenase, phosphoribulokinase) which are modulated by the ferredoxin-thioredoxin system. High activity of chloroplast fructose-1,6-bisphosphatase required dithiothreitol, fructose 1,6-bisphosphate, and Ca2+. At 100 bar the A0.5 for fructose 1,6-bisphosphate (0.3 mM) was lower than that at 1 bar (1.5 mM), whereas similar variations of pressure did not alter the A0.5 for Ca2+ (55 microM). The response of chloroplast glyceraldehyde-3-P dehydrogenase exposed to 500 bar was a 4-fold increase in the NADP-linked activity; conversely, the NAD-dependent activity remained unchanged. The concerted action of high pressure and Pi (or ATP), both activators of chloroplast glyceraldehyde-3-P dehydrogenase, led to inactivation. On the other hand, the activity of phosphoribulokinase increased 10-fold when the enzyme was incubated at 1500 bar; the activation process was strictly dependent on the presence of dithiothreitol. At variance with these enzymes, bovine liver fructose-1,6-bisphosphatase, yeast glyceraldehyde-3-P dehydrogenase, and chloroplast ribulose 1,5-bisphosphate carboxylase, whose activities are not modulated by reduced thioredoxin, were inactivated by high pressure. The comparison of oligomeric enzymes revealed that the stimulation of specific activity by high pressure correlated with thioredoxin-mediated activation, and it did not depend on a particular subunit composition. Present results show that high pressure resembled thioredoxin, cosolvents, and chaotropic anions in its action on regulatory enzymes of the Benson-Calvin cycle. The comparison of physiological and non-physiological modulators suggested that thioredoxin-mediated modifications of noncovalent interactions is an important event in light-dependent regulation of chloroplast enzymes.  相似文献   

10.
The effects of high hydrostatic pressure (HHP) and urea on conformational transitions of human alpha-thrombin structure were studied by fluorescence spectroscopy and by measuring the catalytic activity of the enzyme. Treatment of thrombin with urea produced a progressive red shift in the center of mass of the intrinsic fluorescence emission spectrum, with a maximum displacement of 650 cm(-1). HHP (270 MPa) shifted the centre of mass by only 370 cm(-1). HHP combined with a subdenaturing urea concentration (1.5 m) displaced the centre of mass by approximately 750 cm(-1). The binding of the fluorescent probe bis(8-anilinonaphthalene-1-sulfonate) to thrombin was increased by 1.8-, 4.0-, and 2.7-fold after treatment with high urea concentration, HHP or HHP combined with urea, respectively, thus suggesting that all treatments convert the enzyme to partially folded intermediates with exposed hydrophobic regions. On the other hand, treatment of thrombin with urea (but not HHP) combined with dithiothreitol progressively displaced the fluorescent probe, thus suggesting that this condition converts the enzyme to a completely unfolded state. Urea and HHP also led to different conformations when changes in the thrombin catalytic site environment were assessed using the fluorescence emission of fluorescein-d-Phe-Pro-Arg-cloromethylketone-alpha-thrombin: addition of urea up to 2 m gradually decreased the fluorescence emission of the probe to 65% of the initial intensity, whereas HHP caused a progressive increase in fluorescence. Hydrolysis of the synthetic substrate S-2238 was enhanced (35%) in 2 m urea and gradually abolished at higher concentrations, while HHP (270 MPa) inhibited the enzyme's catalytic activity by 45% and abolished it when 1.5 m urea was also present. Altogether, analysis of urea and HHP effects on thrombin structure and activity indicates the formation of dissimilar intermediate states during denaturation by these agents.  相似文献   

11.
The stabilities of subtilisin and lysozyme under hydrostatic pressures up to 200 MPa were investigated for up to 7 days at 25 degrees C. Methods were chosen to assess changes in tertiary and secondary protein structure as well as aggregation state. Tertiary structure was monitored in situ with second derivative UV spectroscopy and after pressure treatment by dynamic light scattering and second derivative UV spectroscopy. Secondary structure and potential secondary structural changes were characterized by second derivative FTIR spectroscopy. Changes in aggregation state were assessed using dynamic light scattering. Additionally, protein concentration balances were carried out to detect any loss of protein as a function of pressure. For the conditions tested, neither protein shows measurable changes in tertiary or secondary structure or signs of aggregation. Lysozyme concentration balances show no dependence on pressure. Subtilisin concentration balances at high protein concentration (4 mg/mL and higher) do not show pressure dependence. However, the concentration balances carried out at 0.4 mg/mL show a clear sign of pressure dependence. These results may be explained by protein interaction with the vial surface and appear to be rate limited by the equilibrium between active and inactive protein on the surface. Pressure increases protein loss, and the estimated partial molar volume change between the two states is estimated to be -20 +/- 10 mL/mol.  相似文献   

12.
Ernau MC 《Plant physiology》1974,53(5):772-774
Microelectrodes with a 1- to 2-mum tip diameter have been made which are capable of withstanding plant cell hydrostatic pressure on impalement. Filling the electrodes with 1% agar or 5% gelatin in 2 m KCl prevents cytoplasmic contents from moving into the electrode tip on impalement and therefore prevents the irreversible increase in resistance which often occurs. The agar and gelatin electrodes were tested in two fresh water algae, Nitella translucens and Mougeotia sp., and the potentials recorded were found comparable to those recorded with standard 2 m KCl electrodes.  相似文献   

13.
Inactivation of Campylobacter jejuni by high hydrostatic pressure   总被引:1,自引:0,他引:1  
AIMS: To investigate the response of Campylobacter jejuni ATCC 35919 and 35921 to high pressure processing (HPP) while suspended in microbiological media and various food systems. METHODS AND RESULTS: Campylobacter jejuni 35919 and 35921 were subjected to 10-min pressure treatments between 100 and 400 MPa at 25 degrees C suspended in Bolton broth, phosphate buffer (0.2 m, pH 7.3), ultra-high temperature (UHT) whole milk, UHT skim milk, soya milk and chicken pureé. The survivability of C. jejuni was further investigated by inoculated pack studies. HPP at 300-325 MPa for 10 min at 25 degrees C was sufficient to reduce viable numbers of both strains to below detectable levels when cells were pressurized in Bolton broth or phosphate buffer. All food products examined offered a protective effect in that an additional 50-75 MPa was required to achieve similar levels of inactivation when compared with broth and buffer. Inoculated pack studies showed that the survivability of C. jejuni following pressurization improved with decreasing post-treatment storage temperature. SIGNIFICANCE AND IMPACT OF THE STUDY: These data demonstrated that HPP at levels of 相似文献   

14.
A high pressure chamber, which withstands a pressure up to 300 MPa has been developed. The so-called HPDS (Hartmann, Pfeifer, Dornheim, Sommer) High Pressure Cell in combination with an inverted microscope and an analysis system allows brilliant microscopic colour pictures with an optical resolution better than 0.56 microm. The pressure chamber allows the in situ observation of dynamic changes of microscopic structures in bright field, phase contrast and fluorescence microscopy. This publication should demonstrate the capabilities of the system using results of experiments with two types of Spirogyra algae. The pictures have shown significant variations of the chloroplasma and the cell wall membrane at pressures of up to 120 MPa. The new system provides a simple way to perform microscopic analyses at pressures of up to 300 MPa.  相似文献   

15.
As shown by earlier experiments high hydrostatic pressure affects the catalytic function of lactic dehydrogenase from rabbit muscle. In the presence of substrates denaturation occurs, whereas in the absence of substrates and --SH-protecting reagents oxidation of sulfhydryl groups takes place [Schmid, G., Lüdemann, H.-D. & Jaenicke, R. (1975) Biophys. Chem. 3, 90--98; (1978) Eur. J. Biochem. 86, 219--224]. Avoiding oxidation effects by reducing conditions in the solvent medium and by chelation of heavy metal ions, the remaining high-pressure effects consist of dissociation of the native quaternary structure into subunits followed by aggregation. Both reactions are influenced by temperature and enzyme concentration. Short incubation (less than or equal to 10 min) at pH 6.0--8.5 and pressures of 0.3--1.0 kbar causes dissociation which is reversed at normal pressure. At 5 degrees C the activation volume is found to be delta V not equal to = -62 +/- 3cm3 . mol-1. Above 1.2 kbar irreversible aggregation takes place; the reaction is favoured by low temperature and decreased pH. The activation volume for the aggregation process at 5 degress C is delta V not equal to = -97 +/- 3cm3 . mol-1. The results may be described by a reaction sequence comprisign pressure-induced dissociation of the native enzyme into its subunits followed by subunit aggregation to form inactive high-molecular-weight particles.  相似文献   

16.
An original procedure for initial rate accurate determination of enzyme activity under high hydrostatic pressure is reported. This method, adapted to most kinds of enzyme systems, is based on the use of the linear property of product formation during the initial phase of a reaction and does not require specific high pressure equipment. The reliability of the method was tested and illustrated with the study of Aspergillus niger fructosyl-transferase activity as a function of substrate concentration above 300 MPa. © Rapid Science Ltd. 1998  相似文献   

17.
A sampling technique for bacterial cultures subjected to high hydrostatic pressure is described. A sample-receiving vessel with a motor driven interface-piston is employed. By precisely matching the pressures in the bulk culture and the sample-receiving vessel, none of the sample is subjected to the high shear forces common to other desings of high pressure sampler. The use of the technique was illustrated by the growth of an anaerobic culture at 300 bar and 75°C.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号