首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The livestock sector globally is highly dynamic. In developing countries, it is evolving in response to rapidly increasing demand for livestock products. In developed countries, demand for livestock products is stagnating, while many production systems are increasing their efficiency and environmental sustainability. Historical changes in the demand for livestock products have been largely driven by human population growth, income growth and urbanization and the production response in different livestock systems has been associated with science and technology as well as increases in animal numbers. In the future, production will increasingly be affected by competition for natural resources, particularly land and water, competition between food and feed and by the need to operate in a carbon-constrained economy. Developments in breeding, nutrition and animal health will continue to contribute to increasing potential production and further efficiency and genetic gains. Livestock production is likely to be increasingly affected by carbon constraints and environmental and animal welfare legislation. Demand for livestock products in the future could be heavily moderated by socio-economic factors such as human health concerns and changing socio-cultural values. There is considerable uncertainty as to how these factors will play out in different regions of the world in the coming decades.  相似文献   

2.
Livestock production is a major contributor to greenhouse gas (GHG) emissions, so will play a significant role in the mitigation effort. Recent literature highlights different strategies to mitigate GHG emissions in the livestock sector. Animal welfare is a criterion of sustainability and any strategy designed to reduce the carbon footprint of livestock production should consider animal welfare amongst other sustainability metrics. We discuss and tabulate the likely relationships and trade-offs between the GHG mitigation potential of mitigation strategies and their welfare consequences, focusing on ruminant species and on cattle in particular. The major livestock GHG mitigation strategies were classified according to their mitigation approach as reducing total emissions (inhibiting methane production in the rumen), or reducing emissions intensity (Ei; reducing CH4 per output unit without directly targeting methanogenesis). Strategies classified as antimethanogenic included chemical inhibitors, electron acceptors (i.e. nitrates), ionophores (i.e. Monensin) and dietary lipids. Increasing diet digestibility, intensive housing, improving health and welfare, increasing reproductive efficiency and breeding for higher productivity were categorized as strategies that reduce Ei. Strategies that increase productivity are very promising ways to reduce the livestock carbon footprint, though in intensive systems this is likely to be achieved at the cost of welfare. Other strategies can effectively reduce GHG emissions whilst simultaneously improving animal welfare (e.g. feed supplementation or improving health). These win–win strategies should be strongly supported as they address both environmental and ethical sustainability. In order to identify the most cost-effective measures for improving environmental sustainability of livestock production, the consequences of current and future strategies for animal welfare must be scrutinized and contrasted against their effectiveness in mitigating climate change.  相似文献   

3.
Cloned livestock have potential importance in the provision of improved medicine as well as in the development of livestock production. The public is, however, increasingly concerned about the social and ethical consequences of these advances in knowledge and techniques. There is unevenness throughout Europe in different Member States' attitudes to research into livestock cloning. Although there is EU legislation controlling the use of animals for research purposes, there is no legislation specifically governing cloning in livestock production. The main EU reference is the 9th Opinion of the European Group on Ethics, which states "Cloning of farm animals may prove to be of medical and agricultural as well as economic benefit. It is acceptable only when the aims and methods are ethically justified and when carried out under ethical conditions." The ethical justification includes the avoidance of suffering, the use of the 3Rs principle and a lack of better alternatives. The Commission addresses these issues in the 6th Framework Programme by promoting the integration of ethical, legal and social aspects in all proposals where they are relevant, by fostering ethical awareness and foresight in the proposals, by encouraging public dialogue, and by supporting specific actions to promote the debate. Research must respect fundamental ethical principles, including animal welfare requirements.  相似文献   

4.
Structural transformation, food safety, and environmental risks pose challenges to livestock producers. Adjustments to livestock production systems to improve animal welfare will be made in an economic and political milieu characterized by these challenges. However, competing assumptions about contemporary society provide different frameworks for formulating the problems faced by industry and government decision makers. The assumption that industrialization is the key problem in livestock production leads to an application of science that does not adequately address the role of public participation and trust.  相似文献   

5.
Land use for animal production influences the earth system in a variety of ways, including local‐scale modification to biodiversity, soils, and nutrient cycling; regional changes in albedo and hydrology; and global‐scale changes in greenhouse gas and aerosol concentrations. Pasture is furthermore the single most extensive form of land cover, currently comprising about 22–26% of the earth's ice‐free land surface. Despite the importance and variable expressions of animal production, distinctions among different systems are effectively absent from studies of land use and land cover change. This deficiency is improving; however, livestock production system classifications are rarely applied in this context, and the most popular global land cover inventories still present only a single, usually poorly defined category of “pasture” or “rangeland” with no characterization of land use. There is a marked lack of bottom‐up, evidence‐based methodology, creating a pressing need to incorporate cross‐disciplinary evidence of past and present animal production systems into global change studies. Here, we present a framework, modified from existing livestock production systems, that is rooted in sociocultural, socioeconomic, and ecological contexts. The framework defines and characterizes the range of land usage pertaining to animal production, and is suitable for application in land use inventories and scenarios, land cover modeling, and studies on sustainable land use in the past, present, and future.  相似文献   

6.
Until recently fish welfare attracted little attention, but international and national legislation and standards of fish welfare are now emerging and an overview of these developments is presented in this study. Whereas animal welfare legislation is based on public morality, animal ethics does not automatically accept public morality as normative and elaborates arguments regarding the way humans should treat animals (referred to as moral standards). In this study we present the most common animal ethics theories. For most of these, sentience is considered a demarcation line for moral concern: if an animal is sentient, then it should be included in the moral circle, i.e. receive moral consideration in its own right and some basic welfare should be ensured. As for fish, research has revealed that the sensory system of teleosts can detect noxious stimuli, and that some kind of phenomenal consciousness, allowing the fish to feel pain, seems to be present. This raises the ethical question as to how much evidence we need in order to act on such indications of fish sentience. A simple risk analysis shows that the probability that fishes can feel pain is not negligible and that if they do indeed experience pain the consequences in terms of the number of suffering individuals are great. We conclude that farmed fish should be given the benefit of the doubt and we should make efforts that their welfare needs are met as well as possible. Finally, the way forward is briefly discussed: efforts must be made to understand what fish welfare means in practical fish farming. This will involve the development of research and education, greater accountability and transparency, compliance with and control of policies, and quality assurance schemes.  相似文献   

7.
There is a growing concern in society about the safety of animal-derived food, the health and welfare of farm animals and the sustainability of current animal production systems. Along farm animal, breeding genomics may contribute to a solution for these concerns. The use of genomic analysis tools, to achieve genetic progress in typical out-bred populations of farm animals, seems to be more difficult compared to 'model' organisms or plants. However, identification of positional candidate genes may be accelerated by linkage disequilibrium (LD) mapping. Recording of sustainable traits requires a large financial and logistic input and the economic advantages for the market are not as clear as for traditional selection traits. Examples show that the major genes causing variability for similar traits in different species are rarely the same. Therefore, for breeding purposes genomic analysis of the species of interest is needed. The fundamental knowledge obtained on the genetic architecture of complex traits will open new perspectives for the use of DNA tests in selection schemes. For food safety and traceability, DNA-based techniques evolve for monitoring and early warning systems.  相似文献   

8.
The food-feed competition is one of the complex challenges, and so are the ongoing climate change, land degradation and water shortage for realizing sustainable food production systems. By 2050 the global demand for animal products is projected to increase by 60% to 70%, and developing countries will have a lion’s share in this increase. Currently, ~800 million tonnes of cereals (one-third of total cereal production) are used in animal feed and by 2050 it is projected to be over 1.1 billion tonnes. Most of the increase in feed demand will be in developing countries, which already face many food security challenges. Additional feed required for the projected increased demand of animal products, if met through food grains, will further exacerbate the food insecurity in these countries. Furthermore, globally, the production, processing and transport of feed account for 45% of the greenhouse gas emissions from the livestock sector. This paper presents approaches for addressing these challenges in quest for making livestock sector more sustainable. The use of novel human-inedible feed resources such as insect meals, leaf meals, protein isolates, single cell protein produced using waste streams, protein hydrolysates, spineless cactus, algae, co-products of the biofuel industry, food wastes among others, has enormous prospects. Efficient use of grasslands also offers possibilities for increasing carbon sequestration, land reclamation and livestock productivity. Opportunities also exist for decreasing feed wastages by simple and well proven practices such as use of appropriate troughs, increase in efficiency of harvesting crop residues and their conversion to complete feeds especially in the form of densified feed blocks or pellets, feeding as per the nutrient requirements, among others. Available evidence have been presented to substantiate arguments that: (a) for successful and sustained adoption of a feed technology, participation of the private sector and a sound business plan are required, (b) for sustainability of the livestock production systems, it is also important to consider the consumption of animal products and a case has been presented to assess future needs of animal source foods based on their requirements for healthy living, (c) for dairy animals, calculation of Emission Intensity based on the lifetime lactation rather than one lactation may also be considered and (d) for assessment of the efficiency of livestock production systems a holistic approach is required that takes into consideration social dimensions and net human-edible protein output from the system in addition to carbon and water footprints.  相似文献   

9.
As advanced reproductive technologies become more efficient and repeatable in livestock and laboratory species, new opportunities will evolve to apply these techniques to alternative and non-traditional species. This will result in new markets requiring unique business models that address issues of animal welfare and consumer acceptance on a much different level than the livestock sector. Advanced reproductive technologies and genetic engineering will be applied to each species in innovative ways to provide breeders more alternatives for the preservation and propagation of elite animals in each sector. The commercialization of advanced reproductive techniques in these niche markets should be considered a useful tool for conservation of genetic material from endangered or unique animals as well as production of biomedical models of human disease.  相似文献   

10.
The purpose of this review was to provide an updated overview on the use of antimicrobial agents in livestock, the associated problems for humans and current knowledge on the effects of reducing resistance in the livestock reservoir on both human health and animal production. There is still limiting data on both use of antimicrobial agents, occurrence and spread of resistance as well as impact on human health. However, in recent years, emerging issues related to methicillin-resistant Staphylococcus aureus, Clostridium difficile, Escherichia coli and horizontally transferred genes indicates that the livestock reservoir has a more significant impact on human health than was estimated 10 years ago, where the focus was mainly on resistance in Campylobacter and Salmonella. Studies have indicated that there might only be a marginal if any benefit from the regular use of antibiotics and have shown that it is possible to substantially reduce the use of antimicrobial agents in livestock production without compromising animal welfare or health or production. In some cases, this should be done in combination with other measures such as biosecurity and use of vaccines. To enable better studies on both the global burden and the effect of interventions, there is a need for global harmonized integrated and continuous surveillance of antimicrobial usage and antimicrobial resistance, preferably associated with data on production and animal diseases to determine the positive and negative impact of reducing antimicrobial use in livestock.  相似文献   

11.
Biotechnology has taken two directions in efforts to speed up animal production above the rates achievable by selective breeding. Recombinant DNA methods have been used to engineer protein gene products for direct administration to livestock, as in recombinant growth hormone to stimulate lactation in dairy cows or yield faster-growing, leaner carcasses in meat animals. Cloned cellulolytic genes have been inserted into ruminal microorganisms with a view to improving ruminant nutrition. The other direction is to use advanced breeding technologies to enhance performance. These include laboratory culture of large numbers of viable embryos for non-surgical transfer to surrogate mothers, development of methods for sexing sperm and embryos, cloning embryos by nuclear transplantation and gene transfer to create livestock with superior performance traits. In all cases material progress will depend upon a deeper understanding of the underlying physiological and developmental control mechanisms and public confidence that due regard is being paid to animal welfare, and to social and environmental implications.  相似文献   

12.
A societal shift toward plant dominant diets and a reduction in livestock rearing could have broad social, environmental and conservation benefits. Livestock husbandry, however, has a wealthy cultural history, strong support and high consumer demand. It is therefore likely to continue as a major land use and conservation issue for predators. From a producer’s perspective, the primary goals of livestock protection are maximising, or at least maintaining, production by minimising losses and mitigating detriment to stock welfare. Lethal removal of predators remains a commonplace solution. Such management measures are questionable as they raise animal welfare and conservation concerns, risk inhibiting ecological processes, are often expensive, and in some circumstances, exacerbate livestock predation problems. Non-lethal alternatives can facilitate co-existence between livestock farmers and predators, ideally reducing the ecological impact of pastoralism and achieving conservation goals. The need for rigorous study of non-lethal approaches has however been recently highlighted. Tools and methods involved in livestock protection, as well as the theoretical basis of how we perceive and manage the problem, require deeper consideration. Non-lethal approaches require knowledgeable implementation and an effective decision making system is a prerequisite for successful practice. Livestock predation and its prevention are fundamentally influenced by the underlying principles of foraging ecology and risk theory. We propose that manipulating elements of Brown’s (1988) quitting harvest rate model provides a useful conceptual framework for reducing livestock predation and encouraging coexistence.  相似文献   

13.
Due to more stringent energy and climate policies, it is expected that many traditional chemicals will be replaced by their biomass-based substitutes, bio-chemicals. These innovations, however, can influence land allocation since the demand for land dedicated to specific crops might increase. Moreover, it can have an influence on traditional agricultural production. In this paper, we use an applied general equilibrium framework, in which we include two different bio-refinery processes and incorporate so-called cascading mechanisms. The bio-refinery processes use grass, as one of the major inputs, to produce bio-nylon and propane-diol (1,3PDO) to substitute currently produced fossil fuel-based nylon and ethane-diol. We examine the impact of specific climate policies on the bioelectricity share in total electricity production, land allocation, and production quantities and prices of selected commodities. The novel technologies become competitive, with an increased stringency of climate policies. This switch, however, does not induce a higher share of bioelectricity. The cascade does stimulate the production of bioelectricity, but it induces more of a shift in inputs in the bioelectricity sector (from biomass to the cascaded bio-nylon and 1, 3PDO) than an increase in production level of bioelectricity. We conclude that dedicated biomass crops will remain the main option for bioelectricity production: the contribution of the biomass systems remains limited. Moreover, the bioelectricity sector looses a competition for land for biomass production with bio-refineries.  相似文献   

14.
Organic farming (or ecological agriculture) is of growing importance in the agricultural sector worldwide. In the Nordic countries, 1–10% of the arable land was in organic production in 1999. Organic farming can be seen as an approach to agriculture where the aim is to create integrated, humane, environmentally and economically sustainable agricultural production systems. Principles like nutrient recycling, prevention rather than treatment and the precautionary principle are included in aims and standards. Animal welfare is another hallmark of organic livestock production but despite this, several studies have indicated severe health problems e.g. in organic poultry production in Denmark. Also the quality of animal food products in relation to human health, particularly the risk of zoonotic infections, has been debated. For these reasons there is a need for improvement of production methods and animal health status. Vets play an important role in this development through work in clinical practice and in research. On-farm consultancy should be tailored to the individual farmers needs, and the practitioner should be willing to take up new ideas and when needed, to enter a critical dialogue in relation to animal welfare. Better base line data on animal health and food safety in organic food systems are needed.  相似文献   

15.
Livestock production is an important source of animal protein worldwide. In the developed world meat consumption will remain steady but demand is forecast to grow enormously in developing countries. The use of genomics will speed genetic improvement and increase levels of production quickly in the developed world but might face problems in the developing world, including scientific, economic and political challenges. Considerable increases in public and private research funding will be required to develop and utilize novel tools and collections of detailed trait information on appropriate animals. The development of policies protecting the environment and managing all genetic resources will also be needed. Advances in livestock genomics have major implications for increasing food output as well as improving human health.  相似文献   

16.
The need for more sustainable production and consumption of animal source food (ASF) is central to the achievement of the sustainable development goals: within this context, wise use of land is a core challenge and concern. A key question in feeding the future world is: how much ASF should we eat? We demonstrate that livestock raised under the circular economy concept could provide a significant, nonnegligible part (9–23 g/per capita) of our daily protein needs (~50–60 g/per capita). This livestock then would not consume human‐edible biomass, such as grains, but mainly convert leftovers from arable land and grass resources into valuable food, implying that production of livestock feed is largely decoupled from arable land. The availability of these biomass streams for livestock then determines the boundaries for livestock production and consumption. Under this concept, the competition for land for feed or food would be minimized and compared to no ASF, including some ASF in the human diet could free up about one quarter of global arable land. Our results also demonstrate that restricted growth in consumption of ASF in Africa and Asia would be feasible under these boundary conditions, while reductions in the rest of the world would be necessary to meet land use sustainability criteria. Managing this expansion and contraction of future consumption of ASF is essential for achieving sustainable nutrition security.  相似文献   

17.
Balancing the production of food, particularly meat, with preserving biodiversity and maintaining ecosystem services is a major societal challenge. Research into the contrasting strategies of land sparing and land sharing has suggested that land sparing—combining high‐yield agriculture with the protection or restoration of natural habitats on nonfarmed land—will have lower environmental impacts than other strategies. Ecosystems with long histories of habitat disturbance, however, could be resilient to low‐yield agriculture and thus fare better under land sharing. Using a wider suite of species (birds, dung beetles and trees) and a wider range of livestock‐production systems than previous studies, we investigated the probable impacts of different land‐use strategies on biodiversity and aboveground carbon stocks in the Yucatán Peninsula, Mexico—a region with a long history of habitat disturbance. By modelling the production of multiple products from interdependent land uses, we found that land sparing would allow larger estimated populations of most species and larger carbon stocks to persist than would land sharing or any intermediate strategy. This result held across all agricultural production targets despite the history of disturbance and despite species richness in low‐ and medium‐yielding agriculture being not much lower than that in natural habitats. This highlights the importance, in evaluating the biodiversity impacts of land use, of measuring population densities of individual species, rather than simple species richness. The benefits of land sparing for both biodiversity and carbon storage suggest that safeguarding natural habitats for biodiversity protection and carbon storage alongside promoting areas of high‐yield cattle production would be desirable. However, delivering such landscapes will probably require the explicit linkage of livestock yield increases with habitat protection or restoration, as well as a deeper understanding of the long‐term sustainability of yields, and research into how other societal outcomes vary across land‐use strategies.  相似文献   

18.
This paper discusses the sustainability of livestock systems, emphasising bidirectional relations with animal health. We review conventional and contrarian thinking on sustainability and argue that in the most common approaches to understanding sustainability, health aspects have been under-examined. Literature review reveals deep concerns over the sustainability of livestock systems; we recognise that interventions are required to shift to more sustainable trajectories, and explore approaches to prioritising in different systems, focusing on interventions that lead to better health. A previously proposed three-tiered categorisation of ‘hot spots’, ‘cold spots’ and ‘worried well’ animal health trajectories provides a mental model that, by taking into consideration the different animal health status, animal health risks, service response needs and key drivers in each system, can help identify and implement interventions. Combining sustainability concepts with animal health trajectories allows for a richer analysis, and we apply this to three case studies drawn from North Africa and the Middle East; Bangladesh; and the Eastern Cape of South Africa. We conclude that the quest for sustainability of livestock production systems from the perspective of human and animal health is elusive and difficult to reconcile with the massive anticipated growth in demand for livestock products, mainly in low- and middle-income countries, as well as the aspirations of poor livestock keepers for better lives. Nevertheless, improving the health of livestock can contribute to health sustainability both through reducing negative health impacts of livestock and increasing efficiency of production. However, the choice of the most appropriate options must be under-pinned by an understanding of agro-ecology, economy and values. We argue that a new pillar of One Health should be added to the three traditional sustainability pillars of economics, society and environment when addressing livestock systems.  相似文献   

19.
To sustainably contribute to food security of a growing and richer world population, livestock production systems are challenged to increase production levels while reducing environmental impact, being economically viable, and socially responsible. Knowledge about the sustainability performance of current livestock production systems may help to formulate strategies for future systems. Our study provides a systematic overview of differences between conventional and organic livestock production systems on a broad range of sustainability aspects and animal species available in peer-reviewed literature. Systems were compared on economy, productivity, environmental impact, animal welfare and public health. The review was limited to dairy cattle, beef cattle, pigs, broilers and laying hens, and to Europe, North America and New Zealand. Results per indicators are presented as in the articles without performing additional calculations. Out of 4171 initial search hits, 179 articles were analysed. Studies varied widely in indicators, research design, sample size and location and context. Quite some studies used small samples. No study analysed all aspects of sustainability simultaneously. Conventional systems had lower labour requirements per unit product, lower income risk per animal, higher production per animal per time unit, higher reproduction numbers, lower feed conversion ratio, lower land use, generally lower acidification and eutrophication potential per unit product, equal or better udder health for cows and equal or lower microbiological contamination. Organic systems had higher income per animal or full time employee, lower impact on biodiversity, lower eutrophication and acidification potential per unit land, equal or lower likelihood of antibiotic resistance in bacteria and higher beneficial fatty acid levels in cow milk. For most sustainability aspects, sometimes conventional and sometimes organic systems performed better, except for productivity, which was consistently higher in conventional systems. For many aspects and animal species, more data are needed to conclude on a difference between organic and conventional livestock production systems.  相似文献   

20.
Waller PJ 《International journal for parasitology》1999,29(1):155-64; discussion 183-4
Livestock production systems throughout the world are under severe and sustained pressures. These are diverse and multi-factorial, ranging from the need to redress the oversupply of livestock commodities from the protected industries of the industrialised world, meeting animal welfare expectations, attempts to ease animal-induced land degradation and pollution, and competition with alternative products. As a consequence, funding for research to the ruminant livestock industries has been contracting universally. This applies particularly to research on those diseases of grazing livestock that are not zoonotic, threats to trade, or major "killer" diseases. Gastrointestinal helminths fall outside these priorities. The last decade has witnessed a major contraction throughout the world in the number of research centres and staff involved in applied veterinary parasitology research. This coincides with a time when these livestock industries need the most help. Resistance to anthelmintic drugs amongst the major nematode parasites of sheep and goats has now reached alarming proportions throughout the world and threatens the future viability of continued small ruminant production in many countries. Anthelmintic resistance is also increasing in the important nematode parasites of cattle. Also, this time coincides with the apparent reduction in the discovery and development of entirely new anthelmintic products by the pharmaceutical industry. As a consequence, those remaining researchers and extension personnel who have the responsibility of providing support to the ruminant livestock industry, are showing innovation and lateral thinking in ways to combat the perennial problem of internal parasites in grazing livestock. There are a number of excellent examples of parasite-control schemes, which do not rely entirely on anthelmintic treatment. These are now being supplemented with some exciting novel approaches to dealing with particularly pressing parasite problems. Also there is a move towards the development of true integrated approaches in the control of nematode parasites of livestock, which employ several of these methods when appropriate. This proves that as far as worm control in livestock is concerned, the old adage "necessity is the mother of invention", holds true.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号