首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Before this study, the human norepinephrine transporter (hNET) was the only member of the biogenic amine neurotransmitter transporter family that had not been demonstrated to be a functional homo-oligomer. Here, using two forms of the transporter, I155C and hNET-myc, with distinct antigenicity and inhibitor sensitivity, we demonstrated that hNET exists as a homo-oligomer. hNET I155C is a functional mutant and is sensitive to inactivation by the sulfhydryl reagent [2-(trimethylammonium)ethyl]methanethiosulfonate, while hNET-myc is resistant to inactivation by this reagent. Coimmunoprecipitation of these two forms demonstrated that a physical interaction exists between norepinephrine transporter monomers. Further characterization of this physical interaction has revealed that the activity of norepinephrine transporters depends on interactions between monomers. Because norepinephrine transporters and serotonin transporters are the only two members of the neurotransmitter transporter family endogenously expressed in the cell membrane of the same cells, placental syncytiotrophoblasts, we tested the ability of norepinephrine transporters and serotonin transporters to associate and function in a hetero-oligomeric form. Similarly, coexpression of hNET-myc with serotonin transporter-FLAG showed a physical interaction in coimmunoprecipitation assays. However, coexpression of serotonin and norepinephrine transporters did not sensitize norepinephrine transporter activity to inhibition by citalopram, a selective serotonin transport inhibitor. Thus, the norepinephrine transporter-serotonin transporter physical association did not produce functional consequences. Based on this, we propose that the transporters for biogenic amine neurotransmitters interact functionally in homo- but not hetero-oligomeric forms.  相似文献   

2.
The human dopamine transporter (hDAT) contains an endogenous high affinity Zn2+ binding site with three coordinating residues on its extracellular face (His193, His375, and Glu396). Upon binding to this site, Zn2+ causes inhibition of [3H]1-methyl-4-phenylpyridinium ([3H]MPP+) uptake. We investigated the effect of Zn2+ on outward transport by superfusing hDAT-expressing HEK-293 cells preloaded with [3H]MPP+. Although Zn2+ inhibited uptake, Zn2+ facilitated [3H]MPP+ release induced by amphetamine, MPP+, or K+-induced depolarization specifically at hDAT but not at the human serotonin and the norepinephrine transporter (hNET). Mutation of the Zn2+ coordinating residue His(193) to Lys (the corresponding residue in hNET) eliminated the effect of Zn2+ on efflux. Conversely, the reciprocal mutation (K189H) conferred Zn2+ sensitivity to hNET. The intracellular [3H]MPP+ concentration was varied to generate saturation isotherms; these showed that Zn2+ increased V(max) for efflux (rather than K(M-Efflux-intracellular)). Thus, blockage of inward transport by Zn2+ is not due to a simple inhibition of the transporter turnover rate. The observations provide evidence against the model of facilitated exchange-diffusion and support the concept that inward and outward transport represent discrete operational modes of the transporter. In addition, they indicate a physiological role of Zn2+, because Zn2+ also facilitated transport reversal of DAT in rat striatal slices.  相似文献   

3.
DeFelice LJ  Adams SV  Ypey DL 《Bio Systems》2001,62(1-3):57-66
Norepinephrine transporters (NETs) use the Na gradient to remove norepinephrine (NE) from the synaptic cleft of adrenergic neurons following NE release from the presynaptic terminal. By coupling NE to the inwardly directed Na gradient, it is possible to concentrate NE inside cells. This mechanism, which is referred to as co-transport or secondary transport (L?uger, 1991, Electrogenic Ion Pumps, Sinauer Associates) is apparently universal: Na coupled transport applies to serotonin transporters (SERTs), dopamine transporters (DATs), glutamate transporters, and many others, including transporters for osmolites, metabolites and substrates such as sugar. Recently we have shown that NETs and SERTs transport norepinephrine or serotonin as if Na and the transmitter permeated through an ion channel together 'Galli et al., 1998, PNAS 95, 13260-13265; Petersen and DeFelice, 1999, Nature Neurosci. 2, 605-610'. These data are paradoxical because it has been difficult to envisage how NE, for example, would couple to Na if these ions move passively through an open pore. An 'alternating access' model is usually evoked to explain coupling: in such models NE and Na bind to NET, which then undergoes a conformational change to release NE and Na on the inside. The empty transporter then turns outward to complete the cycle. Alternating-access models never afford access to an open channel. Rather, substrates and co-transported ions are occluded in the transporter and carried across the membrane. The coupling mechanism we propose is fundamentally different than the coupling mechanism evoked in the alternating access model. To explain coupling in co-transporters, we use a mechanism first evoked by 'Hodgkin and Keynes (1955) J. Physiol. 128, 61-88' to explain ion interactions in K-selective channels. In the Hodgkin and Keynes model, K ions move single-file through a long narrow pore. Their model accounted for the inward/outward flux ratio if they assumed that two K ions queue within the pore. We evoke a similar model for the co-transport of transmitter and Na. In our case, however, coupling occurs not only between like ions but also between unlike ions (i.e. the transmitter and Na ). We made a replica of the Hodgkin and Keynes mechanical model to test our ideas, and we extended the model with computer simulations using Monte Carlo methods. We also developed an analytic formula for Na coupled co-transport that is analogous to the single-file Ussing equation for channels. The model shows that stochastic diffusion through a long narrow pore can explain coupled transport. The length of the pore amplifies the Na gradient that drives co-transport.  相似文献   

4.
The molecular basis for substrate translocation in the Na+/Cl--dependent neurotransmitter transporters remains elusive. Here we report novel insight into the translocation mechanism by delineation of an endogenous Zn2+-binding site in the human dopamine transporter (hDAT). In micromolar concentrations, Zn2+ was found to act as a potent, non-competitive blocker of dopamine uptake in COS cells expressing hDAT. In contrast, binding of the cocaine analogue, WIN 35,428, was markedly potentiated by Zn2+. Surprisingly, these effects were not observed in the closely related human norepinephrine transporter (hNET). A single non-conserved histidine residue (His193) in the large second extracellular loop (ECL2) of hDAT was discovered to be responsible for this difference. Thus, Zn2+ modulation could be conveyed to hNET by mutational transfer of only this residue. His375 conserved between hDAT and hNET, present in the fourth extracellular loop (ECL4) at the top of transmembrane segment VII, was identified as a second major coordinate for Zn2+ binding. These data provide evidence for spatial proximity between His193 and His375 in hDAT, representing the first experimentally demonstrated proximity relationship in an Na+/Cl--dependent transporter. Since Zn2+ did not prevent dopamine binding, but inhibited dopamine translocation, our data suggest that by constraining movements of ECL2 and ECL4, Zn2+ can restrict a conformational change critical for the transport process.  相似文献   

5.
The serotonin transporter (SERT) and the norepinephrine transporter (NET) are sodium-dependent neurotransmitter transporters responsible for reuptake of released serotonin and norepinephrine, respectively, into nerve terminals in the brain. A wide range of inhibitors of SERT and NET are used as treatment of depression and anxiety disorders or as psychostimulant drugs of abuse. Despite their clinical importance, the molecular mechanisms by which various types of antidepressant drugs bind and inhibit SERT and NET are still elusive for the majority of the inhibitors, including the molecular basis for SERT/NET selectivity. Mutational analyses have suggested that a central substrate binding site (denoted the S1 pocket) also harbors an inhibitor binding site. In this study, we determine the effect of mutating six key S1 residues in human SERT (hSERT) and NET (hNET) on the potency of 15 prototypical SERT/NET inhibitors belonging to different drug classes. Analysis of the resulting drug sensitivity profiles provides novel information on drug binding modes in hSERT and hNET and identifies specific S1 residues as important molecular determinants for inhibitor potency and hSERT/hNET selectivity.  相似文献   

6.
Monoamine transporters, the molecular targets for drugs of abuse and antidepressants, clear norepinephrine, dopamine, or serotonin from the synaptic cleft. Neurotransmitters, amphetamines, and neurotoxins bind before being transported, whereas cocaine and antidepressants bind to block transport. Although binding is crucial to transport, few assays separate binding from transport, nor do they provide adequate temporal or spatial resolution to describe real-time kinetics or localize sites of active uptake. Here, we report a new method that distinguishes substrate binding from substrate transport using single-cell, space-resolved, real-time fluorescence microscopy. For these studies we use a fluorescent analogue of 1-methyl-4-phenylpyridinium, a neurotoxic metabolite and known substrate of monoamine transporters, to assess binding and transport with 50-ms, sub-micron resolution. We show that ASP(+) (4-(4-(dimethylamino)styrl)-N-methylpyridinium) has micromolar potency for the human norepinephrine transporter, that ASP(+) accumulation is Na(+)-, Cl(-)-, cocaine-, and desipramine-sensitive and temperature-dependent, and that ASP(+) competes with norepinephrine uptake. Using this method we demonstrate that norepinephrine transporters are efficient buffers for substrate, with binding rates exceeding transport rates by 100-fold. Furthermore, substrates bind deep within the transporter, isolated from both the bath and the lipid bilayer. Although transport per se depends on Na(+) and Cl(-), binding is independent of Na(+) and actually increases in low Cl(-). We further demonstrate that ASP(+) interacts with transporters not only in transfected cells but in cultured neurons. ASP(+) is also a substrate for dopamine and serotonin transporters and therefore represents a powerful new technique for studying the biophysical properties of monoamine transporters, an approach also amenable to high throughput assays for drug discovery.  相似文献   

7.
The NET [noradrenaline (norepinephrine) transporter], an Na+/Cl--dependent neurotransmitter transporter, has several isoforms produced by alternative splicing in the C-terminal region, each differing in expression and function. We characterized the two major isoforms of human NET, hNET1, which has seven C-terminal amino acids encoded by exon 15, and hNET2, which has 18 amino acids encoded by exon 16, by site-directed mutagenesis in combination with NE (noradrenaline) uptake assays and cell surface biotinylation. Mutants lacking one third or more of the 24 amino acids encoded by exon 14 exhibited neither cell surface expression nor NE uptake activity, with the exception of the mutant lacking the last eight amino acids of hNET2, whose expression and uptake resembled that of the WT (wild-type). A triple alanine replacement of a candidate motif (ENE) in this region mimicked the influences of the truncation. Deletion of either the last three or another four amino acids of the C-terminus encoded by exon 15 in hNET1 reduced the cell surface expression and NE uptake, whereas deletion of all seven residues reduced the transport activity but did not affect the cell surface expression. Replacement of RRR, an endoplasmic reticulum retention motif, by alanine residues in the C-terminus of hNET2 resulted in a similar expression and function compared with the WT, while partly recovering the effects of the mutation of ENE. These findings suggest that in addition to the function of the C-terminus, the common proximal region encoded by exon 14 regulates the functional expression of splice variants, such as hNET1 and hNET2.  相似文献   

8.
We assessed the functional expression of the norepinephrine (NE) transporter (NET) in cultured rat cortical astrocytes. Specific [3H]NE uptake increased in a time-dependent manner, and this uptake involves temperature- and Na+-sensitive mechanisms. The Na+-dependent [3H]NE uptake was saturable, and the Km for the process was 539.3 +/- 55.4 nm and the Vmax was 1.41 +/- 0.03 pmol/mg protein/min. Ouabain, a Na+-K+ ATPase inhibitor, significantly inhibited Na+-dependent [3H]NE uptake. The selective NE uptake inhibitor nisoxetine, the tricyclic antidepressants desipramine and imipramine, and the serotonin and NE reuptake inhibitor (SNRI) milnacipran very potently inhibited Na+-dependent [3H]NE uptake. On the other hand, GBR-12935 (a selective dopamine uptake inhibitor), fluvoxamine (a selective serotonin reuptake inhibitor), venlafaxine (a SNRI) and cocaine had weaker inhibitory activities. RT-PCR demonstrated that astrocytes expressed mRNA for the cloned NET protein, which was characterized as neuronal NET. Western blots indicated that anti-NET polyclonal antibody recognized a major band of 80 kDa in astrocytes. These data indicate that the neuronal NET is functionally expressed in cultured rat astrocytes. Glial cells may exert significant control of noradrenergic activity by inactivating NE that escapes neuronal re-uptake in sites distant from terminals, and are thus cellular targets for antidepressant drugs that inhibit NE uptake.  相似文献   

9.
The interactions of chi-conopeptide MrIA with the human norepinephrine transporter (hNET) were investigated by determining the effects of hNET point mutations on the inhibitory potency of MrIA. The mutants were produced by site-directed mutagenesis and expressed in COS-7 cells. The potency of MrIA was greater for inhibition of uptake by hNET of [3H]norepinephrine (Ki 1.89 microM) than [3H]dopamine (Ki 4.33 microM), and the human dopamine transporter and serotonin transporter were not inhibited by MrIA (to 7 microM). Of 18 mutations where hNET amino acid residues were exchanged with those of the human dopamine transporter, MrIA had increased potency for inhibition of [3H]norepinephrine uptake for three mutations (in predicted extracellular loops 3 and 4 and transmembrane domain (TMD) 8) and decreased potency for one mutation (in TMD6 and intracellular loop (IL) 3). Of the 12 additional mutations in TMDs 2, 4, 5, and 11 and IL1, three mutations (in TMD2 and IL1) had reduced MrIA inhibitory potency. All of the other mutations tested had no influence on MrIA potency. A comparison of the results with previous data for desipramine and cocaine inhibition of norepinephrine uptake by the mutant hNETs reveals that MrIA binding to hNET occurs at a site that is distinct from but overlaps with the binding sites for tricyclic antidepressants and cocaine.  相似文献   

10.
Three C-terminal variants of the human norepinephrine transporter (hNET) are known: the wild-type hNET in which exon 14 encodes the last seven amino acids and two variants with either three or 18 amino acids encoded by an alternatively spliced exon 15. In transfected HEK293 cells we compared by means of [(3)H]norepinephrine ([(3)H]NE) uptake and [(3)H]nisoxetine ([(3)H]NIS) binding the functional properties of the wild-type hNET with those of the more abundant long splice variant containing exon 15 (hNET-Ex15L) and of two artificial hNET mutants lacking either the last three (hNET-Ex14-4) or all seven (hNET-Ex14-0) C-terminal amino acids of exon 14. No differences among the NET isoforms were observed concerning the K(m) for uptake of NE and the K(D) for binding of NIS. However, compared with the wild-type hNET, the three isoforms (hNET-Ex15L, hNET-Ex14-4 and hNET-Ex14-0) showed a pronounced decrease in V(max) of [(3)H]NE uptake and B(max) of [(3)H]NIS binding which correlated with strongly reduced surface expression of the transporter isoforms. The decrease in surface expression of the hNET isoforms is probably a consequence of the lack of the three amino acids leucine, alanine and isoleucine at the C-terminal end which may represent a motif facilitating cell surface expression of the hNET. Expression of hNET-Ex15L exerted a dominant negative effect on plasma membrane expression of the wild-type hNET and thus may represent a novel mechanism for regulation of noradrenergic neurotransmission.  相似文献   

11.
The transport of ammonium/ammonia is a key process for the acquisition and metabolism of nitrogen. Ammonium transport is mediated by the AMT/MEP/Rh family of membrane proteins which are found in microorganisms, plants, and animals, including the Rhesus blood group antigens in humans. Although ammonium transporters from all kingdoms have been functionally expressed and partially characterized, the transport mechanism, as well as the identity of the true substrate (NH(4+) or NH(3)) remains unclear. Here we describe the functional expression and characterization of LeAMT1;1, a root hair ammonium transporter from tomato (Lycopersicon esculentum) in Xenopus oocytes. Micromolar concentrations of external ammonium were found to induce concentration- and voltage-dependent inward currents in oocytes injected with LeAMT1;1 cRNA, but not in water-injected control oocytes. The NH(4+)-induced currents were more than 3-fold larger than methylammonium currents and were not subject to inhibition by Na(+) or K(+). The voltage dependence of the affinity of LeAMT1;1 toward its substrate strongly suggests that charged NH(4+), rather than NH(3), is the true transport substrate. Furthermore, ammonium transport was independent of the external proton concentration between pH 5.5 and pH 8.5. LeAMT1;1 is concluded to mediate potential-driven NH(4+) uptake and retrieval depending on root membrane potential and NH(4+) concentration gradient.  相似文献   

12.
Recently, we have demonstrated the phosphorylation- and lipid raft-mediated internalization of the native norepinephrine transporter (NET) following protein kinase C (PKC) activation (Jayanthi, L. D., Samuvel, D. J., and Ramamoorthy, S. (2004) J. Biol. Chem. 279, 19315-19326). Here we tested an hypothesis that PKC-mediated phosphorylation of NET is required for transporter internalization. Phosphoamino acid analysis of 32P-labeled native NETs from rat placental trophoblasts and heterologously expressed wild type human NET (WT-hNET) from human placental trophoblast cells revealed that the phorbol ester (beta-PMA)-induced phosphorylation of NET occurs on serine and threonine residues. Beta-PMA treatment inhibited NE transport, reduced plasma membrane hNET levels, and stimulated hNET phosphorylation in human placental trophoblast cells expressing the WT-hNET. Substance P-mediated activation of the G alpha(q)-coupled human neurokinin 1 (hNK-1) receptor coexpressed with the WT-hNET produced effects similar to beta-PMA via PKC stimulation. In striking contrast, an hNET double mutant harboring T258A and S259A failed to show NE uptake inhibition and plasma membrane redistribution by beta-PMA or SP. Most interestingly, the plasma membrane insertion of the WT-hNET and hNET double mutant were not affected by beta-PMA. Although the WT-hNET showed increased endocytosis and redistribution from caveolin-rich plasma membrane domains following beta-PMA treatment, the hNET double mutant was completely resistant to these PKC-mediated effects. In addition, the PKC-induced phosphorylation of hNET double mutant was significantly reduced. In the absence of T258A and S259A mutations, alanine substitution of all other potential phosphosites within the hNET did not block PKC-induced phosphorylation and down-regulation. These results suggest that Thr-258 and Ser-259 serve as a PKC-specific phospho-acceptor site and that phosphorylation of this motif is linked to PKC-induced NET internalization.  相似文献   

13.
Glutamate and monoamine transporters: new visions of form and function   总被引:4,自引:0,他引:4  
Neurotransmitters are rapidly removed from the extracellular space primarily through the actions of plasma membrane transporters. This uptake process is not only essential in the termination of neurotransmission but also serves to replenish intracellular levels of transmitter for further release. Neurotransmitter transporters couple the inward movement of substrate to the movement of Na(+) down a concentration gradient and, in addition to their transport function, some carriers also display channel-like activities. Five Na(+)/K(+)-dependent glutamate transporter subtypes belong to the solute carrier 1 (SLC1) family and a second family, SLC6, encompasses the Na(+)/Cl(-)-dependent transporters for dopamine, 5-hydroxytryptamine (serotonin), noradrenaline, GABA and glycine. Recent advances, including high-resolution structures from both families, are now providing new insights into the molecular determinants that contribute to substrate translocation and ion channel activities. Other influential studies have explored how cellular regulatory mechanisms modulate transporter function, and how the different functions of the carrier shape the patterns of neurotransmitter signaling. This review focuses on recent studies of glutamate and monoamine transporters as prototypes of the two carrier families.  相似文献   

14.
Monoamine transporters terminate synaptic neurotransmission and are molecular targets for antidepressants and psychostimulants. Fluorescent reporters can monitor real-time transport and are amenable for high-throughput screening. However, until now, their use has mostly been successful to study the catecholamine transporters but not the serotonin (5HT) transporter. Here, we use fluorescence microscopy, electrophysiology, pharmacology, and molecular modeling to compare fluorescent analogs of 1-methyl-4-phenylpyridinium (MPP(+)) as reporters for the human serotonin transporter (hSERT) in single cells. The fluorescent substrate 4-(4-(dimethylamino)phenyl)-1-methylpyridinium (APP(+)) exhibits superior fluorescence uptake in hSERT-expressing HEK293 cells than other MPP(+) analogs tested. APP(+) uptake is Na(+)- and Cl(-)-dependent, displaced by 5HT, and inhibited by fluoxetine, suggesting APP(+) specifically monitors hSERT activity. ASP(+), which was previously used to study catecholamine transporters, is 10 times less potent than APP(+) at inhibiting 5HT uptake and has minimal hSERT-mediated uptake. Furthermore, in hSERT-expressing oocytes voltage-clamped to -60 mV, APP(+) induced fluoxetine-sensitive hSERT-mediated inward currents, indicating APP(+) is a substrate, whereas ASP(+) induced hSERT-mediated outward currents and counteracted 5HT-induced hSERT currents, indicating ASP(+) possesses activity as an inhibitor. Extra-precise ligand receptor docking of APP(+) and ASP(+) in an hSERT homology model showed both ASP(+) and APP(+) docked favorably within the active region; accordingly, comparable concentrations are required to elicit their opposite electrophysiological responses. We conclude APP(+) is better suited than ASP(+) to study hSERT transport fluorometrically.  相似文献   

15.
Three metabolites of diethylpropion (1), (±)-2-ethylamino-1-phenyl-propan-1-one (2), (1R,2S)-(−)-N,N-diethylnorephedrine (3a) and (1S,2R)-(−)-N,N-diethylnorephedrine (3b) were synthesized. Their uptake and release effects with biogenic amine transporters were evaluated. A major finding of this study is that the in vivo activity of diethylpropion on biogenic amine transporters is most likely due to metabolite 2 as diethylpropion (1) and the metabolites 3a and 3b showed little or no effect in the assays studied. These studies also revealed that 2 acted as a substrate at the norepinephrine (IC50=99 nM) and serotonin transporters (IC50=2118 nM) and an uptake inhibitor at the dopamine transporter (IC50=1014 nM). The potent action of 2 at the NE transporter supports the hypothesis that amphetamine-type subjective effects may be mediated in part by brain norepinephrine.  相似文献   

16.
Na(+)- and Cl(-)-dependent uptake of neurotransmitters via transporters of the SLC6 family, including the human serotonin transporter (SLC6A4), is critical for efficient synaptic transmission. Although residues in the human serotonin transporter involved in direct Cl(-) coordination of human serotonin transport have been identified, the role of Cl(-) in the transport mechanism remains unclear. Through a combination of mutagenesis, chemical modification, substrate and charge flux measurements, and molecular modeling studies, we reveal an unexpected role for the highly conserved transmembrane segment 1 residue Asn-101 in coupling Cl(-) binding to concentrative neurotransmitter uptake.  相似文献   

17.
We have investigated the conduction states of human serotonin transporter (hSERT) using the voltage clamp, cut-open frog oocyte method under different internal and external ionic conditions. Our data indicate discrepancies in the alternating access model of cotransport, which cannot consistently explain substrate transport and electrophysiological data. We are able simultaneously to isolate distinct external and internal binding sites for substrate, which exert different effects upon currents conducted by hSERT, in contradiction to the alternating access model. External binding sites of coupled Na ions are likewise simultaneously accessible from the internal and external face. Although Na and Cl are putatively cotransported, they have opposite effects on the internal face of the transporter. Finally, the internal K ion does not compete with internal 5-hydroxytryptamine for empty transporters. These data can be explained more readily in the language of ion channels, rather than carrier models distinguished by alternating access mechanisms: in a channel model of coupled transport, the currents represent different states of the same permeation path through hSERT and coupling occurs in a common pore.  相似文献   

18.
The human norepinephrine (NE) transporter (hNET) attenuates neuronal signaling by rapid NE clearance from the synaptic cleft, and NET is a target for cocaine and amphetamines as well as therapeutics for depression, obsessive-compulsive disorder, and post-traumatic stress disorder. In spite of its central importance in the nervous system, little is known about how NET substrates, such as NE, 1-methyl-4-tetrahydropyridinium (MPP+), or amphetamine, interact with NET at the molecular level. Nor do we understand the mechanisms behind the transport rate. Previously we introduced a fluorescent substrate similar to MPP+, which allowed separate and simultaneous binding and transport measurement (Schwartz, J. W., Blakely, R. D., and DeFelice, L. J. (2003) J. Biol. Chem. 278, 9768-9777). Here we use this substrate, 4-(4-(dimethylamino)styrl)-N-methyl-pyridinium (ASP+), in combination with green fluorescent protein-tagged hNETs to measure substrate-transporter stoichiometry and substrate binding kinetics. Calibrated confocal microscopy and fluorescence correlation spectroscopy reveal that hNETs, which are homomultimers, bind one substrate molecule per transporter subunit. Substrate residence at the transporter, obtained from rapid on-off kinetics revealed in fluorescence correlation spectroscopy, is 526 micros. Substrate residence obtained by infinite dilution is 1000 times slower. This novel examination of substrate-transporter kinetics indicates that a single ASP+ molecule binds and unbinds thousands of times before being transported or ultimately dissociated from hNET. Calibrated fluorescent images combined with mass spectroscopy give a transport rate of 0.06 ASP+/hNET-protein/s, thus 36,000 on-off binding events (and 36 actual departures) occur for one transport event. Therefore binding has a low probability of resulting in transport. We interpret these data to mean that inefficient binding could contribute to slow transport rates.  相似文献   

19.
Monoamine neurotransmitter transporters for norepinephrine (NE), dopamine and serotonin are important targets for antidepressants and analgesics. The conopeptide chi-MrIA is a noncompetitive and highly selective inhibitor of the NE transporter (NET) and is being developed as a novel intrathecal analgesic. We used site-directed mutagenesis to generate a suite of mutated transporters to identify two amino acids (Leu(469) and Glu(382)) that affected the affinity of chi-MrIA to inhibit [(3)H]NE uptake through human NET. Residues that increased the K(d) of a tricyclic antidepressant (nisoxetine) were also identified (Phe(207), Ser(225), His(296), Thr(381), and Asp(473)). Phe(207), Ser(225), His(296), and Thr(381) also affected the rate of NE transport without affecting NE K(m). In a new model of NET constructed from the bLeuT crystal structure, chi-MrIA-interacting residues were located at the mouth of the transporter near residues affecting the binding of small molecule inhibitors.  相似文献   

20.
The uptake of 3H-labelled 5-hydroxytryptamine (5-HT, serotonin) norepinephrine ([3H]NE), and 3,4-dihydroxyphenylethylamine ([ 3H]dopamine, [3H]DA) was studied in primary astrocyte cultures prepared from the cerebral cortex, corpus striatum, and hippocampal regions of neonatal rat brain. Na+-dependent uptake showed marked regional differences. For [3H]5-HT the magnitude of uptake was corpus striatum greater than or equal to cerebral cortex greater than hippocampus, whereas for [3H]NE the order was hippocampus greater than corpus striatum greater than cerebral cortex. For [3H]DA, only the hippocampal cultures showed significant Na+-dependent uptake. [3H]5-HT uptake was specifically inhibited by 10(-7) M fluoxetine whereas [3H]NE uptake was preferentially inhibited by 10(-7) M desipramine. These results may reflect regional brain specialization and/or different developmental patterns of high affinity uptake of serotonin and catecholamines by astrocytes in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号