首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
Mice were subjected to three types of acute stress (cold, forced swimming and tail hanging) in order to investigate the effects of stress on the motor activity circadian rhythm. This rhythm was studied using the cosinor method and spectral analysis. A statistically significant decrease in the amplitude and the power content of the circadian harmonic was found after stress application. These decreases could be due to a desynchronization of the circadian oscillators which drive the rhythm. The use of the power content of the circadian harmonic is proposed for the detection of the alterations due to stress.  相似文献   

8.
Loss-of-functional mutation in the DJ-1 gene causes a subset of familial Parkinson's disease. The mechanism underlying DJ-1-related selective vulnerability in the dopaminergic pathway is, however, not known. Dopamine is synthesized by two enzymes and then packed into synaptic vesicles by vesicular monoamine transporter 2 (VMAT2). In this study, we found that knockdown of DJ-1 expression reduced the levels of mRNA and protein of VMAT2, resulting in reduced VMAT2 activity. Co-immunoprecipitation and pull-down experiments revealed that DJ-1 directly bound to VMAT2, and DJ-1 was co-localized with VMAT2 in cells. Furthermore, ectopic expression of wild-type DJ-1, but not that of L166P, M26I and C106S mutants of DJ-1, increased mRNA and protein levels of VMAT2 and VMAT2 activity. Since VMAT2 and a portion of DJ-1 are localized in the synaptic membrane, these results suggest that DJ-1, but not pathogenically mutated DJ-1, stimulates VMAT2 activity in the synapse by transactivation of the VMAT gene and by direct binding to VMAT2 and that cysteine 106 is necessary for the stimulating activity of DJ-1 toward VMAT2.  相似文献   

9.
10.
11.
12.
13.
In the circannual pupation rhythm of the varied carpet beetle, Anthrenus verbasci, entrainment to annual cycles is achieved by phase resetting of the circannual oscillator in response to photoperiodic changes. In order to examine whether a circadian system is involved in expression of the periodic pattern and phase resetting of the circannual rhythm as photoperiodic responses, we exposed larvae to light-dark cycles with a short photophase followed by a variable scotophase (the Nanda-Hamner protocol). When the cycle length (T) was a multiple of 24 h, i.e., 24, 48, or 72 h, short-day effects were clearer than when T was far from a multiple of 24 h, i.e., 36 or 60 h. Exposure to light-dark cycles of T = 36 h had effects similar to exposure to long-day cycles of T = 24 h. The magnitude of phase shifts depended on the duration and the phase of exposure to the cycles of T = 36 or 60 h. It was therefore concluded that a circadian system is involved in photoperiodic time measurement for phase resetting of the circannual oscillator of A. verbasci.  相似文献   

14.
15.
16.
17.
Most plant oxylipins, a large class of diverse oxygenated polyunsaturated fatty acids and their derivatives, are produced through the lipoxygenase (LOX) pathway. Recent progress in dicots has highlighted the biological roles of oxylipins in plant defence responses to pathogens and pests. By contrast, the physiological function of LOXs and their metabolites in monocots is poorly understood. Two maize LOXs, ZmLOX10 and ZmLOX11 that share >90% amino acid sequence identity but are localized on different chromosomes, were cloned and characterized. Phylogenetic analysis revealed that ZmLOX10 and ZmLOX11 cluster together with well-characterized plastidic type 2 linoleate 13-LOXs from diverse plant species. Regio-specificity analysis of recombinant ZmLOX10 protein overexpressed in Escherichia coli proved it to be a linoleate 13-LOX with a pH optimum at approximately pH 8.0. Both predicted proteins contain putative transit peptides for chloroplast import. ZmLOX10 was preferentially expressed in leaves and was induced in response to wounding, cold stress, defence-related hormones jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA), and inoculation with an avirulent strain of Cochliobolus carbonum. These data suggested a role for this gene in maize adaptation to abiotic stresses and defence responses against pathogens and pests. ZmLOX11 was preferentially expressed in silks and was induced in leaves only by ABA, indicating its possible involvement in responses to osmotic stress. In leaves, mRNA accumulation of ZmLOX10 is strictly regulated by a circadian rhythm, with maximal expression coinciding temporally with the highest photosynthetic activity. This study reveals the evolutionary divergence of physiological roles for relatively recently duplicated genes. Possible physiological functions of these 13-LOXs are suggested.  相似文献   

18.
Mango, an important fruit crop of the tropical and subtropical regions shows alternate bearing in most varieties causing a financial loss to the farmer. Genetic reasons for this undesirable trait have not been studied so far. In our attempts to investigate the genetic reasons for alternate bearing we have initiated studies on genes associated with the induction, repression and regulation of flowering in mango. We have previously identified and characterized FLOWERING LOCUS T (FT) genes that induce flowering and two TERMINAL FLOWER1 (TFL1) genes that repress flowering. In this communication, we have explored the association of GI-FKF1-CDF1-CO module with the regulation of flowering in mango. The role of this module in regulating flowering has been well documented in photoperiod sensitive plants. We have characterized these genes and their expressions during flowering in Ratna variety as also their diurnal fluctuations and tissue specific expressions. The data taken together suggest that GI-FKF1-CDF1-CO module may also be employed by mango in regulating its flowering. Further, we suggest that the temperature dependent flowering in mango is probably associated with the presence of temperature sensitive elements present in the promoter region of one of the GIGANTEA genes that have been shown to be closely associated with floral induction.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-01053-8.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号