首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The heat tolerance of 8 temperate- and 1 subtropical-origin C3 species as well as 17 tropical-origin ones, including C3, C4, and CAM species, was estimated using both F0-T curve and the ratio of chlorophyll fluorescence parameters, prior to and after high temperature treatment. When leaves were heated at the rate of ca. 1 °C min−1 in darkness, the critical temperature (Tc) varied extensively among species. The Tc's of all 8 temperate-origin species ranged between 40–46 °C in winter (mean temperature 16–19 °C), and between 32–48 °C in summer (mean temperature ca. 30 °C). Those for 1 subtropical- and 12 tropical-origin C3 species ranged between 25–44 °C and 35–48 °C, and for 1 CAM and 4 C4 species were 41–47 and 45–46 °C, respectively. Acclimating three C3 herbaceous plants at high temperature (33/28 °C, day/night) for 10 d in winter caused their Tc's rising to nearly the values measured in summer. When leaves were exposed to 45 °C for 20 min and then kept at room temperature in darkness for 1 h, a significant correlation between RFv/m (the ratio of Fv/Fm before and after 45 °C treatment) and Tc was observed for all tested temperate-origin C3 species as well as tropical-origin CAM and C4 species. However, F0 and Fv/Fm of the tropical-origin C3 species were less sensitive to 45 °C treatment, regardless of a large variation of Tc; thus no significant correlation was found between their RFv/m and Tc. Thus Tc might not be a suitable index of heat tolerance for plants with wide range of environmental adaptation. Nevertheless, Tc's of tropical origin C3 species, varying and showing high plasticity to seasonal changes and temperature treatment, appeared suitable for the estimation of the degree of temperature acclimation in the same species.  相似文献   

2.
3.
Frequency-dependent selection and competition: empirical approaches   总被引:2,自引:0,他引:2  
When Darwin and Wallace first formulated the theory of evolution by natural selection, they were greatly influenced by the idea that populations tend to increase geometrically and rapidly outgrow the resources available to them. They argued that the ensuing competition among individuals would be a major agent of natural selection. Since their day, competition has become almost synonymous with the idea of natural selection or survival of the fittest. In this paper we examine the relation between competition and selection by using simple competition models, consider the interaction of density and frequency in determining competitive outcome, and review the literature on frequency-dependent competitive interactions among genotypes within populations.  相似文献   

4.
The use of numbers by systematists is not new. Measurements to describe individuals and formal taxa have been used since the beginnings of our science. But the advent of electronic computers now permits a much more accurate understanding of the phenotypic relationships within and among populations and taxa. Furthermore, estimates of cladistic relationship also are being attempted with the help of computers. Computers can increase our understanding of speciation, but this requires us to think intelligently about the meaning of their results.Presented at the symposium Speciation and the Species Concept during the XIIth International Botanical Congress, Leningrad, July 8, 1975.  相似文献   

5.
Genomics-based approaches to improve drought tolerance of crops   总被引:13,自引:0,他引:13  
The genetic bases of the molecular, cellular and developmental responses to drought involve many gene functions regulated by water availability. Genomics-based approaches provide access to agronomically desirable alleles present at quantitative trait loci (QTLs) that affect such responses, thus enabling us to improve the drought tolerance and yield of crops under water-limited conditions more effectively. Marker-assisted selection is already helping breeders improve drought-related traits. Analysis of sequence data and gene products should facilitate the identification and cloning of genes at target QTLs. Based on such premises, we envision a quick broadening of our understanding of the genetic and functional basis of drought tolerance. Novel opportunities will be generated for tailoring new genotypes "by design". Harnessing the full potential of genomics-assisted breeding will require a multidisciplinary approach and an integrated knowledge of the molecular and physiological processes influencing tolerance to drought.  相似文献   

6.
Transgenic approaches to increase dehydration-stress tolerance in plants   总被引:11,自引:0,他引:11  
Plant productivity is strongly influenced by abiotic stress conditions induced by drought, high salt and low temperature. Plants respond to these conditions with an array of biochemical and physiological adaptations, at least some of which are the result of changes in gene expression. Transgenic approaches offer a powerful means of gaining valuable information to better understand the mechanisms governing stress tolerance. They also offer new opportunities to improve dehydration-stress tolerance in crops by incorporating a gene involved in stress protection into species that lack them. In this review, we discuss progress made towards understanding the molecular elements involved in dehydration-stress responses that have been used to improve salt or drought tolerance following several transgenic approaches. Further, we discuss various strategies being used to produce transgenic plants with increased tolerance to dehydration stress. These include the overproduction of enzymes responsible for biosynthesis of osmolytes, late-embryogenesis-abundant proteins and detoxification enzymes. At this time, there is a need for a careful appraisal of the genes to be selected and promoter elements to be used, because constitutive expression of these genes may not be desirable in all applications. In this context, the advantages and limitations of transgenic approaches currently being used are discussed together with the importance of using stress-inducible promoters and the introduction of multiple genes for the improvement of dehydration-stress tolerance.  相似文献   

7.
8.
Subciliary versus subtarsal approaches to orbitozygomatic fractures   总被引:11,自引:0,他引:11  
LEARNING OBJECTIVES: After studying this article, the participant should be able to: 1. Describe the anatomic differences in the subciliary versus the subtarsal approach. 2. Discuss the difference between the "skin-only" and the "skin-muscle flap" variations of the subciliary approach. 3. Discuss the potential complications of both approaches. 4. Discuss the advantages of the subtarsal approach versus the subciliary approach. Many incisions have been described for approaches to orbitozygomatic fractures, the most frequently used being the subciliary incision with its modifications, the subtarsal incision, and the transconjunctival incision with or without lateral canthotomy. Each of these approaches has its advantages and disadvantages that may make it more or less appealing to use depending on the patient's age and severity of fracture. A balance must be struck between adequate exposure and acceptable cosmetic result. This article reviews the literature with particular respect to the transcutaneous approaches of subciliary versus subtarsal techniques in the treatment of orbitozygomatic fractures.  相似文献   

9.
Tissue culture responses to three levels of NaCl (0, 85mM and 170 mM) were evaluated in several Medicago species including: M. dzhawakhetica, M. marina, M. rhodopea, M. rupestris, M. sativa (alfalfa) and M. suffruticosa. The whole plant responses of the same genotypes were evaluated in half-strength Hoagland's solution containing 0, 51.5, and 103 mM NaCl. One or more genotypes of M. dzhawakhetica, M. rhodopea, M. rupestris, and M. sativa exhibited in vitro NaCl tolerance at 85 mM. In addition, one genotype each of M. dzhawakhetica, M. rhodopea, and M. sativa was tolerant of 170 mM NaCl. However, all of the genotypes that demonstrated NaCl tolerance in vitro were NaCl sensitive at the whole plant level. Conversely, M. marina the only species exhibiting whole plant NaCl tolerance, had the most NaCl sensitive genotypes at the in vitro level. Although an in vitro NaCl tolerance mechanism which confers whole plant NaCl tolerance was not observed, a potential NaCl tolerance germplasm source, M. marina, was identified.  相似文献   

10.
11.
The different abilities of plant species to use ephemeral or permanent water sources strongly affect physiological performance and species coexistence in water-limited ecosystems. In addition to withstanding drought, plants in coastal habitats often have to withstand highly saline soils, an additional ecological stress. Here we tested whether observed competitive abilities and C–water relations of two interacting shrub species from an arid coastal system were more related to differences in root architecture or salinity tolerance. We explored water sources of interacting Juniperus phoenicea Guss. and Pistacia lentiscus L. plants by conducting physiology measurements, including water relations, CO2 exchange, photochemical efficiency, sap osmolality, and water and C isotopes. We also conducted parallel soil analyses that included electrical conductivity, humidity, and water isotopes. During drought, Pistacia shrubs relied primarily on permanent salty groundwater, while isolated Juniperus plants took up the scarce and relatively fresh water stored in upper soil layers. As drought progressed further, the physiological activity of Juniperus plants nearly stopped while Pistacia plants were only slightly affected. Juniperus plants growing with Pistacia had stem-water isotopes that matched Pistacia, unlike values for isolated Juniperus plants. This result suggests that Pistacia shrubs supplied water to nearby Juniperus plants through hydraulic lift. This lifted water, however, did not appear to benefit Juniperus plants, as their physiological performance with co-occurring Pistacia plants was poor, including lower water potentials and rates of photosynthesis than isolated plants. Juniperus was more salt sensitive than Pistacia, which withstood salinity levels similar to that of groundwater. Overall, the different abilities of the two species to use salty water appear to drive the outcome of their interaction, resulting in asymmetric competition where Juniperus is negatively affected by Pistacia. Salt also seems to mediate the interaction between the two species, negating the potential positive effects of an additional water source via hydraulic lift.  相似文献   

12.
《Aquatic Botany》2007,86(1):14-24
The long-term sustainability of seagrasses in the subtropics and tropics depends on their ability to adapt to shifts in salinity regimes, particularly in light of present increases in coastal freshwater extractions and future climate change scenarios. Although there are major concerns world-wide on increased salinity in coastal estuaries, there is little quantitative information on the specific upper salinity tolerance of tropical and subtropical seagrass species. We examined seagrass hypersalinity tolerance under two scenarios: (1) when salinity is raised rapidly simulating a pulsed event, such as exposure to brine effluent, and (2) when salinity is raised slowly, characteristic of field conditions in shallow evaporative basins; the first in hydroponics (Experiments I and II) and the second in large mesocosms using intact sediment cores from the field (Experiment III). The three tropical seagrass species investigated in this study were highly tolerant of hypersaline conditions with a slow rate of salinity increase (1 psu d−1). None of the three species elicited total shoot mortality across the range of salinities examined (35–70 psu over 30 days exposures); representing in situ exposure ranges in Florida Bay, a shallow semi-enclosed subtropical lagoon with restricted circulation. Based on stress indicators, shoot decline, growth rates, and PAM florescence, all three species were able to tolerate salinities up to 55 psu, with Thalassia testudinum (60 psu) and Halodule wrightii (65 psu) eliciting a slightly higher salinity threshold than Ruppia maritima (55 psu). However, when salinity was pulsed, without a slow osmotic adjustment period, threshold levels dropped 20 psu to approximately 45 psu for T. testudinum. While we found these three seagrass species to be highly tolerant of high salinity, and conclude that hypersalinity probably does not solely cause seagrass dieoff events in Florida Bay, high salinity can modify carbon and O2 balance in the plant, potentially affecting the long-term health of the seagrass community.  相似文献   

13.
Summary Long-term management targets based on MSY, Fmax or F0.1 are inappropriate for small pelagic fish because of the possibility of stock collapse owing to a stock-recruit relationship at low biomasses. Better reference points such as Fmed and Fhigh that take account of stock and recruit data cannot be used in developing fishery situations because they are too demanding of data. A simple model was fitted to medium-term (about 10 year) periods in exploited small pelagic fisheries, relating change in stock biomass to exploitation rate. Data from 28 stocks and 11 species were used. The fitted model was used to estimate likelihood of stock decrease at different exploitation rates. The pelagic stocks included in the model appeared to be in equilibrium for an exploitation rate F/Z=0.4, which may be used as a guideline for the appropriate exploitation of pelagic stocks.  相似文献   

14.
Rice (Oryza sativa L.), the major staple food crop of the world, faces a severe threat from widespread drought. The development of drought-tolerant rice varieties is considered a feasible option to counteract drought stress. The screening of rice germplasm under drought and its characterization at the morphological, genetic, and molecular levels revealed the existence of genetic variation for drought tolerance within the rice gene pool. The improvements made in managed drought screening and selection for grain yield under drought have significantly contributed to progress in drought breeding programs. The availability of rice genome sequence information, genome-wide molecular markers, and low-cost genotyping platforms now makes it possible to routinely apply marker-assisted breeding approaches to improve grain yield under drought. Grain yield QTLs with a large and consistent effect under drought have been indentified and successfully pyramided in popular rice mega-varieties. Various rice functional genomics resources, databases, tools, and recent advances in “-omics” are facilitating the characterization of genes and pathways involved in drought tolerance, providing the basis for candidate gene identification and allele mining. The transgenic approach is successful in generating drought tolerance in rice under controlled conditions, but field-level testing is necessary. Genomics-assisted drought breeding approaches hold great promise, but a well-planned integration with standardized phenotyping is highly essential to exploit their full potential.  相似文献   

15.
Nanobiomechanics has recently been identified as an emerging field that can potentially make significant contributions in the study of human diseases. Research into biomechanics at the cellular and molecular levels of some human diseases has not only led to a better elucidation of the mechanisms behind disease progression, because diseased cells differ physically from healthy ones, but has also provided important knowledge in the fight against these diseases. This article highlights some of the cell and molecular biomechanics research carried out on human diseases such as malaria, sickle cell anemia and cancer and aims to provide further important insights into the pathophysiology of such diseases. It is hoped that this can lead to new methods of early detection, diagnosis and treatment.  相似文献   

16.
MALT1 paracaspase links signaling cascades emanating from adaptive or innate immune receptors to the canonical NF‐κB pathway. Now, Jaworski et al ( 2014 ) investigate the physiological role of MALT1 protease activity in mice. Besides the expected requirement of MALT1 activity for immune activation, the study unveils a novel function for MALT1 activity for the development of peripheral tolerance. Thus, MALT1 protease can act immunogenic or tolerogenic, and this interplay will be highly relevant for the clinical development of MALT1 inhibitors.  相似文献   

17.
18.
19.
Average maize yields have increased steadily over the years in the USA and yet the variations in harvestable yield have also markedly increased. Much of the increase in yield variability can be attributed to (1) varying environmental stress conditions; (2) improved nitrogen inputs and better weed control; and (3) continuing sensitivity of different maize lines to the variation in input supply, especially rainfall. Drought stress alone can account for a significant percentage of average yield losses. Yet despite variable environments, new commercially available maize hybrids continue to be produced each year with ever-increasing harvestable yield. Since many factors contribute to high plant performance under water deficits, efforts are being made to elucidate the nature of water-stress tolerance in an attempt to improve maize hybrids further. Such factors include better partitioning of biomass to the developing ear resulting in faster spikelet growth and improved reproductive success. An emphasis on faster spikelet growth rate may result in a reduction in the number of spikelets formed on the ear that facilitates overall seed set by reducing water and carbon constraints per spikelet. To understand the molecular mechanisms for drought tolerance in improved maize lines better, a variety of genomic tools are being used. Newer molecular markers and comprehensive gene expression profiling methods provide opportunities to direct the continued breeding of genotypes that provide stable grain yield under widely varied environmental conditions.  相似文献   

20.
Ueda H  Inoue M  Mizuno K 《Life sciences》2003,74(2-3):313-320
Morphine is now believed not to cause tolerance and dependence when it is appropriately used in clinic. However, in terminal cancer pain, patients' analgesic tolerance to morphine is developed due to the use of high doses of morphine for complete blockade of pain. At higher doses, morphine has more opportunity to show serious side effects, which worsens quality of life (QOL), and leads to the use of potent analgesic adjuvants to reduce the morphine dosage. Here we attempt to summarize recent studies of the molecular basis of morphine tolerance and dependence, and to discuss whether these mechanisms could provide new molecular targets as analgesic adjuvants. They include protein kinase C inhibitor, opioid agonist with low RAVE value, and antagonists of antiopioid receptors (GluRepsilon1 or nociceptin/OFQ receptor). In addition, we demonstrate new approaches to find further candidates of such molecular targets. These approaches include the visualization of neuronal networks in the downstream of opioid neurons by use of the WGA transgene technique and the single cell dissection technique to get new genes involved in plasticity during morphine tolerance and dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号