共查询到20条相似文献,搜索用时 13 毫秒
1.
Vegetation indices are widely employed to evaluate wetland ecological condition, and are expected to provide sensitive and specific detection of environmental change. Most studies evaluate the performance of condition assessment metrics in the context of the data used to calibrate them. Here we examined the temporal stability of the Florida Wetland Condition Index (FWCI) for vegetation of depressional forested wetlands by resampling sites in 2008 that were previously sampled to develop the FWCI in 2001. Our objective was to determine if FWCI, a composite of six vegetation-based metrics, provides a robust measure of condition given inter-annual variation in environmental conditions (i.e., rainfall) between sampling periods. To that end, we sampled 22 geographically isolated wetlands in north Florida that spanned a wide land use/land cover intensity gradient. Our results suggested the FWCI is robust. We observed no significant paired difference in FWCI across or within land use categories, and the relationship between FWCI in 2001 and 2008 was strong (r2 = 0.88, p < 0.001). This was despite surprisingly high composition change. Mean Jaccard community similarity within sites between years was 0.30, suggesting that most of the herbaceous taxa were replaced, possibly because of different antecedent rainfall conditions or sampling during different phenological periods; both are contingencies to which condition indices must be robust. We did observe some evidence of convergence toward the mean in 2008, with the fitted slope relating 2001 and 2008 FWCI scores significantly below one (0.63, 95% CI = 0.53–0.73). The most variable FWCI component metric was the proportional representation of obligate wetland taxa, suggesting that systematic changes may have been induced by different hydrologic conditions prior to sampling; notably, however, FWCI computed without this component still exhibited a slope significantly less than 1 (0.72, 95% CI = 0.61–0.88). Moreover, there was evidence that species lost from reference sites (higher condition) were replaced by taxa of lower floristic quality, while species lost from agricultural sites (consistently the lowest condition land use category) were replaced by species of higher quality. A significant positive association between FWCI and the ratio of coefficients of conservatism (CC) of species lost to those gained suggests some overfitting in FWCI development. However, despite modest evidence of overfitting, FWCI provides temporally consistent estimates of wetland condition, even under conditions of substantial taxonomic turnover. 相似文献
2.
闽江河口潮汐湿地二氧化碳和甲烷排放化学计量比 总被引:3,自引:0,他引:3
为了阐明河口潮汐湿地碳源温室气体排放的化学计量比特征,对闽江河口潮汐湿地二氧化碳和甲烷排放进行了测定与分析。结果表明:芦苇湿地和短叶茳芏湿地二氧化碳与甲烷排放均呈现正相关;涨潮前、涨落潮过程和落潮后芦苇湿地和短叶茳芏湿地CO2∶CH4月平均值分别为55.4和185.0,96.3和305.5,68.7和648.6,3个过程芦苇湿地和短叶茳芏湿地CO2∶CH4差异均不显著(P>0.05),2种植物湿地CO2∶CH4对潮汐的响应并不一致,但均在涨潮前表现为最低;涨潮前、涨落潮过程和落潮后均表现为芦苇湿地CO2∶CH4低于短叶茳芏湿地(P<0.05);河口潮汐湿地CO2∶CH4为空间变异性>时间变异性,潮汐、植物和温度均对CO2∶CH4的变化具有一定的调节作用。 相似文献
3.
Chuan Tong Wei-Qi Wang Jia-Fang Huang Vincent Gauci Lin-Hai Zhang Cong-Sheng Zeng 《Biogeochemistry》2012,111(1-3):677-693
Methane (CH4) is an important greenhouse gas whose emission from the largest source, wetlands is controlled by a number of environmental variables amongst which temperature, water-table, the availability of substrates and the CH4 transport properties of plants are most prominent and well characterised. Coastal wetland ecosystems are vulnerable to invasion by alien plant species which can make a significant local contribution to altering their species composition. However the effect of these changes in species composition on CH4 flux is rarely examined and so is poorly understood. Spartina alterniflora, a perennial grass native to North America, has spread rapidly along the south-east coast of China since its introduction in 1979. From 2002, this rapid invasion has extended to the tidal marshes of the Min River estuary, an area that, prior to invasion was dominated by the native plant Cyperus malaccensis. Here, we compare CH4 flux from the exotic invasive plant S. alterniflora with measurements from the aggressive native species Phragmites australis and the native species C. malaccensis following 3-years of monitoring. CH4 emissions were measured over entire tidal cycles. Soil CH4 production potentials were estimated for stands of each of above plants both in situ and in laboratory incubations. Mean annual CH4 fluxes from S. alterniflora, P. australis and C. malaccensis dominated stands over the 3 years were 95.7 (±18.7), 38.9 (±3.26) and 10.9 (±5.26) g m?2 year?1, respectively. Our results demonstrate that recent invasion of the exotic species S. alterniflora and the increasing presence of the native plant P. australis has significantly increased CH4 emission from marshes that were previously dominated by the native species C. malaccensis. We also conclude that higher above ground biomass, higher CH4 production and more effective plant CH4 transport of S. alterniflora collectively contribute to its higher CH4 emission in the Min River estuary. 相似文献
4.
Coastal wetlands are considered to be amongst the most productive ecosystems and can provide invaluable ecological services. However, coastal wetlands are listed amongst the most threatened ecosystems suffering from anthropogenic activities. The loss or degradation of coastal wetlands has drawn a high level of attention to wetland restoration. Improvement of the structure and function of degraded, damaged and destroyed wetlands may be achieved through ecological restoration. Large numbers of restoration projects have been conducted worldwide based on different restoration goals and different methods. It is undoubtedly important to evaluate whether coastal wetland restoration is successful. However, coastal wetland restoration assessment has become challenging because of current disagreement on definitions and concepts of restoration evaluation. We reviewed the methodology of coastal wetland restoration and criteria for success evaluation, and then summarized the issues for current wetland restoration and success evaluation based on literature review. Moreover, we used an estuarine wetland affected by urbanization as a sample to demonstrate how to establish a success indicator system for guiding wetland restoration and evaluating the success of wetland restoration. 相似文献
5.
《Ecological Indicators》2007,7(3):521-540
Benthic, epiphytic, and phytoplanktonic diatoms, as well as soil and water physical–chemical parameters, were sampled from 70 small (average 0.86 ha) isolated depressional herbaceous wetlands located along a gradient of human disturbance in peninsular Florida to (1) compare diatom assemblage structure between algal types; (2) develop biological indicators of wetland condition; (3) examine synecological relationships between diatom structure and environmental variables, with the ultimate goal of developing an index of biological integrity using a single assemblage. Collected diatom samples were enumerated to 250 valves and identified to species or subspecies. An assessment of wetland condition was made using a landscape-scale human disturbance score (Landscape Development Intensity index, LDI), calculated for each site using land use maps and GIS.Assemblages from both impaired and reference sites were compared using blocked multi-response permutation procedures, the percent similarity index, and visually examined using non-metric multidimensional scaling (NMDS). No ecologically significant compositional differences were found within sites. Mantel's test (Mantel's r = 0.29, p < 0.0001) and NMDS (stress: 14.52, variance: 78.5%) identified epiphytic diatoms as the most responsive to human disturbance. Strong significant correlations (|rs| > 0.50, p < 0.05) were found between epiphytic NMDS site scores and soil pH, specific conductivity, water total phosphorous, and LDI, while soil pH, water color, soil TP, and turbidity were also significantly correlated (p < 0.05).Metrics to assess wetland condition were developed using epiphytic abundance data. Epiphytic taxa sensitive or tolerant to human landscape modification were identified using Indicator Species Analysis, and autecological indices relating diatom sensitivity to nutrients, pH, dissolved oxygen levels, saprobity, salinity, and trophic status were calculated. Fourteen final metrics were identified, scored on an ordinal scale, and combined into the Diatom Index of Wetland Condition (DIWC). The DIWC was highly correlated with the disturbance score (Spearman's rs = −0.71, p < 0.0001), although the results need to be validated. 相似文献
6.
Poulakis Gregg R. Shenker Jonathan M. Scott Taylor D. 《Wetlands Ecology and Management》2002,10(1):51-69
Most of the wetlands located along the Indian River Lagoon (IRL) ineast-central Florida (USA) have been impounded since the 1950's and1960's to reduce mosquito reproduction. Impounded marsh (i.e.,impoundment) dikes physically separate the wetlands from the estuary toallow artificial flooding of the impoundments during the mosquito breedingperiod (May to October). Presently, Rotational ImpoundmentManagement (RIM) is the preferred impoundment management techniquein the IRL. Impoundments maintained under RIM have culverts installedthrough the dikes which are kept closed during the mosquito breedingseason (to control mosquitos) and are allowed to remain open for theremainder of the year (to allow tidal flow). A 24.3 ha impoundment8 km north of Sebastian Inlet that had been isolated from the IRL for over39 years was studied for 12 months to determine habitat use by fishes aftertidal reconnection and the implementation of RIM. Fish sampling wasconducted with a seine in the perimeter ditch and with clover and minnowtraps in the upper marsh and tidal creek areas of the impoundment. Waterlevel, impoundment bottom topography, and the seasonal nursery functionof the impoundment were factors that contributed to observed patterns offish habitat use during the study. Within the first 15 weeks of perimeterditch sampling, an increase from 9 to 40 species was observed. Transientspecies used the perimeter ditch almost exclusively and entered theimpoundment primarily during the spring open period. Juvenile Pogonias cromis (Linnaeus), Elops saurus Linnaeus, Centropomusundecimalis (Bloch), and Megalops atlanticus Valenciennes were themost abundant recreationally important species, respectively. Habitat useby the most abundant resident species (Gambusia holbrooki Girard,Poecilia latipinna (Lesueur), Cyprinodon variegatus Lacepède, andFundulus confluentus Goode & Bean) was influenced primarily bywater level fluctuations. Resident species used the upper marsh and tidalcreek habitats during summer flooded periods and the cyprinodontids leftthe interior surface of the impoundment last as water levels decreased. Thisstudy is the first to document the recovery of fish populations in areconnected impoundment north of Sebastian Inlet using both active andpassive sampling techniques. 相似文献
7.
At the local scale, plant species distribution is determined primarily by the environmental characteristics of a site. In a wetland, water chemistry and hydroperiod are two of the most important of these environmental characteristics. Both are functions of water source. In central Pennsylvania, groundwater input tends to be continuous, while surface water may be permanent or seasonal. The chemistry of groundwater and surface water differs since groundwater is influenced by the substrate through which it flows. Because of these differences, and because of their effects on plant species distribution, it is possible to use vegetation as an indicator of the dominant water source of a site. Plots within 28 wetlands in central Pennsylvania were sampled, and the plots were classified by water source. The three hydrologic categories were groundwater, seasonal surface water, and permanent surface water. The core of the study was the analysis of half of the plots to identify species that were associated with a particular water source. Several groups of indicator species were identified. Some species, including Nyssa sylvatica, were strongly associated with the presence of groundwater. Others, such as Symplocarpus foetidus, were strongly associated with the presence of seasonal surface water. Several aquatic species were associated with permanent surface water. The remainder of the plots were used to test the predictive ability of the indicator species identified. The vegetation of a wetland plot predicted its hydrologic category with 72% accuracy. The identification of more indicator species could lead to the development of a useful tool for wetland research and management, since monitoring hydrology is often both expensive and time-consuming. 相似文献
8.
Bin Zhao Yaner Yan Haiqiang Guo Meimei He Yongjian Gu Bo Li 《Ecological Indicators》2009,9(2):346-356
Frequent and continuous time series is required for the detection of plant phenology and vegetation succession. The launch of novel remote sensor MODIS (moderate resolution imaging spectroradiometer) provided us with an opportunity to make a new trial of studying the rapid vegetation succession in estuarine wetlands. In this study, the spatiotemporal variations of vegetation cover and tidal flat elevation along a transect (covering 6 pixels of MODIS) of an estuarine wetland at Dongtan, Chongming Island, in Yangtze River estuary, China were investigated to assess its rapid vegetation succession and physical conditions. By combining the field data collected, the time series of MODIS-based VIs (vegetation indices), including NDVI (normalized difference vegetation index), EVI (enhanced vegetation index) and MSAVI (modified soil adjusted vegetation index), and a water index, LSWI (land surface water index) were utilized to characterize the rapid vegetation succession between 2001 and 2006. We found that NDVI, EVI and MSAVI exhibited significant spatial and temporal correlations with vegetation succession, while LSWI behaved in a positive manner with surface water and soil moisture along with the successional stages. In order to take the advantages of both VIs and water index, a composite index of VWR (vegetation water ratio) combining LSWI and EVI or MSAVI was proposed in this paper. This index facilitates the identification of vegetation succession by simply comparing the values of VWR at different stages, and therefore it could track vegetation succession and estimate community spread rate. Additionally, this study presented an attempt of using MODIS datasets to monitor the change of tidal flat elevation, which demonstrated a potential remote sensing application in geodesy of coastal and estuarine areas. 相似文献
9.
中国河口湿地研究现状及展望 总被引:20,自引:1,他引:20
河口湿地由于其发育和形成过程较为特殊,加上其丰富的动植物资源以及重要的经济地位,已成为我国湿地研究领域的一个新热点.本文在分析中国河口湿地分布与特征的基础上,从河口湿地生物多样性、河口湿地生态过程及动态变化、河口湿地的形成和发育机制、河口湿地景观格局及动态演变、河口湿地恢复与重建、河口湿地的人地关系、河口湿地与全球变化、河口湿地评价以及数字河口湿地建设等方面总结了我国河口湿地研究现状.尽管中国河口湿地研究的方向和成果已经比较丰富,但与国外相比,在技术和理念上还存在一定差距.结合国外河口湿地研究的最新动态,提出了中国河口湿地未来研究的4个重要方向:河口湿地的人地关系、河口湿地的恢复和重建、河口湿地与全球变化以及河口湿地综合信息系统建设. 相似文献
10.
湿地中的藻类生态学研究进展 总被引:6,自引:1,他引:6
从湿地中藻类的种群结构、藻类在湿地中的功能、湿地中的藻类生产力及其影响因素等方面综述了天然湿地中的藻类生态学研究进展.湿地植物区系主要有附泥藻类、附植藻类、后周丛藻类和浮游植物4种类型,其中常见的是附泥藻类的硅藻、绿藻和蓝藻.藻类最显著的作用是作为湿地食物网中的初级生产者,也作为湿地环境污染的生物指示物.影响藻类生产力的因素有水力学因素、营养、温度、光、大型植物及草食动物和其它动物.未来对藻类的研究应侧重于湿地藻类生物多样性、藻类生物量、生产力、种群组成的环境控制及其相互关系,以及藻类作为水环境及湿地污染程度指标的研究,“基因治藻”也将是未来研究的新方向. 相似文献
11.
Lili Wei David A. Lockington Seng-Chee Poh Massimo Gasparon Catherine E. Lovelock 《Oecologia》2013,172(2):485-494
Water availability is a key determinant of the zonation patterns in estuarine vegetation, but water availability and the use of different water sources over space and time are not well understood. We have determined the seasonal water use patterns of riparian vegetation over an estuarine ecotone. Our aim was to investigate how the water use patterns of estuarine vegetation respond to variations in the availability of tidal creek water and rain-derived freshwater. The levels of natural stable isotopes of oxygen and hydrogen were assessed in the stem of the mangrove Avicennia marina (tall and scrub growth forms), Casuarina glauca and Melaleuca quinquenervia that were distributed along transects from river/creek-front towards inland habitats. The isotopic composition of plant tissues and the potential water sources were assessed in both the wet season, when freshwater from rainfall is present, and the dry season, when mangrove trees are expected to be more dependent on tidal water, and when Casuarina and Melaleuca are expected to be dependent on groundwater. Our results indicate that rainwater during the wet season contributes significantly to estuarine vegetation, even to creek-side mangroves which are inundated by tidal creek water daily, and that estuarine vegetation depends primarily on freshwater throughout the year. In contrast, high intertidal scrub mangroves were found to use the greatest proportion of tidal creek water, supplemented by groundwater in the dry season. Contrary to prediction, inland trees C. glauca and M. quinquenervia were found also to rely predominantly on rainwater—even in the dry season. The results of this study reveal a high level of complexity in vegetation water use in estuarine settings. 相似文献
12.
Harold A. Kantrud Wesley E. Newton 《Journal of Aquatic Ecosystem Stress and Recovery (Formerly Journal of Aquatic Ecosystem Health)》1996,5(3):177-191
This study was part of an effort by the U.S. Environmental Protection Agency to quantitatively assess the environmental quality or health of wetland resources on regional and national scales. During a two-year pilot study, we tested selected indicators of wetland quality in the U.S. portion of the prairie pothole region (PPR). We assumed that the amount of cropland versus non-cropland (mostly grassland) in the plots containing these basins was a proxy for their quality. We then tested indicators by their ability to discriminate between wetlands at the extremes of that proxy. Amounts of standing dead vegetation were greater in zones of greater water permanence. Depth of litter was greater in zones of greater water permanence and in zones of basins in poor-quality watersheds. Amounts of unvegetated bottom were greater in basins in poor-quality watersheds; lesser amounts occurred in all wetlands during a wetter year. Greater amounts of open water occurred during a wetter year and in zones of greater water permanence. When unadjusted for areas (ha) of communities, plant taxon richness was higher in wet-meadow and shallow-marsh zones in good-quality watersheds than in similar zones in poor-quality watersheds. Wet-meadow zones in good-quality watersheds had greater numbers of native perennials than those in poor-quality watersheds. This relation held when we eliminated all communities in good-quality watersheds larger than the largest commnities in poor-quality watersheds from the data set. We conclude that although amounts of unvegetated bottom and plant taxon richness in wet-meadow zones were useful indicators of wetland quality during our study, the search for additional such indicators should continue. The value of these indicators may change with the notoriously unstable hydrological conditions in the PPR. Most valuable would be indicators that could be photographed or otherwise remotely sensed and would remain relatively stable under various hydrological conditions. An ideal set of indicators could detect the absence of stressors, as well as the presence of structures or functions, of known value to major groups of organisms. 相似文献
13.
Studies of wetlands in Australia, as in other countries, have taken a wide variety of approaches to defining, surveying and classifying these environments. Past and current approaches in Australia are reviewed for each of the States and Territories which provide the context for much of the natural resource investigation in the country. While there are obvious advantages of national, and perhaps international, agreement on definition and types of wetlands, a variety of approaches to inventory and classification will always be necessary for particular purposes. More fundamental than general agreement on approaches is the need for wetland scientists and managers to maximise the accuracy of survey information, to test the assumptions involved in the use of classifications, and to ensure that the classifications they use are the most appropriate for their purposes. The issue of a global wetland classification scheme is discussed on the basis of a representative range of views by Australian wetland workers. 相似文献
14.
自然湿地生态恢复研究综述 总被引:126,自引:7,他引:126
湿地由于具有丰富的资源、独特的牛态结构和功能而享有“自然之肾”之称。为了更好地保护和开发利用湿地,世界各国都在积极采取措施阴止湿地的退化或消失,湿地的生态恢复与重建问题已成为生态学和环境科学的研究热点,在全面综述国内外湿地生态恢复研究进展的基础上,对湿地乍态恢复研究的重点和热点进行了探讨和分析,指出我国为做好湿地生态恢复工作尚需进一步加强湿地生态恢复的方法学、基础理论、应用技术和示范推广等方面的研究。 相似文献
15.
Cecily C.Y. Chang Paul V. McCormick Susan Newman Emily M. Elliott 《Ecological Indicators》2009,9(5):825-836
The δ15N and δ13C signatures of major organic matter (OM) pools were measured across chemical and hydrologic gradients in a large (58,800 ha) subtropical wetland to evaluate whether stable isotopes were useful indicators of environmental change. Once a rainfall-driven wetland, the Loxahatchee National Wildlife Refuge in the Florida Everglades now receives agricultural and urban drainage that has increased phosphorus (P) and mineral loads around the wetland perimeter. Additionally, water impoundment at the southern end has produced a latitudinal hydrologic gradient, with extended hydroperiods in the south and overdrained conditions in the north.Detritus (?4.8‰ to 8.6‰), floc (?1.4‰ to 3.6‰), and metaphyton (?6.6‰ to +7.4‰) δ15N declined southward with changes in hydrology as indicated by water depth. This pattern was attributed to higher mineralization rates under shorter hydroperiods. These signatures were also strongly correlated with increased nutrient and mineral loading. Rooted macrophyte δ15N, by contrast, appeared more responsive to soil nutrient pools. Cattail (?8.9‰ to +7.7‰) was restricted to the wetland perimeter and had the widest δ15N range, which was positively correlated with soil P. Sawgrass (?5.3‰ to +7.7‰) occurred across most of the wetland, but its δ15N was not strongly correlated to any gradient. Patterns for δ13C were more strongly related to chemical gradients caused by canal intrusion than to latitude or hydrology. Again, metaphyton and detrital signatures were more sensitive to water chemistry changes than macrophytes. This pattern is consistent with their locations at the soil–water (detritus-floc), and air–water (metaphyton) interface. Metaphyton δ13C (?36.1‰ to ?21.5‰) which had the broadest range, was affected by DIC source and pool size. In contrast, cattail δ13C (?28.7‰ to ?26.4‰) was more closely related to soil P and sawgrass δ13C (?30.1‰ to ?24.5‰) was not related to any environmental gradient except latitude. There was no correlation between the two isotopes for any OM pool except cattail.These results indicate that isotopic signatures of microbial (metaphyton and detrital) pools are more responsive to changes in wetland hydrology and water chemistry while those of rooted macrophytes respond only to the extent that soil chemistry is altered. Rooted macrophytes also differ in the sensitivity of their isotopic signatures to environmental change. The selection of OM pools for isotopic analysis will, therefore, affect the sensitivity of the analysis and the resulting patterns. Furthermore, δ15N may be more robust and interpretable than δ13C as an indicator of ecosystem change in wetlands exposed to multiple or complex anthropogenic gradients. 相似文献
16.
我国湿地生态状况评价研究进展 总被引:7,自引:0,他引:7
从湿地生态状况评价定义、国际重要湿地和全国重点湿地生态状况和主要评价方法等方面研究综述了我国湿地生态状况评价。对全国1413处湿地生态状况的研究显示,国际重要湿地生态状况总体较好,重点湿地生态状况较差,生态状况差有341处,占24.85%,并系统分析了各类湿地生态状况评价的方法、内容和结果。认为湿地生态状况评价是满足湿地保护管理需求的一项基本技术研究工作,开展湿地生态状况评价可以从不同空间、时间尺度反映湿地生态变化趋势,满足湿地生态系统保护修复的管理要求,并揭示各生态因子的内在关系,是提高湿地的保护、管理和合理开发的重要技术手段。最后分析了当前湿地生态状况评价所面临的难点,并提出了相关对策建议。 相似文献
17.
Almost nothing is known about landscape-level variation in seed bank composition across complexes of hydrologically connected wetlands. We examined species composition of seed and spore banks in three habitats of tidal freshwater wetlands (marshes, swamp hollows, and swamp hummocks) along 48 km of tributaries throughout the tidal freshwater portions of the Nanticoke River watershed (Maryland and Delaware). Taxa and seedling density decreased with increasing distance upstream in the swamp hollows and hummocks, but increased or remained constant proceeding upstream in the marshes. Species rarefaction curves indicated equal taxa richness (28) between marshes and swamp hummocks at 175 individuals, with lower richness in swamp hollows (19). However, communities in swamp hollows were patchier and had an estimated total taxa richness of 52, similar to the marshes (50) and higher than swamp hummocks (41). Coefficients of variation for seedling emergence densities (136-180%) were greater than those of published seed bank studies conducted at smaller spatial scales in tidal freshwater marshes (36-117%). Our literature searches suggest that ours is the first study to document significant spatial trends in seed bank diversity and density across a wetland landscape. 相似文献
18.
Significant differences in the composition of fish assemblages during different moon phases were detected in mangrove tidal creeks of the Goiana Estuary. The numbers of Zabaleta anchovy Anchovia clupeoides, Tarpon snook Centropomus pectinatus and Guavina Guavina guavina as well as at least 15 other species showed significant changes according to moon phase and were higher in terms of individuals (32%) and mass (34%) during the new moon. 相似文献
19.
Use of erythrocyte indicators of health and condition in vertebrate ecophysiology: a review and appraisal 下载免费PDF全文
Christopher P. Johnstone Alan Lill Richard D. Reina 《Biological reviews of the Cambridge Philosophical Society》2017,92(1):150-168
We review evidence for and against the use of erythrocyte indicators of health status and condition, parasite infection level and physiological stress in free‐living vertebrates. The use of indicators that are measured directly from the blood, such as haemoglobin concentration, haematocrit and erythrocyte sedimentation rate, and parameters that are calculated from multiple measured metrics, such as mean cell volume, mean cell haemoglobin content or mean cell haemoglobin concentration is evaluated. The evidence for or against the use of any given metric is equivocal when the relevant research is considered in total, although there is sometimes strong support for using a particular metric in a particular taxon. Possibly the usefulness of these metrics is taxon, environment or condition specific. Alternatively, in an uncontrolled environment where multiple factors are influencing a metric, its response to environmental change will sometimes, but not always, be predictable. We suggest that (i) researchers should validate a metricfres utility before use, (ii) multiple metrics should be used to construct an overall erythrocyte profile for an individual or population, (iii) there is a need for researchers to compile reference ranges for free‐living species, and (iv) some metrics which are useful under controlled, clinical conditions may not have the same utility or applicability for free‐living vertebrates. Erythrocyte metrics provide useful information about health and condition that can be meaningfully interpreted in free‐living vertebrates, but their use requires careful forethought about confounding factors. 相似文献
20.
The status of wetland inventory effort and availability of maps and other data sources is reviewed for the ten countries of southern Africa: Angola, Bostwana, Lesotho, Malawi, Mozambique, Namibia, South Africa, Swaziland, Zambia and Zimbabwe. The aims and strategies for inventory are discussed and the main survey methods compared. Prior to commissioning new inventory work careful collation of existing maps and imagery is recommended together with targeting of strategic inventory at Province level, reserving high resolution effort only for certain important sites. 相似文献