首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The newly defined phytohormones strigolactones (SLs) were recently shown to act as regulators of root development. Their positive effect on root-hair (RH) elongation enabled examination of their cross talk with auxin and ethylene. Analysis of wild-type plants and hormone-signaling mutants combined with hormonal treatments suggested that SLs and ethylene regulate RH elongation via a common regulatory pathway, in which ethylene is epistatic to SLs. The SL and auxin hormonal pathways were suggested to converge for regulation of RH elongation; this convergence was suggested to be mediated via the ethylene pathway, and to include regulation of auxin transport.Key words: strigolactone, auxin, ethylene, root, root hair, lateral rootStrigolactones (SLs) are newly identified phytohormones that act as long-distance shoot-branching inhibitors (reviewed in ref. 1). In Arabidopsis, SLs have been shown to be regulators of root development and architecture, by modulating primary root elongation and lateral root formation.2,3 In addition, they were shown to have a positive effect on root-hair (RH) elongation.2 All of these effects are mediated via the MAX2 F-box.2,3In addition to SLs, two other plant hormones, auxin and ethylene, have been shown to affect root development, including lateral root formation and RH elongation.46 Since all three phytohormones (SLs, auxin and ethylene) were shown to have a positive effect on RH elongation, we examined the epistatic relations between them by examining RH length.7 Our results led to the conclusion that SLs and ethylene are in the same pathway regulating RH elongation, where ethylene may be epistatic to SLs.7 Moreover, auxin signaling was shown to be needed to some extent for the RH response to SLs: the auxin-insensitive mutant tir1-1,8 was less sensitive to SLs than the wild type under low SL concentrations.7On the one hand, ethylene has been shown to induce the auxin response,912 auxin synthesis in the root apex,11,12 and acropetal and basipetal auxin transport in the root.4,13 On the other, ethylene has been shown to be epistatic to SLs in the SL-induced RH-elongation response.7 Therefore, it might be that at least for RH elongation, SLs are in direct cross talk with ethylene, whereas the cross talk between SL and auxin pathways may converge through that of ethylene.7 The reduced response to SLs in tir1-1 may be derived from its reduced ethylene sensitivity;7,14 this is in line with the notion of the ethylene pathway being a mediator in the cross talk between the SL and auxin pathways.The suggested ethylene-mediated convergence of auxin and SLs may be extended also to lateral root formation, and may involve regulation of auxin transport. In the root, SLs have been suggested to affect auxin efflux,3,15 whereas ethylene has been shown to have a positive effect on auxin transport.4,13 Hence, it might be that in the root, the SLs'' effect on auxin flux is mediated, at least in part, via the ethylene pathway. Ethylene''s ability to increase auxin transport in roots was associated with its negative effect on lateral root formation: ethylene was suggested to enhance polar IAA transport, leading to alterations in the quantity of auxin that unloads into the tissues to drive lateral root formation.4 Under conditions of sufficient phosphate, SL''s effect was similar to that of ethylene: SLs reduced the appearance of lateral roots; this was explained by their ability to change auxin flux.3 Taken together, one possibility is that the SLs'' ability to affect auxin flux and thereby lateral root formation in the roots is mediated by induction of ethylene synthesis.To conclude, root development may be regulated by a network of auxin, SL and ethylene cross talk.7 The possibility that similar networks exist elsewhere in the SLs'' regulation of plant development, including shoot architecture, cannot be excluded.  相似文献   

2.
The dermal sheath (DS) of the hair follicle is comprised by fibroblast-like cells and extends along the follicular epithelium, from the bulb up to the infundibulum. From this structure, cells with stem characteristics were isolated: they have a mesenchymal origin and express CD90 protein, a typical marker of mesenchymal stem cells. It is not yet really clear in which region of hair follicle these cells are located but some experimental evidence suggests that dermal stem cells are localized prevalently in the lower part of the anagen hair follicle.As there are no data available regarding DS stem cells in dog species, we carried out a morphological analysis of the hair follicle DS and performed both an immunohistochemical and an immunocytochemical investigation to identify CD90+ cells. We immunohistochemically evidenced a clear and abundant positivity to CD90 protein in the DS cells located in the lower part of anagen hair follicle. The positive cells showed a typical fibroblast-like morphology. They were flat and elongated and inserted among bundles of collagen fibres.The whole structure formed a close and continuous sleeve around the anagen hair follicle. Our immunocytochemical study allowed us to localize CD90 protein at the cytoplasmic membrane level.Key words: CD90, mesenchymal stem cells, hair follicle, dog.The hair follicle represents an important stem cell niche in the skin. It contains dermal and epithelial stem populations that display distinct properties and localization. While epithelial stem cells reside in the middle region of the hair follicle outer root sheath (Schneider et al., 2009; Lyle et al., 1998; Cotsarelis et al., 1990), dermal stem cells are located in the dermal sheath (DS) (Jahoda, 2003; Jahoda and Reynolds, 2001).The dermal sheath, or fibrous root sheath, is a layer of dense connective tissue that extends along the hair follicle, from the bulb up to the infundibulum. In the anagen hair follicle, it is comprised of mesenchymal cells located among collagen and elastic fibres.The cells are flat and elongated while collagen fibres form a circular inner layer and a longitudinal outer layer in the lower part of hair follicle (VonTscharner and Suter, 1994; Jahoda et al., 1992). At the base of the hair follicle, the DS is connected to the dermal papilla (Scott et al., 2000). The basement membrane, or glassy membrane, separates the DS from the epithelial component of the hair follicle (Scott et al., 2000).Follicular dermal stem cells have a mesenchymal origin and share many properties common to bone marrow-derived mesenchymal stem cells (MSCs) (Hoogduijn et al., 2006). They express the MSC cell-surface marker CD90, show a high colony forming unit ability and can differentiate into several mesenchymal lineages, such as osteoblasts, adipocytes, chondrocytes and myocytes (Hoogduijn et al., 2006; Jahoda et al., 2003). They also express neuroprogenitor markers (Hoogduijn et al., 2006) and, finally, they can repopulate the haematopoietic system (Lako et al., 2002). In the literature, we can find different information about stem cell localization: the whole dermal sheath, the peri-bulbar dermal sheath, the dermal papilla (Hoogduijn et al., 2006, McElwee et al., 2003, Gharzi et al., 2003, Jahoda et al., 2003.)CD90 (Thy-1) is a small GPI-anchored protein localized in the outer leaflet of the cell membrane (Low and Kincade, 1985). This protein is present in a large number of tissues and cells, even if a great species variation has been described (Mansour Haeryfar, 2004; Tokugawa et al., 1997; McKenzle and Fabre, 1981). CD90 plays a role in cell-cell interaction events, including intracellular adhesion and cell recognition during development (Saalbach et al., 2000; Morris, 1985), and is considered an important stem cell marker; for this last reason it is commonly used to identify mesenchymal stem cells in vitro (Kern et al., 2007; Yoshimura et al., 2006; Le Blanc and Ringdén, 2006; Pittenger et al., 1999). Furthermore, it has been identified in other kinds of stem cells such as haematopoietic progenitor cells (Craig et al., 1993) and hepatic progenitor cells in the human fetal liver (Masson et al., 2006).The hair follicle is the focus of increasing interest because it contains well defined stem cell populations that exhibit various developmental properties. We retain that in dogs, as already demonstrated in other species (Hoogduijn et al., 2006; Zhang et al., 2006; Jahoda et al., 2003; Lako et al., 2002), this organ may be a suitable and accessible source for both epithelial and mesenchymal stem cells that may be isolated and in vitro cultured. Since it is possible to take skin samples without injuring the patient, we chose the hair follicle to study and identify stem cells with the future purpose of using them in regenerative medicine.Dogs are affected by several skin diseases and some of them may be related to alterations of somatic stem cells. We retain that the study of hair follicle stem cell biology may improve our knowledge of etiology and pathogenesis of these skin diseases.In previous works we investigated the stem cells in dog hair follicles; we identified the location of putative epithelial stem cells at the isthmus and described the bulge-like region (Pascucci et al., 2006; Mercati et al., 2008). To the authors’ knowledge, there are no data available neither concerning the localization of DS stem cells nor concerning the expression of CD90 in the hair follicle as regards the canine species. Therefore, in this study, we described the morphological characteristics of DS cells and examined the immunohistochemical localization of CD90 protein in dog hair follicles with both light and transmission electron microscopy. The aim of our study is to observe the dermal sheath cells encompassing the hair follicle and to determine where CD90+ cells reside. CD90 is one of the main markers used to identify mesenchymal stem cells and it has been observed in stem cells isolated from the dermal sheath of hair follicles (Hoogduijn et al.,2006). For this reason, we suppose that CD90 protein can help us to identify the hair follicle dermal stem compartment in dog.  相似文献   

3.
Fetal cells migrate into the mother during pregnancy. Fetomaternal transfer probably occurs in all pregnancies and in humans the fetal cells can persist for decades. Microchimeric fetal cells are found in various maternal tissues and organs including blood, bone marrow, skin and liver. In mice, fetal cells have also been found in the brain. The fetal cells also appear to target sites of injury. Fetomaternal microchimerism may have important implications for the immune status of women, influencing autoimmunity and tolerance to transplants. Further understanding of the ability of fetal cells to cross both the placental and blood-brain barriers, to migrate into diverse tissues, and to differentiate into multiple cell types may also advance strategies for intravenous transplantation of stem cells for cytotherapeutic repair. Here we discuss hypotheses for how fetal cells cross the placental and blood-brain barriers and the persistence and distribution of fetal cells in the mother.Key Words: fetomaternal microchimerism, stem cells, progenitor cells, placental barrier, blood-brain barrier, adhesion, migrationMicrochimerism is the presence of a small population of genetically distinct and separately derived cells within an individual. This commonly occurs following transfusion or transplantation.13 Microchimerism can also occur between mother and fetus. Small numbers of cells traffic across the placenta during pregnancy. This exchange occurs both from the fetus to the mother (fetomaternal)47 and from the mother to the fetus.810 Similar exchange may also occur between monochorionic twins in utero.1113 There is increasing evidence that fetomaternal microchimerism persists lifelong in many child-bearing women.7,14 The significance of fetomaternal microchimerism remains unclear. It could be that fetomaternal microchimerism is an epiphenomenon of pregnancy. Alternatively, it could be a mechanism by which the fetus ensures maternal fitness in order to enhance its own chances of survival. In either case, the occurrence of pregnancy-acquired microchimerism in women may have implications for graft survival and autoimmunity. More detailed understanding of the biology of microchimeric fetal cells may also advance progress towards cytotherapeutic repair via intravenous transplantation of stem or progenitor cells.Trophoblasts were the first zygote-derived cell type found to cross into the mother. In 1893, Schmorl reported the appearance of trophoblasts in the maternal pulmonary vasculature.15 Later, trophoblasts were also observed in the maternal circulation.1620 Subsequently various other fetal cell types derived from fetal blood were also found in the maternal circulation.21,22 These fetal cell types included lymphocytes,23 erythroblasts or nucleated red blood cells,24,25 haematopoietic progenitors7,26,27 and putative mesenchymal progenitors.14,28 While it has been suggested that small numbers of fetal cells traffic across the placenta in every human pregnancy,2931 trophoblast release does not appear to occur in all pregnancies.32 Likewise, in mice, fetal cells have also been reported in maternal blood.33,34 In the mouse, fetomaternal transfer also appears to occur during all pregnancies.35  相似文献   

4.
Strigolactones (SLs) have been recently identified as a new group of plant hormones or their derivatives thereof, shown to play a role in plant development. Evolutionary forces have driven the development of mechanisms in plants that allow adaptive adjustments to a variety of different habitats by employing plasticity in shoot and root growth and development. The ability of SLs to regulate both shoot and root development suggests a role in the plant''s response to its growth environment. To play this role, SL pathways need to be responsive to plant growth conditions, and affect plant growth toward increased adaptive adjustment. Here, the effects of SLs on shoot and root development are presented, and possible feedback loops between SLs and two environmental cues, light and nutrient status, are discussed; these might suggest a role for SLs in plants'' adaptive adjustment to growth conditions.Key words: strigolactones, light, nutrient status, root, shoot, branching, lateral roots, root hairsStrigolactones (SLs) are carotenoid-derived terpenoid lactones suggested to stem from the carotenoid pathway1 via the activity of various oxygenases.2,3 SLs production has been demonstrated in both monocotyledons and eudicotyledons (reviewed in ref. 4), suggesting their presence in many plant species.5 SLs are synthesized mainly in the roots and in some parts of the stem and then move towards the shoot apex (reviewed ref. 7).6,8,9SLs were first characterized more than 40 years ago as germination stimulants of the parasitic plants Striga and Orobanche and later, as stimulants of arbuscular mycorrhiza hyphal branching as well (reviewed in ref. 4, 1013). Recently, SLs or derivatives thereof, have been identified as a new group of plant hormones, shown to play a role in inhibition of shoot branching,2,3,8,9 thereby affecting shoot architecture; more recently they have also been shown to affect root growth by affecting auxin efflux.14Plants have developed mechanisms that allow adaptive adjustments to a variety of different habitats by employing plasticity in their growth and development.15 Shoot architecture is affected by environmental cues, such as light quality and quantity and nutrient status.1619 Root-system architecture and development are affected by environmental conditions such as nutrient availability (reviewed in ref. 20, 21). At the same time, plant hormones are known to be involved in the regulation of plant growth, development and architecture (reviewed in ref. 2224) and to be mediators of the effects of environmental cues on plant development; one classic example is auxin''s role in the plant''s shade-avoidance response (reviewed in ref. 25).The ability of SLs to regulate shoot and root development suggests that these phytohormones also have a role in the plant''s growth response to its environment. To play this putative role, SL pathways need to be responsive to plant growth conditions, and affect plant growth toward enhancing its adaptive adjustment. The present review examines the SLs'' possible role in adaptive adjustment of the plant''s response to growth conditions, by discussing their effect on plant development and the possible associations and feedback loops between SLs and two environmental cues: light and nutrient status.  相似文献   

5.
A role for SR proteins in plant stress responses   总被引:1,自引:0,他引:1  
  相似文献   

6.
7.
The apical plasma membrane of young Arabidopsis root hairs has recently been found to contain a depolarisation-activated Ca2+ channel, in addition to one activated by hyperpolarisation. The depolarisation-activated Ca2+ channel may function in signalling but the possibility that the root hair apical plasma membrane voltage may oscillate between a hyperpolarized and depolarized state suggests a role in growth control. Plant NADPH oxidase activity has yet to be considered in models of oscillatory voltage or ionic flux despite its predicted electrogenicity and voltage dependence. Activity of root NADPH oxidase was found to be stimulated by restricting Ca2+ influx, suggesting that these enzymes are involved in sensing Ca2+ entry into cells.Key words: calcium, channel, NADPH oxidase, oscillation, root hairElevation of cytosolic free Ca2+ ([Ca2+]cyt) encodes plant cell signals.1 Reactive oxygen species (ROS) are potent regulators of the PM Ca2+ channels implicated in signalling and developmental increases in [Ca2+]cyt.1,2 Plasma membrane (PM) voltage (Vm) also plays a significant part in generating specific [Ca2+]cyt elevations through the opening of voltage-gated Ca2+-permeable channels, allowing Ca2+ influx.1,3 Patch clamp electrophysiological studies on the root hair apical PM of Arabidopsis have revealed co-localisation of hyperpolarisation-activated Ca2+ channels (HACCs),4 ROS-activated HACCs5 and depolarisation-activated Ca2+ channels (DACCs).6 The DACC characterisation pointed to the presence of a Cl-permeable conductance that was activated by moderate hyperpolarisation (−160 mV) but rapidly inactivated when the voltage was maintained at such negative values.6 This may be the R-type anion efflux conductance previously described in Arabidopsis root hair and root epidermal PM.7 Previous studies have shown that root hair PM also harbors K+ channels (mediating inward or outward flux)810 and a H+-ATPase.11 A key problem to address now is how these transporters interact to generate and be influenced by PM Vm, thus gating and in turn being regulated by their companion Ca2+ channels to encode developmental and environmental signals at the hair apex.A seminal study on the relationship between Vm and ionic fluxes in wheat root protoplasts not only confirmed oscillatory events but also determined that the PM can exist in three distinct states.12 In the “pump state” the H+-ATPase predominates, there is net H+ efflux and the hyperpolarized Vm is negative of the equilibrium potential for K+ (EK). In the “K state”, K+ permeability predominates but there is still net H+ efflux and Vm = EK. In the third state, there is net H+ influx and Vm > EK. In this depolarized H+-influx state, the H+-ATPase is thought to be inactive. Oscillations in PM Vm and H+ flux may be more profound in growing cells13,14 and oscillations between these states may explain the temporal changes in H+ flux recently observed at the apex of growing Arabidopsis root hairs.15 Peaks of H+ influx may reflect a depolarized Vm that could activate DACC, suggesting that DACC would play a significant role in growth regulation. The view has arisen that the HACC would be the main driver of growth, primarily because in patch clamp assays its current is greater than DACC46 and because resting Vm is usually found to be hyperpolarized. In a growing cell, with a Vm oscillating between a hyperpolarized and depolarized state, a DACC could just as well be a driver of growth given that the Ca2+ influx it permits could be amplified through intracellular release.The PM H+-ATPase traditionally lies at the core of models of voltage and ionic flux14,16 but in terms of [Ca2+]cyt regulation, the activity of PM NADPH oxidases must also now be considered. The Arabidopsis root hair apical PM also contains an NADPH oxidase (AtrbohC) that catalyses extracellular superoxide production.5 AtrbohC is implicated in the transition to polar growth at normal extracellular pH5 and also osmoregulation.17 NADPH oxidases catalyse the transport of electrons out of the cell and thus, in common with PM redox e efflux systems,18 their activity would depolarize the membrane voltage unless countered by cation efflux or anion influx.19 Two H+ would also be released into the cytosol for every NADPH used. The voltage-dependence of plant NADPH oxidases is unknown but e efflux by animal NADPH oxidases is fairly constant over negative Vm and decreases at very depolarized Vm.20 AtrbohC is implicated in generating oscillatory ROS at the root hair apex and loss of function affects magnitude and duration of apical H+ flux oscillations.15 The latter suggests that AtrbohC function does in some way affect Vm, a situation extending to other root cell types (such as the epidermis) expressing NADPH oxidases.21NADPH oxidase activity in roots is under developmental control but also responds to anoxia and nutrient deficiency22,23 to signal stress conditions. Blockade of PM Ca2+ channels by lanthanides increases superoxide production in tobacco suspension cells.24 This suggests that NADPH oxidases are involved in sensing the cell''s Ca2+ status and the prediction would be that extracellular Ca2+ chelation would increase their activity. To test this, superoxide anion production by excised Arabidopsis roots was measured using reduction of the tetrazolium dye XTT (Sodium, 3′-[1-[phenylamino-carbonyl]-3,4-tetrazolium]-bis(4-methoxy-6-nitro) benzene-sulphonic acid).25,26 Lowering extracellular Ca2+ from 0.5 mM to 1.4 µM by addition of 10 mM EGTA caused a mean 95% increase in diphenyliodinium-sensitive superoxide production (Fig. 1; n = 9), implicating NADPH oxidases as the source of this ROS. Stimulation of NADPH oxidase activity by decreasing Ca2+ influx at first appears contradictory as NADPH oxidases are stimulated by increased [Ca2+]cyt27 (Fig. 1). However, reduction of Ca2+ influx should promote voltage hyperpolarisation (just as block of K+ influx causes hyperpolarisation in root hairs28) and this could feasibly cause increased NADPH oxidase activity. Production of superoxide could then result in ROS-activated HACC activity5 to increase Ca2+ influx.Open in a separate windowFigure 1Superoxide anion production by Arabidopsis roots. Assay medium comprised 10 mM phosphate buffer with 0.5 mM CaCl2, 500 µM XTT, pH 6.0. Production was linear over the 30 min incubation period. Control, mean ± standard error, n = 9. Test additions were: 20 µM of the NADPH oxidase inhibitor diphenylene iodonium (DPI; n = 6); 100 µM of the Ca2+ ionophore A23187,30 to increase [Ca2+]cyt (n = 9); 10 mM of the chelator EGTA (n = 9). Dimethyl sulphoxide [DMSO; 1% (v/v)] was used as a carrier for XTT and DPI and a separate control for this is shown (n = 9).In addition to Vm, activities of PM transporters in vivo will be subject to other levels of regulation such as phosphorylation, nitrosylation and the action of [Ca2+]cyt itself. Distinct spatial separation of transporters will undoubtedly play a significant role in governing Vm and [Ca2+]cyt dynamics, particularly in growing cells. An NADPH oxidase has already been found sequestered in a potential PM microdomain in Medicago.29 While there is still much to do on the “inventory” of PM transporters involved in Ca2+ signalling in any given cell, placing them in context not only requires knowledge of their genetic identity but also modelling of their concerted action.  相似文献   

8.
Peptide signaling regulates a variety of developmental processes and environmental responses in plants.16 For example, the peptide systemin induces the systemic defense response in tomato7 and defensins are small cysteine-rich proteins that are involved in the innate immune system of plants.8,9 The CLAVATA3 peptide regulates meristem size10 and the SCR peptide is the pollen self-incompatibility recognition factor in the Brassicaceae.11,12 LURE peptides produced by synergid cells attract pollen tubes to the embryo sac.9 RALFs are a recently discovered family of plant peptides that play a role in plant cell growth.Key words: peptide, growth factor, alkalinization  相似文献   

9.
As the newest plant hormone, strigolactone research is undergoing an exciting expansion. In less than five years, roles for strigolactones have been defined in shoot branching, secondary growth, root growth and nodulation, to add to the growing understanding of their role in arbuscular mycorrhizae and parasitic weed interactions.1 Strigolactones are particularly fascinating as signaling molecules as they can act both inside the plant as an endogenous hormone and in the soil as a rhizosphere signal.2-4 Our recent research has highlighted such a dual role for strigolactones, potentially acting as both an endogenous and exogenous signal for arbuscular mycorrhizal development.5 There is also significant interest in examining strigolactones as putative regulators of responses to environmental stimuli, especially the response to nutrient availability, given the strong regulation of strigolactone production by nitrate and phosphate observed in many species.5,6 In particular, the potential for strigolactones to mediate the ecologically important response of mycorrhizal colonization to phosphate has been widely discussed. However, using a mutant approach we found that strigolactones are not essential for phosphate regulation of mycorrhizal colonization or nodulation.5 This is consistent with the relatively mild impairment of phosphate control of seedling root growth observed in Arabidopsis strigolactone mutants.7 This contrasts with the major role for strigolactones in phosphate control of shoot branching of rice and Arabidopsis8,9 and indicates that the integration of strigolactones into our understanding of nutrient response will be complex. New data presented here, along with the recent discovery of phosphate specific CLE peptides,10 indicates a potential role for PsNARK, a component of the autoregulation of nodulation pathway, in phosphate control of nodulation.  相似文献   

10.
11.
12.
13.
Shoot elongation is a vital process for plant development and productivity, in both ecological and economic contexts. Auxin and bioactive gibberellins (GAs), such as GA1, play critical roles in the control of elongation,13 along with environmental and endogenous factors, including other hormones such as the brassinosteroids.4,5 The effect of auxins, such as indole-3-acetic acid (IAA), is at least in part mediated by its effect on GA metabolism,6 since auxin upregulates biosynthesis genes such as GA 3-oxidase and GA 20-oxidase and downregulates GA catabolism genes such as GA 2-oxidases, leading to elevated levels of bioactive GA1.7 In our recent paper,1 we have provided evidence that this action of IAA is largely independent of DELLA proteins, the negative regulators of GA action,8,9 since the auxin effects are still present in the DELLA-deficient la cry-s genotype of pea. This was a crucial issue to resolve, since like auxin, the DELLAs also promote GA1 synthesis and inhibit its deactivation. DELLAs are deactivated by GA, and thereby mediate a feedback system by which bioactive GA regulates its own level.10 However, our recent results,1 in themselves, do not show the generality of the auxin-GA relationship across species and phylogenetic groups or across different tissue types and responses. Further, they do not touch on the ecological benefits of the auxin-GA interaction. These issues are discussed below as well as the need for the development of suitable experimental systems to allow this process to be examined.Key words: auxin, gibberellins, DELLA proteins, interactions, elongation  相似文献   

14.
The accumulation of silicon (Si) differs greatly with plant species and cultivars due to different ability of the roots to take up Si. In Si accumulating plants such as rice, barley and maize, Si uptake is mediated by the influx (Lsi1) and efflux (Lsi2) transporters. Here we report isolation and functional analysis of two Si efflux transporters (CmLsi2-1 and CmLsi2-2) from two pumpkin (Cucurbita moschata Duch.) cultivars contrasting in Si uptake. These cultivars are used for rootstocks of bloom and bloomless cucumber, respectively. Different from mutations in the Si influx transporter CmLsi1, there was no difference in the sequence of either CmLsi2 between two cultivars. Both CmLsi2-1 and CmLsi2-2 showed an efflux transport activity for Si and they were expressed in both the roots and shoots. These results confirm our previous finding that mutation in CmLsi1, but not in CmLsi2-1 and CmLsi2-2 are responsible for bloomless phenotype resulting from low Si uptake.Key words: silicon, efflux transporter, pumpkin, cucumber, bloomSilicon (Si) is the second most abundant elements in earth''s crust.1 Therefore, all plants rooting in soils contain Si in their tissues. However Si accumulation in the shoot differs greatly among plant species, ranging for 0.1 to 10% of dry weight.13 In higher plants, only Poaceae, Equisetaceae and Cyperaceae show a high Si accumulation.2,3 Si accumulation also differs with cultivars within a species.4,5 These differences in Si accumulation have been attributed to the ability of the roots to take up Si.6,7Genotypic difference in Si accumulation has been used to produce bloomless cucumber (Cucumis sativus L.).8 Bloom (white and fine powders) on the surface of cucumber fruits is primarily composed of silica (SiO2).9 However, nowadays, cucumber without bloom (bloomless cucumber) is more popular in Japan due to its more attractive and distinctly shiny appearance. Bloomless cucumber is produced by grafting cucumber on some specific pumpkin (Cucurbita moschata Duch.) cultivars. These pumpkin cultivars used for bloomless cucumber rootstocks have lower silicon accumulation compared with the rootstocks used for producing bloom cucumber.9Our study showed that the difference in Si accumulation between bloom and bloomless root stocks of pumpkin cultivars results from different Si uptake by the roots.10 Si uptake has been demonstrated to be mediated by two different types of transporters (Lsi1 and Lsi2) in rice, barley and maize.1115 Lsi1 is an influx transporter of Si, belonging to a NIP subfamily of aquaporin family.10,11,13,14 This transporter is responsible for transport of Si from external solution to the root cells.11 On the other hand, Lsi2 is an efflux transporter of Si, belonging to putative anion transporter.12 Lsi2 releases Si from the root cells towards the xylem. Both Lsi1 and Lsi2 are required for Si uptake by the roots.11,12 To understand the mechanism underlying genotypic difference in Si uptake, we have isolated and functionally characterized an influx Si transporter CmLsi1 from two pumpkin cultivars used for rootstocks of bloomless and bloom cucumber.10 Sequence analysis showed only two amino acids difference of CmLsi1 between two pumpkin cultivars. However, CmLsi1 from bloom rootstock [CmLsi1(B+)] showed transport activity for Si, whereas that from bloomless rootstock [CmLsi1(B)] did not.10 Furthermore, we found that loss of Si transport activity was caused by one amino acid mutation at the position of 242 (from proline to leucine).10 This mutation resulted in failure to be localized at the plasma membrane, which is necessary for functioning as an influx transporter. The mutated protein was localized at the ER.10 Here, we report isolation and expression analysis of Si efflux transporters from two pumpkin cultivars contrasting in Si uptake and accumulation to examine whether Si efflux transporter is also involved in the bloom and bloomless phenotypes.  相似文献   

15.
Diabetes mellitus type 2 (DM2) results from the combination of insulin unresponsiveness in target tissues and the failure of pancreatic β cells to secrete enough insulin.1 It is a highly prevalent chronic disease that is aggravated with time, leading to major complications, such as cardiovascular disease and peripheral and ocular neuropathies.2 Interestingly, therapies to improve glucose homeostasis in diabetic patients usually involve the use of glibenclamide, an oral hypoglycemic drug that blocks ATP-sensitive K+ channels (KATP),3,4 forcing β cells to release more insulin to overcome peripheral insulin resistance. However, sulfonylureas are ineffective for long-term treatments and ultimately result in the administration of insulin to control glucose levels.5 The mechanisms underlying β-cell failure to respond effectively with glibenclamide after long-term treatments still needs clarification. A recent study demonstrating that this drug activates TRPA1,6 a member of the Transient Receptor Potential (TRP) family of ion channels and a functional protein in insulin secreting cells,7,8 has highlighted a possible role for TRPA1 as a potential mediator of sulfonylurea-induced toxicity.  相似文献   

16.
Plant defensins are small, highly stable, cysteine-rich peptides that constitute a part of the innate immune system primarily directed against fungal pathogens. Biological activities reported for plant defensins include antifungal activity, antibacterial activity, proteinase inhibitory activity and insect amylase inhibitory activity. Plant defensins have been shown to inhibit infectious diseases of humans and to induce apoptosis in a human pathogen. Transgenic plants overexpressing defensins are strongly resistant to fungal pathogens. Based on recent studies, some plant defensins are not merely toxic to microbes but also have roles in regulating plant growth and development.Key words: defensin, antifungal, antimicrobial peptide, development, innate immunityDefensins are diverse members of a large family of cationic host defence peptides (HDP), widely distributed throughout the plant and animal kingdoms.13 Defensins and defensin-like peptides are functionally diverse, disrupting microbial membranes and acting as ligands for cellular recognition and signaling.4 In the early 1990s, the first members of the family of plant defensins were isolated from wheat and barley grains.5,6 Those proteins were originally called γ-thionins because their size (∼5 kDa, 45 to 54 amino acids) and cysteine content (typically 4, 6 or 8 cysteine residues) were found to be similar to the thionins.7 Subsequent “γ-thionins” homologous proteins were indentified and cDNAs were cloned from various monocot or dicot seeds.8 Terras and his colleagues9 isolated two antifungal peptides, Rs-AFP1 and Rs-AFP2, noticed that the plant peptides'' structural and functional properties resemble those of insect and mammalian defensins, and therefore termed the family of peptides “plant defensins” in 1995. Sequences of more than 80 different plant defensin genes from different plant species were analyzed.10 A query of the UniProt database (www.uniprot.org/) currently reveals publications of 371 plant defensins available for review. The Arabidopsis genome alone contains more than 300 defensin-like (DEFL) peptides, 78% of which have a cysteine-stabilized α-helix β-sheet (CSαβ) motif common to plant and invertebrate defensins.11 In addition, over 1,000 DEFL genes have been identified from plant EST projects.12Unlike the insect and mammalian defensins, which are mainly active against bacteria,2,3,10,13 plant defensins, with a few exceptions, do not have antibacterial activity.14 Most plant defensins are involved in defense against a broad range of fungi.2,3,10,15 They are not only active against phytopathogenic fungi (such as Fusarium culmorum and Botrytis cinerea), but also against baker''s yeast and human pathogenic fungi (such as Candida albicans).2 Plant defensins have also been shown to inhibit the growth of roots and root hairs in Arabidopsis thaliana16 and alter growth of various tomato organs which can assume multiple functions related to defense and development.4  相似文献   

17.
18.
19.
Non-CG methylation is well characterized in plants where it appears to play a role in gene silencing and genomic imprinting. Although strong evidence for the presence of non-CG methylation in mammals has been available for some time, both its origin and function remain elusive. In this review we discuss available evidence on non-CG methylation in mammals in light of evidence suggesting that the human stem cell methylome contains significant levels of methylation outside the CG site.Key words: non-CG methylation, stem cells, Dnmt1, Dnmt3a, human methylomeIn plant cells non-CG sites are methylated de novo by Chromomethylase 3, DRM1 and DRM2. Chromomethylase 3, along with DRM1 and DRM2 combine in the maintenance of methylation at symmetric CpHpG as well as asymmetric DNA sites where they appear to prevent reactivation of transposons.1 DRM1 and DRM2 modify DNA de novo primarily at asymmetric CpH and CpHpH sequences targeted by siRNA.2Much less information is available on non-CG methylation in mammals. In fact, studies on mammalian non-CG methylation form a tiny fraction of those on CG methylation, even though data for cytosine methylation in other dinucleotides, CA, CT and CC, have been available since the late 1980s.3 Strong evidence for non-CG methylation was found by examining either exogenous DNA sequences, such as plasmid and viral integrants in mouse and human cell lines,4,5 or transposons and repetitive sequences such as the human L1 retrotransposon6 in a human embryonic fibroblast cell line. In the latter study, non-CG methylation observed in L1 was found to be consistent with the capacity of Dnmt1 to methylate slippage intermediates de novo.6Non-CG methylation has also been reported at origins of replication7,8 and a region of the human myogenic gene Myf3.9 The Myf3 gene is silenced in non-muscle cell lines but it is not methylated at CGs. Instead, it carries several methylated cytosines within the sequence CCTGG. Gene-specific non-CG methylation was also reported in a study of lymphoma and myeloma cell lines not expressing many B lineage-specific genes.10 The study focused on one specific gene, B29 and found heavy CG promoter methylation of that gene in most cell lines not expressing it. However, in two other cell lines where the gene was silenced, cytosine methylation was found almost exclusively at CCWGG sites. The authors provided evidence suggesting that CCWGG methylation was sufficient for silencing the B29 promoter and that methylated probes based on B29 sequences had unique gel shift patterns compared to non-methylated but otherwise identical sequences.10 The latter finding suggests that the presence of the non-CG methylation causes changes in the proteins able to bind the promoter, which could be mechanistically related to the silencing seen with this alternate methylation.Non-CG methylation is rarely seen in DNA isolated from cancer patients. However, the p16 promoter region was reported to contain both CG and non-CG methylation in breast tumor specimens but lacked methylation at these sites in normal breast tissue obtained at mammoplasty.11 Moreover, CWG methylation at the CCWGG sites in the calcitonin gene is not found in normal or leukemic lymphocyte DNA obtained from patients.12 Further, in DNA obtained from breast cancer patients, MspI sites that are refractory to digestion by MspI and thus candidates for CHG methylation were found to carry CpG methylation.13 Their resistance to MspI restriction was found to be caused by an unusual secondary structure in the DNA spanning the MspI site that prevents restriction.13 This latter observation suggests caution in interpreting EcoRII/BstNI or EcoRII/BstOI restriction differences as due to CWG methylation, since in contrast to the 37°C incubation temperature required for full EcoRII activity, BstNI and BstOI require incubation at 60°C for full activity where many secondary structures are unstable.The recent report by Lister et al.14 confirmed a much earlier report by Ramsahoye et al.15 suggesting that non-CG methylation is prevalent in mammalian stem cell lines. Nearest neighbor analysis was used to detect non-CG methylation in the earlier study on the mouse embryonic stem (ES) cell line,15 thus global methylation patterning was assessed. Lister et al.14 extend these findings to human stem cell lines at single-base resolution with whole-genome bisulfite sequencing. They report14 that the methylome of the human H1 stem cell line and the methylome of the induced pluripotent IMR90 (iPS) cell line are stippled with non-CG methylation while that of the human IMR90 fetal fibroblast cell line is not. While the results of the two studies are complementary, the human methylome study addresses locus specific non-CG methylation. Based on that data,14 one must conclude that non-CG methylation is not carefully maintained at a given site in the human H1 cell line. The average non-CG site is picked up as methylated in about 25% of the reads whereas the average CG methylation site is picked up in 92% of the reads. Moreover, non-CG methylation is not generally present on both strands and is concentrated in the body of actively transcribed genes.14Even so, the consistent finding that non-CG methylation appears to be confined to stem cell lines,14,15 raises the possibility that cancer stem cells16 carry non-CG methylation while their nonstem progeny in the tumor carry only CG methylation. Given the expected paucity of cancer stem cells in a tumor cell population, it is unlikely that bisulfite sequencing would detect non-CG methylation in DNA isolated from tumor cells since the stem cell population is expected to be only a very minor component of tumor DNA. Published sequences obtained by bisulfite sequencing generally report only CG methylation, and to the best of our knowledge bisulfite sequenced tumor DNA specimens have not reported non-CG methylation. On the other hand, when sequences from cell lines have been reported, bisulfite-mediated genomic sequencing8 or ligation mediated PCR17 methylcytosine signals outside the CG site have been observed. In a more recent study plasmid DNAs carrying the Bcl2-major breakpoint cluster18 or human breast cancer DNA13 treated with bisulfite under non-denaturing conditions, cytosines outside the CG side were only partially converted on only one strand18 or at a symmetrical CWG site.13 In the breast cancer DNA study the apparent CWG methylation was not detected when the DNA was fully denatured before bisulfite treatment.13In both stem cell studies, non-CG methylation was attributed to the Dnmt3a,14,15 a DNA methyltransferase with similarities to the plant DRM methyltransferase family19 and having the capacity to methylate non-CG sites when expressed in Drosophila melanogaster.15 DRM proteins however, possess a unique permuted domain structure found exclusively in plants19 and the associated RNA-directed non-CG DNA methylation has not been reproducibly observed in mammals despite considerable published2023 and unpublished efforts in that area. Moreover, reports where methylation was studied often infer methylation changes from 5AzaC reactivation studies24 or find that CG methylation seen in plants but not non-CG methylation is detected.21,22,25,26 In this regard, it is of interest that the level of non-CG methylation reported in stem cells corresponds to background non-CG methylation observed in vitro with human DNA methyltransferase I,27 and is consistent with the recent report that cultured stem cells are epigenetically unstable.28The function of non-CG methylation remains elusive. A role in gene expression has not been ruled out, as the studies above on Myf3 and B29 suggest.9,10 However, transgene expression of the bacterial methyltransferase M.EcoRII in a human cell line (HK293), did not affect the CG methylation state at the APC and SerpinB5 genes29 even though the promoters were symmetrically de novo methylated at mCWGs within each CCWGG sequence in each promoter. This demonstrated that CG and non-CG methylation are not mutually exclusive as had been suggested by earlier reports.9,10 That observation is now extended to the human stem cell line methylome where CG and non-CG methylation co-exist.14 Gene expression at the APC locus was likewise unaffected by transgene expression of M.EcoRII. In those experiments genome wide methylation of the CCWGG site was detected by restriction analysis and bisulfite sequencing,29 however stem cell characteristics were not studied.Many alternative functions can be envisioned for non-CG methylation, but the existing data now constrains them to functions that involve low levels of methylation that are primarily asymmetric. Moreover, inheritance of such methylation patterns requires low fidelity methylation. If methylation were maintained with high fidelity at particular CHG sites one would expect that the spontaneous deamination of 5-methylcytosine would diminish the number of such sites, so as to confine the remaining sites to those positions performing an essential function, as is seen in CG methylation.3033 However, depletion of CWG sites is not observed in the human genome.34 Since CWG sites account for only about 50% of the non-CG methylation observed in the stem cell methylome14 where methylated non-CG sites carry only about 25% methylation, the probability of deamination would be about 13% of that for CWG sites that are subject to maintenance methylation in the germ line. Since mutational depletion of methylated cytosines has to have its primary effect on the germ line, if the maintenance of non-CG methylation were more accurate and more widespread, one would have had to argue that stem cells in the human germ lines lack CWG methylation. As it is the data suggests that whatever function non-CG methylation may have in stem cells, it does not involve accurate somatic inheritance in the germ line.The extensive detail on non-CG methylation in the H1 methylome14 raises interesting questions about the nature of this form of methylation in human cell lines. A key finding in this report is the contrast between the presence of non-CG methylation in the H1 stem cell line and its absence in the IMR90 human fetal lung fibroblast cell line.14 This suggests that it may have a role in the origin and maintenance of the pluripotent lineage.14By analogy with the well known methylated DNA binding proteins specific for CG methylation,35 methylated DNA binding proteins that selectively bind sites of non-CG methylation are expected to exist in stem cells. Currently the only protein reported to have this binding specificity is human Dnmt1.3638 While Dnmt1 has been proposed to function stoichiometrically39 and could serve a non-CG binding role in stem cells, this possibility and the possibility that other stem-cell specific non-CG binding proteins might exist remain to be been explored.Finally, the nature of the non-CG methylation patterns in human stem cell lines present potentially difficult technical problems in methylation analysis. First, based on the data in the H1 stem cell methylome,40 a standard MS-qPCR for non-CG methylation would be impractical because non-CG sites are infrequent, rarely clustered and are generally characterized by partial asymmetric methylation. This means that a PCR primer that senses the 3 adjacent methylation sites usually recommended for MS-qPCR primer design41,42 cannot be reliably found. For example in the region near Oct4 (Chr6:31,246,431), a potential MS-qPCR site exists with a suboptimal set of two adjacent CHG sites both methylated on the + strand at Chr6:31,252,225 and 31,252,237.14,40 However these sites were methylated only in 13/45 and 30/52 reads. Thus the probability that they would both be methylated on the same strand is about 17%. Moreover, reverse primer locations containing non-CG methylation sites are generally too far away for practical bisulfite mediated PCR. Considering the losses associated with bisulfite mediated PCR43 the likelihood that such an MS-qPCR system would detect non-CG methylation in the H1 cell line or stem cells present in a cancer stem cell niche44,45 is very low.The second difficulty is that methods based on the specificity of MeCP2 and similar methylated DNA binding proteins for enriching methylated DNA (e.g., MIRA,46 COMPARE-MS47) will discard sequences containing non-CG methylation since they require cooperative binding afforded by runs of adjacent methylated CG sites for DNA capture. This latter property of the methylated cytosine capture techniques makes it also unlikely that methods based on 5-methylcytosine antibodies (e.g., meDIP48) will capture non-CG methylation patterns accurately since the stem cell methylome shows that adjacent methylated non-CG sites are rare in comparison to methylated CG sites.14In summary, whether or not mammalian stem cells in general or human stem cells in particular possess functional plant-like methylation patterns is likely to continue to be an interesting and challenging question. At this point we can conclude that the non-CG patterns reported in human cells appear to differ significantly from the non-CG patterns seen in plants, suggesting that they do not have a common origin or function.  相似文献   

20.
Organelle movement in plants is dependent on actin filaments with most of the organelles being transported along the actin cables by class XI myosins. Although chloroplast movement is also actin filament-dependent, a potential role of myosin motors in this process is poorly understood. Interestingly, chloroplasts can move in any direction and change the direction within short time periods, suggesting that chloroplasts use the newly formed actin filaments rather than preexisting actin cables. Furthermore, the data on myosin gene knockouts and knockdowns in Arabidopsis and tobacco do not support myosins'' XI role in chloroplast movement. Our recent studies revealed that chloroplast movement and positioning are mediated by the short actin filaments localized at chloroplast periphery (cp-actin filaments) rather than cytoplasmic actin cables. The accumulation of cp-actin filaments depends on kinesin-like proteins, KAC1 and KAC2, as well as on a chloroplast outer membrane protein CHUP1. We propose that plants evolved a myosin XI-independent mechanism of the actin-based chloroplast movement that is distinct from the mechanism used by other organelles.Key words: actin, Arabidopsis, blue light, kinesin, myosin, organelle movement, phototropinOrganelle movement and positioning are pivotal aspects of the intracellular dynamics in most eukaryotes. Although plants are sessile organisms, their organelles are quickly repositioned in response to fluctuating environmental conditions and certain endogenous signals. By and large, plant organelle movements and positioning are dependent on actin filaments, although microtubules play certain accessory roles in organelle dynamics.1,2 Actin inhibitors effectively retard the movements of mitochondria,36 peroxisomes,5,711 Golgi stacks,12,13 endoplasmic reticulum (ER),14,15 and nuclei.1618 These organelles are co-aligned and associated with actin filaments.5,7,8,1012,15,18 Recent progress in this field started to reveal the molecular motility system responsible for the organelle transport in plants.19Chloroplast movement is among the most fascinating models of organelle movement in plants because it is precisely controlled by ambient light conditions.20,21 Weak light induces chloroplast accumulation response so that chloroplasts can capture photosynthetic light efficiently (Fig. 1A). Strong light induces chloroplast avoidance response to escape from photodamage (Fig. 1B).22 The blue light-induced chloroplast movement is mediated by the blue light receptor phototropin (phot). In some cryptogam plants, the red light-induced chloroplast movement is regulated by a chimeric phytochrome/phototropin photoreceptor neochrome.2325 In a model plant Arabidopsis, phot1 and phot2 function redundantly to regulate the accumulation response,26 whereas phot2 alone is essential for the avoidance response.27,28 Several additional factors regulating chloroplast movement were identified by analyses of Arabidopsis mutants deficient in chloroplast photorelocation.2932 In particular, identification of CHUP1 (chloroplast unusual positioning 1) revealed the connection between chloroplasts and actin filaments at the molecular level.29 CHUP1 is a chloroplast outer membrane protein capable of interacting with F-actin, G-actin and profilin in vitro.29,33,34 The chup1 mutant plants are defective in both the chloroplast movement and chloroplast anchorage to the plasma membrane,22,29,33 suggesting that CHUP1 plays an important role in linking chloroplasts to the plasma membrane through the actin filaments. However, how chloroplasts move using the actin filaments and whether chloroplast movement utilizes the actin-based motility system similar to other organelle movements remained to be determined.Open in a separate windowFigure 1Schematic distribution patterns of chloroplasts in a palisade cell under different light conditions, weak (A) and strong (B) lights. Shown as a side view of mid-part of the cell and a top view with three different levels (i.e., top, middle and bottom of the cell). The cell was irradiated from the leaf surface shown as arrows. Weak light induces chloroplast accumulation response (A) and strong light induces the avoidance response (B).Here, we review the recent findings pointing to existence of a novel actin-based mechanisms for chloroplast movement and discuss the differences between the mechanism responsible for movement of chloroplasts and other organelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号