首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: In selected foraging habitats of an agricultural landscape flower visits of bumblebees and community structure of foraging bumblebees were studied, with special regard to the role of crops as super-abundant resources. Most crops represent temporal foraging habitats with high abundance of bumblebees but mainly with low diversity in the bumblebee forage community, in contrast to permanent foraging habitats such as, for example, a hedgerow. The high numbers of bumblebees in the monoculture of crop plantations consisted mainly of short-tongued bumblebee species. The role of foraging distances for the visitation rate of foraging habitats was studied by performing capture–recapture experiments with natural nests of Bombus terrestris , Bombus lapidarius and Bombus muscorum . Differences were found on the species as well as the individual level. The foraging distances of B. muscorum were more restricted to the neighbourhood of the nesting habitat than the foraging activity of B. terrestris and B. lapidarius . High percentages of B. terrestris workers were recaptured while foraging on super-abundant resources in distances up to 1750 m from the nest. Isolated patches of highly rewarding forage crops, in agricultural landscapes, are probably only accessed by bumblebee species with large mean foraging distances, such as the short-tongued B. terrestris . Species like the rare, long-tongued B. muscorum depend on a close connection between nesting and foraging habitat. A restricted foraging radius might be one important factor of bumblebee species loss and potential pollinator limitation in modern agricultural landscapes. Furthermore, long-distance flights of bumblebee pollinators have to be considered in the present discussion on gene flow from transgenic plant species on a landscape scale.  相似文献   

2.
Plant and pollinator diversity have declined concurrently in Europe in the last half century. We studied plant–bumblebee food webs to understand the effects of two agri-environmental schemes (AES, organic farming and environmentally-friendly management practice) vs. conventional farming as control group, landscape structure (heterogeneous vs. homogeneous landscapes) and seasonality (June, July, and August) interactions using Estonian AES monitoring data. In the summer of 2014, we observed foraging bumblebees (20 species) on 64 farms that varied in agricultural management and landscape structure, yielding a total of 2303 flower visits on 76 plant species. We found that both management practice and landscape structure influenced the generality (redundancy in the use of flower resources) of food webs. In homogeneous landscapes, environmentally-friendly management practices, including restrictions on the application of glyphosates, enhancement of bumblebee habitats, such as permanent grassland field margins, the allocation of a minimum of 15% of arable land (including rotational grasslands) to legumes, contributed to a higher number of visited plant species (generality) in July, whereas organic farming did so in August. Therefore, both environmentally-friendly and organic management practices are needed to support plant–bumblebee food webs in agricultural landscapes. Food web generality and diversity (Shannon index) are affected by a significant interaction between landscape structure and seasonality: food web diversity varied in homogeneous landscapes between the three different survey months, whereas food webs were more diverse in heterogeneous landscapes. We did not find any significant interaction effect of management, landscape structure and seasonality on linkage density and vulnerability. A full list of the most visited plant species by bumblebees based on species-specific flower visitation was also assembled. In homogeneous landscapes, resource limitation is an issue for bumblebees in certain time periods. For supporting bumblebees in the agricultural landscapes, avoiding resource limitation is important and this can be secured with a combination of AES management practices.  相似文献   

3.
Agri-environment schemes, like flower fields, have been implemented in the EU to counteract the dramatic decline of farmland biodiversity. Farmers in Lower Saxony, Germany, may receive payments for three flower field types: annual, perennial (five years old), and mixed flower fields composed of yearly alternating annual and biannual parts. We assessed the effectiveness of these flower field types in providing bumblebee foraging habitat compared to control cereal fields. We sampled bumblebees with transect walks and assessed the richness of exploited pollen plants using DNA meta-barcoding and direct observations.All flower field types enhanced bumblebee abundance and species richness compared to control fields but attracted mostly three generalist species. Although we expected highest benefits from the more heterogeneous mixed flower fields, abundance was highest in annual, only intermediate in mixed, and lowest in perennial flower fields. Bumblebee species richness did not differ between flower field types.Overall, the proportion of sown plants in pollen loads was surprisingly low (< 50%). Bombus pascuorum, but not B. terrestris agg., exploited 10% of the sown plant species in perennial, 36% in annual and 45% in mixed flower fields, respectively. Compared to direct observations, pollen samples revealed 4.5 times more visited plant species and thus assessed floral resource use more reliably. Plant species richness in pollen loads decreased with local flowering plant species richness and increased with proportion of annual crops in the landscape, potentially due to the exploitation of more diverse and scattered resources, including flowering crops, in homogenized landscapes to fulfil dietary requirements.Our results indicate that under the current management, both annual and mixed flower fields provide the most attractive food resources, while perennial flower fields offered the poorest foraging habitats. Conclusively, flower fields seem important but resources from the surrounding landscape are still needed to sustain bumblebees in agricultural landscapes.  相似文献   

4.
Machair is a grassland habitat that supports nationally rare species including the bumblebee species Bombus distinguendus and Bombus muscorum. Changes in land management practices have resulted in a loss of floral diversity in some areas, reducing the availability of bumblebee foraging resources. In order to determine the most effective way of increasing forage plant availability on degraded machair, a restoration trial was established in western Scotland and comprised four seed mixes and a fallow treatment. Treatments were monitored over 3 years in order to compare the relative abundance of bumblebees and their forage plants. Two mixes contained wildflower species; one mix is currently used to create bird and bee foraging habitat on nature reserves and the fourth is a commercially available grass mix. There was little variation in inflorescence and bumblebee abundance between treatments early on but marked differences emerged later in the season in all 3 years. By the end of the monitoring period, the wildflower treatments contained between four and eighteen times more inflorescences than other treatment types. Similar trends were observed in bumblebee abundances. Some of the rarest bumblebee species exist primarily in areas that have largely escaped agricultural intensification. In these areas it is important that habitat management is specifically targeted and translated into appropriate agri-environment schemes. We suggest that the most effective method for restoring bumblebee forage plants on machair is to sow wildflower-rich seed mixes and this should be combined with late cutting and winter grazing practices to maintain sward diversity over time.  相似文献   

5.
Many bumblebee (Bombus) species are undergoing a strong decline in Europe due to, amongst other things, a decrease of food resources. While leguminous plants (Fabaceae) are considered to be one of the main pollen sources of bumblebees, thistles (Asteraceae tribe Cardueae) have been suggested to be important for male diet. Yet, several European countries apply strict regulations against thistles since they are considered to be one of the principal weeds in agricultural landscapes. Such regulations could impact bumblebee conservation through disruption of male diet and ecology. Here, we assess the male-depending importance of thistles for bumblebee species based on field observations across countries where a legal regulation against thistles is in effect. We ultimately aim to evaluate the potential consequences of these regulations on bumblebee conservation. Our results confirm that most floral visit observations of males occur on thistles (mainly Cirsium spp. and Carduus spp.) and some species are almost exclusively observed on them. Thistle removal is thus most likely a threat for bumblebees. Therefore, we advocate repealing the thistle removal acts to make way for alternative thistle regulations which reconcile biodiversity conservation and agricultural requirements.  相似文献   

6.
Although habitat fragmentation and agricultural intensification are known as threads to pollinator diversity, little is known about consequences for population size and genetic diversity. Here, we combined detailed field observations, molecular approaches and GIS-based quantification of landscape structure (measured by proportions of seminatural habitats and proportions of mass flowering crops) to get new insights into driving forces of population dynamics of the bumblebee species Bombus pascuorum. Comparing 13 agriculturally dominated landscape sectors, we found the proportion of mass flowering crops to positively influence bumblebee abundance whereas the proportion of seminatural habitats was of minor importance. We used microsatellites to quantify landscape-related colony densities, inbreeding and population substructure. Detected colony densities did not correlate with landscape parameters or with local worker abundance, measured by field observations. These results indicate that increased worker abundances within landscapes are rather due to greater colony sizes than due to an increased number of nests. We found significant population substructure, measured by F(ST) and seven landscape sectors to bear significantly increased inbreeding values (F(IS)). F(IS) was strongly varying between sectors but did not correlate with landscape structure. Moreover, F(IS) had a significantly negative effect on colony size, demonstrating the importance of genetic diversity on population fitness at a landscape scale. We suggest that inbreeding levels might be related to the temporal variation of food resources and population sizes in agricultural landscapes.  相似文献   

7.
Wildlife-friendly management practices promote pollinators and pollination services in agricultural landscapes. Wild bee densities are driven by landscape composition, as they benefit from an increased availability of nesting and foraging resources at landscape scale. However, effects of landscape composition on bee foraging decisions and consequences for crop pollination have rarely been studied. We investigated, how landscape composition affects bee densities and foraging behavior in faba bean (Vicia faba L.) fields and how this impacts faba bean yield. We recorded densities and nectar robbing behavior of honeybees, long- tongued and short-tongued bumblebees in faba bean fields in eleven landscapes with varying landscape composition (e.g. land cover of oilseed rape, faba bean and semi-natural habitats). Moreover, we assessed yield components of faba beans via pollinator exclusion experiments. Increasing covers of faba bean and semi-natural habitats positively influenced bumblebee densities, while high oilseed rape covers negatively affected short-tongued bumblebee densities in bean fields. Increased faba bean covers enhanced the proportion of nectar-robbing short-tongued bumblebees. The number of beans per pod was increased by insect pollination, while the number of pods was decreased; these effects however depended on variety. Landscape composition interacted with bee densities in shaping yield components in V. faba. Our study emphasizes the importance of considering landscape management to maximize crop yields, as shown for the case of faba beans. The composition of agricultural landscape can modulate bee densities in crop fields, bees foraging behavior and pollination services.  相似文献   

8.
Abstract.  1. The survival, growth and fecundity of bumblebee colonies are affected by the availability of food resources and presence of natural enemies. Social parasites (cuckoo bumblebees and other bumblebees) can invade colonies and reduce or halt successful reproduction; however, little is known about the frequency of invasion or what environmental factors determine their success in the field.
2. We used 48 experimental colonies of the bumblebee Bombus terrestris , and manipulated both resource availability at the landscape scale and date of colony founding, to explore invasion rates of social parasites and their effect on the performance of host colonies.
3. Proximity to abundant forage resources (fields of flowering oilseed rape) and early colony founding significantly increased the probability of parasite invasion and thus offset the potential positive effects of these factors on bumblebee colony performance.
4. The study concludes that optimal colony location may be among intermediate levels of resources and supports schemes designed to increase the heterogeneity of forage resources for bumblebees across agricultural landscapes.  相似文献   

9.
Floral resource quantity in agricultural landscapes plays a key role in the persistence of wild pollinators. An equally important, but less investigated factor is how variation in floral resource availability over time, e.g. floral resource pulses, affects pollinator abundances and diversity. Despite the potential importance of late-season resource pulses for bumblebee reproduction, few studies have evaluated the effects of late-season mass-flowering crops on bumblebee abundances and diversity during and after crop bloom. We assessed how bumblebee abundances, diversity and traits associated with species rarity were affected by cultivation of late-season mass-flowering red clover grown for seed production. Bumblebees were surveyed in red clover fields and flower-rich field borders across 20 landscapes with or without a red clover field during and after crop bloom in southern Sweden. Bumblebee worker abundances were higher in clover fields compared to flower-rich borders in the surrounding landscape. There was no relationship between presence of clover fields and the abundance of males of social bumblebees, but more male cuckoo bumblebees were found in flower-rich borders in landscapes with clover following crop bloom. Mass-flowering red clover also had a positive effect on bumblebee species richness and diversity after crop bloom. Overall, clover had positive and lasting effects on less common bumblebees thereby sustaining higher bumblebee species richness after bloom. Cultivation of red clover has the potential, in combination with the management of flower-rich habitats, to benefit less common bumblebee species in temperate agroecosystems.  相似文献   

10.
The Value of Uncropped Field Margins For Foraging Bumblebees   总被引:3,自引:0,他引:3  
The intensification of agriculture has led to declines in species diversity and abundance within groups of certain flora and fauna. Bumblebees (Bombus spp.) are one group where a decline has been documented, and it is thought to be attributable to a decrease in forage resources and potential nest sites. As bumblebees play an important role in the pollination of many entomophilous crops, this decline could impact on agricultural productivity. We examined the role of naturally regenerated field margins in providing forage plants on land where nectar resources are otherwise impoverished. The following question was addressed – Are naturally regenerated unsprayed field margins more attractive to foraging bumblebees and honeybees than cropped field margins managed as conservation headlands? Significantly more bees visited naturally regenerated field margins than cropped field margins. Honeybees (Apis mellifera), Bombus terrestris, and Bombus lapidarius were the most commonly observed bee species. Different wildflower species within the naturally regenerated margins varied greatly in relative number of visits received, and bumblebee species were found to prefer different flower species to honeybees. The potential role that naturally regenerated field margins could play in the conservation of bumblebee species, and the implications for other species of flora and fauna, are discussed.  相似文献   

11.
Since the 1980s, bumblebee species have declined in Europe, partly because of agricultural intensification. Yet little is known about the potential consequences of agricultural decline on bumblebees. In most mountainous areas, agricultural decline from rural exodus is acute and alters landscapes as much as intensive farming. Our study aims at providing a quantitative assessment of agricultural decline through its impact on landscapes, and at characterising bumblebee assemblages associated with land-use types of mountain regions. The studied area (6.2 km2) belongs to the Eyne’s valley in the French Pyrenees, known to host the exceptional number of 33 bumblebee species of the 45 found in continental France. We compare aerial photographs from 1953 and 2000 to quantify agricultural decline. We cross a bumblebee database (2849 observations) with land-use types interpreted from aerial photographs from 2000. Comparison of land-use maps from 1953 and 2000 reveals a strong progression of woodland and urbanised areas, and a decline of agricultural land (pastures and crops), except for hayfields. Spatial correlations between low altitude agro-pastoral structure and the occurrence of bumblebee species shows that bumblebee specific richness is highest in agro-pastoral land-uses (pastures and hayfields) and in the ski area, and poorest in woodland and urbanised areas. Urbanisation and agricultural decline, through increased woodland areas, could lead to a loss of bumblebee diversity in the future. To preserve high bumblebee richness, it is crucial to design measures to maintain open land habitats and the landscape’s spatial heterogeneity through agro-pastoral practices.  相似文献   

12.
The emergence of agricultural land use change creates a number of challenges that insect pollinators, such as eusocial bees, must overcome. Resultant fragmentation and loss of suitable foraging habitats, combined with pesticide exposure, may increase demands on foraging, specifically the ability to collect or reach sufficient resources under such stress. Understanding effects that pesticides have on flight performance is therefore vital if we are to assess colony success in these changing landscapes. Neonicotinoids are one of the most widely used classes of pesticide across the globe, and exposure to bees has been associated with reduced foraging efficiency and homing ability. One explanation for these effects could be that elements of flight are being affected, but apart from a couple of studies on the honeybee (Apis mellifera), this has scarcely been tested. Here, we used flight mills to investigate how exposure to a field realistic (10 ppb) acute dose of imidacloprid affected flight performance of a wild insect pollinator—the bumblebee, Bombus terrestris audax. Intriguingly, observations showed exposed workers flew at a significantly higher velocity over the first ¾ km of flight. This apparent hyperactivity, however, may have a cost because exposed workers showed reduced flight distance and duration to around a third of what control workers were capable of achieving. Given that bumblebees are central place foragers, impairment to flight endurance could translate to a decline in potential forage area, decreasing the abundance, diversity, and nutritional quality of available food, while potentially diminishing pollination service capabilities.  相似文献   

13.
关晓庆  刘军和  赵紫华 《生态学报》2013,33(14):4468-4477
农业景观格局与过程能够强烈影响寄生蜂对寄主的寻找及寄生作用,寄主密度亦是影响寄生蜂分布的重要因素,然而农业景观的格局和寄主密度对寄生蜂寄生率的相互影响是一项值得研究的工作.在简单与复杂2种麦田农业景观结构下,调查了麦蚜的分布格局与2种寄主密度下麦蚜的初寄生率与重寄生率,分析了景观结构对麦蚜密度的影响、景观格局与麦蚜密度对寄生蜂寄生率与重寄生率的影响及交互作用.结果表明:景观结构的复杂性对麦蚜分布和寄生蜂初寄生率与重寄生率的影响均不明显,但寄主密度与景观结构的复杂性对寄生蜂的影响存在着明显的交互作用,寄主密度与寄生率呈正相关,寄主密度较低时烟蚜茧蜂为优势种,寄主密度较高时燕麦蚜茧蜂为优势种.麦蚜初寄生蜂与重寄生蜂对寄主密度的反应与其形态学、体型大小以及生活史特征相关,初寄生蜂与重寄生蜂的群落组成显著影响其对麦蚜的寄生率,而与景观结构的复杂性关系不大.  相似文献   

14.
Stefan Andersson 《Oecologia》1988,76(1):125-130
Summary Bumblebees foraging on the self-incompatible Anchusa officinalis fly between near neighbour plants and between near neighbour inflorescences within plants. Although many-flowered plants attracted most bumblebees these plants received fewer visits on a per flower basis than smaller plants, and each bumblebee visited a smaller proportion of the flowers. The calculated effective visitation rate per flower was highest on plants of an intermediate size. If pollen-carryover was assumed to be limited the most efficient plant was predicted to be smaller since the proportion of fertilized flowers per bumblebee visit is expected to decrease further on the largest plants in relation to the total flower number. These predictions were tested by measuring fruit-set in the field. The percentage fruit-set decreased with plant size at all sizes that were investigated. That the most efficient plant was small indicates that pollen-carryover was indeed limited. However, the low percentage fruit-set associated with large size did not present a serious problem since the total estimated seed production per plant still increased with size. Selection favoring smaller plants may be low or absent in Anchusa.  相似文献   

15.
Coexistence in bumblebee communities has largely been investigated at local spatial scales. However, local resource partitioning does not fully explain the species diversity of bumblebee communities. Theoretical studies provide new evidence that partitioning of space can promote species coexistence, when species interact with their environment at different spatial scales. If bumblebee species possess specific foraging ranges, different spatial resource utilisation patterns might operate as an additional mechanism of coexistence in bumblebee communities. We investigated the effects of the landscape-wide availability of different resources (mass flowering crops and semi-natural habitats) on the local densities of four bumblebee species at 12 spatial scales (landscape sectors with 250–3,000 m radius) to indirectly identify the spatial scales at which the bumblebees perceive their environment. The densities of all bumblebee species were enhanced in landscapes with high proportions of mass flowering crops (mainly oilseed rape). We found the strongest effects for Bombus terrestris agg. and Bombus lapidarius at large spatial scales, implying foraging distances of 3,000 and 2,750 m, respectively. The densities of Bombus pascuorum were most strongly influenced at a medium spatial scale (1,000 m), and of Bombus pratorum (with marginal significance) at a small spatial scale (250 m). The estimated foraging ranges tended to be related to body and colony sizes, indicating that larger species travel over larger distances than smaller species, presumably enabling them to build up larger colonies through a better exploitation of food resources. We conclude that coexistence in bumblebee communities could potentially be mediated by species-specific differences in the spatial resource utilisation patterns, which should be considered in conservation schemes.  相似文献   

16.
Many bumblebee species are declining due to a loss of semi-natural habitats in agricultural landscapes resulting in diminished forage and nest sites. Anecdotal experience indicates that bumblebees nest in straw bales, but scientific evidence is lacking. We spent 250 h screening for bumblebee nests in 1255 straw bales and ten straw stacks belonging to 58 farms in two intensively farmed Swedish regions and recorded nests, nest traffic, and straw characteristics. We supplemented the straw screening with screening of control areas, without straw, that were selected in similar environments as the areas with straw. We observed 45 bumblebee nests (including potential nests where a single bumblebee flew in or out of the straw) of eight species/species groups, including one red-listed, in or directly adjacent to the straw at 26 of the farms. Nests were mainly found in partly decayed straw and bales placed together. We found no nests in control areas. Based on our results, we suggest that straw can be used as an easy, cheap and efficient intervention to increase the availability of bumblebee nest sites in agricultural landscapes. Considering the costs and benefits of the alternatives, we conclude that straw addition has advantages over commercial bumblebee colonies for crop pollination purposes and over artificial nest boxes for conservation purposes.  相似文献   

17.
A major challenge in habitat restoration is targeting the key aspects of a species' niche for enhancement, particularly for species that use a diverse set of habitat features. However, restoration that focuses on limited aspects of a species' niche may neglect other resources that are critical to population persistence. We evaluated the ability of native plant hedgerows, planted to increase pollen and nectar resources for wild bees in agricultural landscapes, to provide suitable nesting habitat and enhance nesting rates of ground‐nesting bees. We found that, when compared to unmanaged field edges (controls), hedgerows did not augment most indicators of nest habitat quality (bare ground, soil surface irregularity, and soil hardness), although coarser soils were associated with higher incidence and richness of nesting bees. Hedgerows did not augment nesting rates when compared to control edges. Although all the bee species we detected nesting were also found foraging on floral resources, the foraging versus nesting assemblages found within a site were highly dissimilar. These results may reflect sampling error; or, species found foraging but not nesting in hedgerows could be utilizing hedgerows as “partial habitats,” nesting outside hedgerow plantings but foraging on the floral resources they provide. We conclude that although hedgerows are known to provide critical floral resources to wild bees especially in resource‐poor intensive agricultural landscapes, simply increasing vegetative diversity and structure may not be simultaneously enhancing nesting habitat for ground‐nesting bees.  相似文献   

18.
Changes in agricultural practice across Europe and North America have been associated with range contractions and local extinction of bumblebees (Bombus spp.). A number of agri‐environment schemes have been implemented to halt and reverse these declines, predominantly revolving around the provision of additional forage plants. Although it has been demonstrated that these schemes can attract substantial numbers of foraging bumblebees, it remains unclear to what extent they actually increase bumblebee populations. We used standardized transect walks and molecular techniques to compare the size of bumblebee populations between Higher Level Stewardship (HLS) farms implementing pollinator‐friendly schemes and Entry Level Stewardship (ELS) control farms. Bumblebee abundance on the transect walks was significantly higher on HLS farms than ELS farms. Molecular analysis suggested maximum foraging ranges of 566 m for Bombus hortorum, 714 m for B. lapidarius, 363 m for B. pascuorum and 799 m for B. terrestris. Substantial differences in maximum foraging range were found within bumblebee species between farm types. Accounting for foraging range differences, B. hortorum (47 vs 13 nests/km2) and B. lapidarius (45 vs 22 nests/km2) were found to nest at significantly greater densities on HLS farms than ELS farms. There were no significant differences between farm type for B. terrestris (88 vs 38 nests/km2) and B. pascuorum (32 vs 39 nests/km2). Across all bumblebee species, HLS management had a significantly positive effect on bumblebee nest density. These results show that targeted agri‐environment schemes that increase the availability of suitable forage can significantly increase the size of wild bumblebee populations.  相似文献   

19.
Increasing human land use for agriculture and housing leads to the loss of natural habitat and to widespread declines in wild bees. Bee foraging dynamics and fitness depend on the availability of resources in the surrounding landscape, but how precisely landscape related resource differences affect bee foraging patterns remains unclear. To investigate how landscape and its interaction with season and weather drive foraging and resource intake in social bees, we experimentally compared foraging activity, the allocation of foragers to different resources (pollen, nectar, and resin) and overall resource intake in the Australian stingless bee Tetragonula carbonaria (Apidae, Meliponini). Bee colonies were monitored in different seasons over two years. We compared foraging patterns and resource intake between the bees'' natural habitat (forests) and two landscapes differently altered by humans (suburban gardens and agricultural macadamia plantations). We found foraging activity as well as pollen and nectar forager numbers to be highest in suburban gardens, intermediate in forests and low in plantations. Foraging patterns further differed between seasons, but seasonal variations strongly differed between landscapes. Sugar and pollen intake was low in plantations, but contrary with our predictions, it was even higher in gardens than in forests. In contrast, resin intake was similar across landscapes. Consequently, differences in resource availability between natural and altered landscapes strongly affect foraging patterns and thus resource intake in social bees. While agricultural monocultures largely reduce foraging success, suburban gardens can increase resource intake well above rates found in natural habitats of bees, indicating that human activities can both decrease and increase the availability of resources in a landscape and thus reduce or enhance bee fitness.  相似文献   

20.
Major shifts in the availability of palatable plant resources are of key relevance to the ecology of leaf‐cutting ants in human‐modified landscapes. However, our knowledge is still limited regarding the ability of these ants to adjust their foraging strategy to dynamic environments. Here, we examine a set of forest stand attributes acting as modulating forces for the spatiotemporal architecture of foraging trail networks developed by Atta cephalotes L. (Hymenoptera: Formicidae: Attini). During a 12‐month period, we mapped the foraging systems of 12 colonies located in Atlantic forest patches with differing size, regeneration age, and abundance of pioneer plants, and examined the variation in five trail system attributes (number of trails, branching points, leaf sources, linear foraging distance, and trail complexity) in response to these patch‐related variables. Both the month‐to‐month differences (depicted in annual trail maps) and the steadily accumulating number of trails, trail‐branching points, leaf sources, and linear foraging distance illustrated the dynamic nature of spatial foraging and trail complexity. Most measures of trail architecture correlated positively with the number of pioneer trees across the secondary forest patches, but no effects from patch age and size were observed (except for number of leaf sources). Trail system complexity (measured as fractal dimension; Df index) varied from 1.114 to 1.277 along the 12 months through which ant foraging was monitored, with a marginal trend to increase with the abundance of pioneer stems. Our results suggest that some leaf‐cutting ant species are able to generate highly flexible trail networks (via fine‐tuned adjustment of foraging patterns), allowing them to profit from the continuous emergence/recruitment of palatable resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号