首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Reactive oxygen species (ROS) represent both toxic by-products of aerobic metabolism as well as signaling molecules in processes like growth regulation and defense pathways. The study of signaling and oxidative-damage effects can be separated in plants expressing glycolate oxidase in the plastids (GO plants), where the production of H2O2 in the chloroplasts is inducible and sustained perturbations can reproducibly be provoked by exposing the plants to different ambient conditions. Thus, GO plants represent an ideal non-invasive model to study events related to the perception and responses to H2O2 accumulation. Metabolic profiling of GO plants indicated that under high light a sustained production of H2O2 imposes coordinate changes on central metabolic pathways. The overall metabolic scenario is consistent with decreased carbon assimilation, which results in lower abundance of glycolytic and tricarboxylic acid cycle intermediates, while simultaneously amino acid metabolism routes are specifically modulated. The GO plants, although retarded in growth and flowering, can complete their life cycle indicating that the reconfiguration of the central metabolic pathways is part of a response to survive and thus, to adapt to stress conditions imposed by the accumulation of H2O2 during the light period.Key words: Arabidopsis thaliana, H2O2, oxidative stress, reactive oxygen species, signalingReactive oxygen species (ROS) are key molecules in the regulation of plant development, stress responses and programmed cell death. Depending on the identity of ROS species or its subcellular production site, different cellular responses are provoked.1 To assess the effects of metabolically generated H2O2 in chloroplasts, we have recently generated Arabidopsis plants in which the peroxisomal GO was targeted to chloroplasts.2 The GO overexpressing plants (GO plants) show retardation in growth and flowering time, features also observed in catalase, ascorbate peroxidase and MnSOD deficient mutants.35 The analysis of GO plants indicated that H2O2 is responsible for the observed phenotype. GO plants represent an ideal non-invasive model system to study the effects of H2O2 directly in the chloroplasts because H2O2 accumulation can be modulated by growing the plants under different ambient conditions. By this, growth under low light or high CO2 concentrations minimizes the oxygenase activity of RubisCO and thus the flux through GO whereas the exposition to high light intensities enhances photorespiration and thus the flux through GO.Here, we explored the impact of H2O2 production on the primary metabolism of GO plants by assessing the relative levels of various metabolites by gas chromatography coupled to mass spectrometry (GC-MS)6 in rosettes of plants grown at low light (30 µmol quanta m−2 s−1) and after exposing the plants for 7 h to high light (600 µmol quanta m−2 s−1). The results obtained for the GO5 line are shown in
After 1 h at 30 µEAfter 7 h at 600 µE
Alanine0.88 ± 0.052.83 ± 0.68
Asparagine1.39 ± 0.123.64 ± 0.21
Aspartate0.88 ± 0.031.65 ± 0.10
GABA1.14 ± 0.051.13 ± 0.05
Glutamate0.97 ± 0.041.51 ± 0.07
Glutamine1.06 ± 0.111.87 ± 0.06
Glycine1.23 ± 0.070.30 ± 0.02
Isoleucine3.52 ± 0.403.00 ± 0.15
Leucine1.36 ± 0.220.57 ± 0.06
Lysine1.49 ± 0.130.38 ± 0.02
Methionine0.96 ± 0.054.54 ± 0.51
Phenylalanine0.95 ± 0.030.94 ± 0.04
Proline1.32 ± 0.221.60 ± 0.13
Serine1.05 ± 0.041.49 ± 0.15
Threonine4.74 ± 0.175.51 ± 0.34
Valine0.91 ± 0.130.29 ± 0.02
Citrate/Isocitrate0.65 ± 0.020.64 ± 0.02
2-oxoglutarate0.95 ± 0.110.76 ± 0.05
Succinate0.78 ± 0.040.72 ± 0.02
Fumarate0.64 ± 0.030.31 ± 0.01
Malate0.74 ± 0.030.60 ± 0.02
Pyruvate1.19 ± 0.280.79 ± 0.04
Ascorbate1.13 ± 0.142.44 ± 0.45
Galactonate-γ-lactone1.81 ± 0.401.62 ± 0.28
Fructose1.20 ± 0.130.37 ± 0.01
Glucose1.38 ± 0.170.30 ± 0.01
Mannose0.90 ± 0.271.34 ± 0.28
Sucrose1.04 ± 0.070.49 ± 0.02
Fructose-6P0.82 ± 0.151.20 ± 0.15
Glucose-6P0.87 ± 0.061.25 ± 0.18
3-PGA1.13 ± 0.110.35 ± 0.02
DHAP1.38 ± 0.091.26 ± 0.08
Glycerate0.99 ± 0.040.67 ± 0.01
Glycerol1.07 ± 0.041.12 ± 0.05
Shikimate1.18 ± 0.040.35 ± 0.01
Salicylic acid1.04 ± 0.180.66 ± 0.18
Open in a separate windowPlants were grown at 30 µmol m−2 sec−1 (30 µE). The samples were collected 1 h after the onset of the light period and after 7 h of exposure to 600 µmol m−2 sec−1 (600 µE), respectively. The values are relative to the respective wild-type (each metabolite = 1) and represent means ± SE of four determinations of eight plants. (*) indicates the value is significantly different from the respective wild-type as determined by the Student''s t test (p < 0.05).At the beginning of the light period in low light conditions, some significant deviations in the levels of metabolites tested were observed in GO plants when compared to the wild-type (2 the transgenic GO activity is sufficient to induce a characteristic metabolic phenotype (Fig. 1). The levels of the tricarboxylic acid (TCA) cycle intermediates, citrate/isocitrate, succinate, fumarate and malate were lower in the GO plants (7 In consequence, OAA might not freely enter the TCA cycle and is redirected to the synthesis of Lys, Thr and Ile, which accumulate in the GO plants (Open in a separate windowFigure 1Simplified scheme of the primary metabolism showing the qualitative variations in metabolite abundance in GO plants obtained by GC-MS analysis (2 Blue boxes indicate a significant increase in the content of the particular metabolite compared to the wild-type, while red boxes indicate a significant decrease. Metabolites without boxes have not been determined. The arrows do not always indicate single steps. Adapted from Baxter et al., 2007.High light treatment induced massive changes in the metabolic profile of GO plants (Fig. 1). The OAA-derived amino acids Asp, Asn, Thr, Ile and Met as well as the 2-oxoglutarate-derived amino acids Glu and Gln accumulated. On the contrary, the levels of the Pyr-derived amino acids Val and Leu and the OAA-derived amino acid Lys decreased. A rational explanation for these metabolic changes is difficult to assess, but these changes could be a consequence of a metabolic reconfiguration in response to high light leading to required physiological functions and thus ensuring continued cellular function and survival, e.g., production of secondary metabolites to mitigate photooxidative damage. The higher levels of Glu observed in the GO plants could be attributed to alternative pathways of glyoxylate metabolism that may occur during photorespiration.8 It has been shown earlier that isocitrate derived from glyoxylate and succinate is decarboxylated by cytosolic isocitrate dehydrogenase producing 2-oxoglutarate and further glutamate.8In GO plants grown under low light conditions (minimized photorespiratory conditions), the levels of Gly were similar to those of the wild-type whereas, after exposure to high light (photorespiratory conditions), the Gly levels were extremely low, indicating that the GO activity diverts a significant portion of flux from the photorespiratory pathway (7 and also the levels of the lipoic acid-containing subunits of the pyruvate- and 2-oxoglutarate dehydrogenases were shown to be significantly reduced under oxidative stress conditions.9,10 Similarly, the contents of the soluble sugars sucrose, fructose and glucose and those of 3-PGA and glycerate were lower. In addition, the GO plants showed an impairment in the accumulation of starch under high light conditions, a feature that was not observed if the plants were grown under non-photorespiratory conditions.2Together, these results indicate that the low photosynthetic carbon assimilation in the GO plants exposed to high light is most probably due to enhanced photoinhibition,2 the repression of genes encoding photosynthetic components by H2O2,1113 and the direct damage or inhibition of enzyme activities involved in CO2 assimilation and energy metabolism by H2O2.7,10,14,15 Moreover, Scarpeci and Valle13 showed that in plants treated with the superoxid anion radical producing methylviologen (MV) most of the genes involved in phosphorylytic starch degradation, e.g., the trioseP/Pi translocator and genes involved in starch and sucrose synthesis were repressed, while genes involved in hydrolytic starch breakdown and those involved in sucrose degradation were induced. In line with this, the contents of carbohydrates were also lower in MV-treated plants. Together, these observations can also explain the lower growth rates of the GO plants in conditions where the oxygenase activity of RubisCO becomes important and thus, the flux through GO increases.2The levels of shikimate were lower in GO plants (2,16 and the low levels of substrates available, as anthocyanins are ultimately synthesized from photosynthates and the GO plants showed a diminished photosynthetic performance.2As expected, the levels of ascorbate and its precursor, galactonate-γ-lactone, were enhanced in the GO plants clearly showing the activation of the cellular antioxidant machinery (10 described the metabolic response to oxidative stress of heterotrophic Arabidopsis cells treated with menadione, which also generates superoxide anion radicals. This oxidative stress was shown to induce metabolic inhibition of flux through the TCA cycle and sectors of amino acid metabolism together with a diversion of carbon into the oxidative pentose phosphate pathway.Signaling and oxidative-damage effects are difficult to separate by manipulating the enzymes of antioxidant systems. In this regard, the GO plants represent a challenging inducible model that avoid acclimatory and adaptative effects. Moreover, it is possible to control the H2O2 production in the chloroplasts of GO plants without inducing oxidative damage by changing the conditions of growth.2 Further exploration of metabolic changes imposed by different ROS at the cellular and whole organ levels will allow to address many intriguing questions on how plants can rearrange metabolism to cope with oxidative stresses.  相似文献   

2.
Stress-induced flowering     
Kaede C Wada  Kiyotoshi Takeno 《Plant signaling & behavior》2010,5(8):944-947
Many plant species can be induced to flower by responding to stress factors. The short-day plants Pharbitis nil and Perilla frutescens var. crispa flower under long days in response to the stress of poor nutrition or low-intensity light. Grafting experiments using two varieties of P. nil revealed that a transmissible flowering stimulus is involved in stress-induced flowering. The P. nil and P. frutescens plants that were induced to flower by stress reached anthesis, fruited and produced seeds. These seeds germinated, and the progeny of the stressed plants developed normally. Phenylalanine ammonialyase inhibitors inhibited this stress-induced flowering, and the inhibition was overcome by salicylic acid (SA), suggesting that there is an involvement of SA in stress-induced flowering. PnFT2, a P. nil ortholog of the flowering gene FLOWERING LOCUS T (FT) of Arabidopsis thaliana, was expressed when the P. nil plants were induced to flower under poor-nutrition stress conditions, but expression of PnFT1, another ortholog of FT, was not induced, suggesting that PnFT2 is involved in stress-induced flowering.Key words: flowering, stress, phenylalanine ammonia-lyase, salicylic acid, FLOWERING LOCUS T, Pharbitis nil, Perilla frutescensFlowering in many plant species is regulated by environmental factors, such as night-length in photoperiodic flowering and temperature in vernalization. On the other hand, a short-day (SD) plant such as Pharbitis nil (synonym Ipomoea nil) can be induced to flower under long days (LD) when grown under poor-nutrition, low-temperature or high-intensity light conditions.19 The flowering induced by these conditions is accompanied by an increase in phenylalanine ammonia-lyase (PAL) activity.10 Taken together, these facts suggest that the flowering induced by these conditions might be regulated by a common mechanism. Poor nutrition, low temperature and high-intensity light can be regarded as stress factors, and PAL activity increases under these stress conditions.11 Accordingly, we assumed that such LD flowering in P. nil might be induced by stress. Non-photoperiodic flowering has also been sporadically reported in several plant species other than P. nil, and a review of these studies suggested that most of the factors responsible for flowering could be regarded as stress. Some examples of these factors are summarized in 1214

Table 1

Some cases of stress-induced flowering
Stress factorSpeciesFlowering responseReference
high-intensity lightPharbitis nilinduction5
low-intensity lightLemna paucicostatainduction29
Perilla frutescens var. crispainduction14
ultraviolet CArabidopsis thalianainduction23
droughtDouglas-firinduction30
tropical pasture Legumesinduction31
lemoninduction3235
Ipomoea batataspromotion36
poor nutritionPharbitis nilinduction3, 4, 13
Macroptilium atropurpureumpromotion37
Cyclamen persicumpromotion38
Ipomoea batataspromotion36
Arabidopsis thalianainduction39
poor nitrogenLemna paucicostatainduction40
poor oxygenPharbitis nilinduction41
low temperaturePharbitis nilinduction9, 12
high conc. GA4/7Douglas-firpromotion42
girdlingDouglas-firinduction43
root pruningCitrus sp.induction44
Pharbitis nilinduction45
mechanical stimulationAnanas comosusinduction46
suppression of root elongationPharbitis nilinduction7
Open in a separate window  相似文献   

3.
The interplay of lipid acyl hydrolases in inducible plant defense     
Etienne Grienenberger  Pierrette Geoffroy  Jérome Mutterer  Michel Legrand  Thierry Heitz 《Plant signaling & behavior》2010,5(10):1181-1186
  相似文献   

4.
Antimicrobial Activity of Simulated Solar Disinfection against Bacterial,Fungal, and Protozoan Pathogens and Its Enhancement by Riboflavin     
Wayne Heaselgrave  Simon Kilvington 《Applied and environmental microbiology》2010,76(17):6010-6012
Riboflavin significantly enhanced the efficacy of simulated solar disinfection (SODIS) at 150 watts per square meter (W m−2) against a variety of microorganisms, including Escherichia coli, Fusarium solani, Candida albicans, and Acanthamoeba polyphaga trophozoites (>3 to 4 log10 after 2 to 6 h; P < 0.001). With A. polyphaga cysts, the kill (3.5 log10 after 6 h) was obtained only in the presence of riboflavin and 250 W m−2 irradiance.Solar disinfection (SODIS) is an established and proven technique for the generation of safer drinking water (11). Water is collected into transparent plastic polyethylene terephthalate (PET) bottles and placed in direct sunlight for 6 to 8 h prior to consumption (14). The application of SODIS has been shown to be a simple and cost-effective method for reducing the incidence of gastrointestinal infection in communities where potable water is not available (2-4). Under laboratory conditions using simulated sunlight, SODIS has been shown to inactivate pathogenic bacteria, fungi, viruses, and protozoa (6, 12, 15). Although SODIS is not fully understood, it is believed to achieve microbial killing through a combination of DNA-damaging effects of ultraviolet (UV) radiation and thermal inactivation from solar heating (21).The combination of UVA radiation and riboflavin (vitamin B2) has recently been reported to have therapeutic application in the treatment of bacterial and fungal ocular pathogens (13, 17) and has also been proposed as a method for decontaminating donor blood products prior to transfusion (1). In the present study, we report that the addition of riboflavin significantly enhances the disinfectant efficacy of simulated SODIS against bacterial, fungal, and protozoan pathogens.Chemicals and media were obtained from Sigma (Dorset, United Kingdom), Oxoid (Basingstoke, United Kingdom), and BD (Oxford, United Kingdom). Pseudomonas aeruginosa (ATCC 9027), Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633), Candida albicans (ATCC 10231), and Fusarium solani (ATCC 36031) were obtained from ATCC (through LGC Standards, United Kingdom). Escherichia coli (JM101) was obtained in house, and the Legionella pneumophila strain used was a recent environmental isolate.B. subtilis spores were produced from culture on a previously published defined sporulation medium (19). L. pneumophila was grown on buffered charcoal-yeast extract agar (5). All other bacteria were cultured on tryptone soy agar, and C. albicans was cultured on Sabouraud dextrose agar as described previously (9). Fusarium solani was cultured on potato dextrose agar, and conidia were prepared as reported previously (7). Acanthamoeba polyphaga (Ros) was isolated from an unpublished keratitis case at Moorfields Eye Hospital, London, United Kingdom, in 1991. Trophozoites were maintained and cysts prepared as described previously (8, 18).Assays were conducted in transparent 12-well tissue culture microtiter plates with UV-transparent lids (Helena Biosciences, United Kingdom). Test organisms (1 × 106/ml) were suspended in 3 ml of one-quarter-strength Ringer''s solution or natural freshwater (as pretreated water from a reservoir in United Kingdom) with or without riboflavin (250 μM). The plates were exposed to simulated sunlight at an optical output irradiance of 150 watts per square meter (W m−2) delivered from an HPR125 W quartz mercury arc lamp (Philips, Guildford, United Kingdom). Optical irradiances were measured using a calibrated broadband optical power meter (Melles Griot, Netherlands). Test plates were maintained at 30°C by partial submersion in a water bath.At timed intervals for bacteria and fungi, the aliquots were plated out by using a WASP spiral plater and colonies subsequently counted by using a ProtoCOL automated colony counter (Don Whitley, West Yorkshire, United Kingdom). Acanthamoeba trophozoite and cyst viabilities were determined as described previously (6). Statistical analysis was performed using a one-way analysis of variance (ANOVA) of data from triplicate experiments via the InStat statistical software package (GraphPad, La Jolla, CA).The efficacies of simulated sunlight at an optical output irradiance of 150 W m−2 alone (SODIS) and in the presence of 250 μM riboflavin (SODIS-R) against the test organisms are shown in Table Table1.1. With the exception of B. subtilis spores and A. polyphaga cysts, SODIS-R resulted in a significant increase in microbial killing compared to SODIS alone (P < 0.001). In most instances, SODIS-R achieved total inactivation by 2 h, compared to 6 h for SODIS alone (Table (Table1).1). For F. solani, C. albicans, ands A. polyphaga trophozoites, only SODIS-R achieved a complete organism kill after 4 to 6 h (P < 0.001). All control experiments in which the experiments were protected from the light source showed no reduction in organism viability over the time course (results not shown).

TABLE 1.

Efficacies of simulated SODIS for 6 h alone and with 250 μM riboflavin (SODIS-R)
OrganismConditionaLog10 reduction in viability at indicated h of exposureb
1246
E. coliSODIS0.0 ± 0.00.2 ± 0.15.7 ± 0.05.7 ± 0.0
SODIS-R1.1 ± 0.05.7 ± 0.05.7 ± 0.05.7 ± 0.0
L. pneumophilaSODIS0.7 ± 0.21.3 ± 0.34.8 ± 0.24.8 ± 0.2
SODIS-R4.4 ± 0.04.4 ± 0.04.4 ± 0.04.4 ± 0.0
P. aeruginosaSODIS0.7 ± 0.01.8 ± 0.04.9 ± 0.04.9 ± 0.0
SODIS-R5.0 ± 0.05.0 ± 0.05.0 ± 0.05.0 ± 0.0
S. aureusSODIS0.0 ± 0.00.0 ± 0.06.2 ± 0.06.2 ± 0.0
SODIS-R0.2 ± 0.16.3 ± 0.06.3 ± 0.06.3 ± 0.0
C. albicansSODIS0.2 ± 0.00.4 ± 0.10.5 ± 0.11.0 ± 0.1
SODIS-R0.1 ± 0.00.7 ± 0.15.3 ± 0.05.3 ± 0.0
F. solani conidiaSODIS0.2 ± 0.10.3 ± 0.00.2 ± 0.00.7 ± 0.1
SODIS-R0.3 ± 0.10.8 ± 0.11.3 ± 0.14.4 ± 0.0
B. subtilis sporesSODIS0.3 ± 0.00.2 ± 0.00.0 ± 0.00.1 ± 0.0
SODIS-R0.1 ± 0.10.2 ± 0.10.3 ± 0.30.1 ± 0.0
SODIS (250 W m−2)0.1 ± 0.00.1 ± 0.10.1 ± 0.10.0 ± 0.0
SODIS-R (250 W m−2)0.0 ± 0.00.0 ± 0.00.2 ± 0.00.4 ± 0.0
SODIS (320 W m−2)0.1 ± 0.10.1 ± 0.00.0 ± 0.14.3 ± 0.0
SODIS-R (320 W m−2)0.1 ± 0.00.1 ± 0.10.9 ± 0.04.3 ± 0.0
A. polyphaga trophozoitesSODIS0.4 ± 0.20.6 ± 0.10.6 ± 0.20.4 ± 0.1
SODIS-R0.3 ± 0.11.3 ± 0.12.3 ± 0.43.1 ± 0.2
SODIS, naturalc0.3 ± 0.10.4 ± 0.10.5 ± 0.20.3 ± 0.2
SODIS-R, naturalc0.2 ± 0.11.0 ± 0.22.2 ± 0.32.9 ± 0.3
A. polyphaga cystsSODIS0.4 ± 0.10.1 ± 0.30.3 ± 0.10.4 ± 0.2
SODIS-R0.4 ± 0.20.3 ± 0.20.5 ± 0.10.8 ± 0.3
SODIS (250 W m−2)0.0 ± 0.10.2 ± 0.30.2 ± 0.10.1 ± 0.2
SODIS-R (250 W m−2)0.4 ± 0.20.3 ± 0.20.8 ± 0.13.5 ± 0.3
SODIS (250 W m−2), naturalc0.0 ± 0.30.2 ± 0.10.1 ± 0.10.2 ± 0.1
SODIS-R (250 W m−2), naturalc0.1 ± 0.10.2 ± 0.20.6 ± 0.13.4 ± 0.2
Open in a separate windowaConditions are at an intensity of 150 W m−2 unless otherwise indicated.bThe values reported are means ± standard errors of the means from triplicate experiments.cAdditional experiments for this condition were performed using natural freshwater.The highly resistant A. polyphaga cysts and B. subtilis spores were unaffected by SODIS or SODIS-R at an optical irradiance of 150 W m−2. However, a significant reduction in cyst viability was observed at 6 h when the optical irradiance was increased to 250 W m−2 for SODIS-R only (P < 0.001; Table Table1).1). For spores, a kill was obtained only at 320 W m−2 after 6-h exposure, and no difference between SODIS and SODIS-R was observed (Table (Table1).1). Previously, we reported a >2-log kill at 6 h for Acanthamoeba cysts by using SODIS at the higher optical irradiance of 850 W m−2, compared to the 0.1-log10 kill observed here using the lower intensity of 250 W m−2 or the 3.5-log10 kill with SODIS-R.Inactivation experiments performed with Acanthamoeba cysts and trophozoites suspended in natural freshwater gave results comparable to those obtained with Ringer''s solution (P > 0.05; Table Table1).1). However, it is acknowledged that the findings of this study are based on laboratory-grade water and freshwater and that differences in water quality through changes in turbidity, pH, and mineral composition may significantly affect the performance of SODIS (20). Accordingly, further studies are indicated to evaluate the enhanced efficacy of SODIS-R by using natural waters of varying composition in the areas where SODIS is to be employed.Previous studies with SODIS under laboratory conditions have employed lamps delivering an optical irradiance of 850 W m−2 to reflect typical natural sunlight conditions (6, 11, 12, 15, 16). Here, we used an optical irradiance of 150 to 320 W m−2 to obtain slower organism inactivation and, hence, determine the potential enhancing effect of riboflavin on SODIS.In conclusion, this study has shown that the addition of riboflavin significantly enhances the efficacy of simulated SODIS against a range of microorganisms. The precise mechanism by which photoactivated riboflavin enhances antimicrobial activity is unknown, but studies have indicated that the process may be due, in part, to the generation of singlet oxygen, H2O2, superoxide, and hydroxyl free radicals (10). Further studies are warranted to assess the potential benefits from riboflavin-enhanced SODIS in reducing the incidence of gastrointestinal infection in communities where potable water is not available.  相似文献   

5.
Decorin regulates endothelial cell-matrix interactions during angiogenesis     
Lorna R Fiedler  Johannes A Eble 《Cell Adhesion & Migration》2009,3(1):3-6
Interactions between endothelial cells and the surrounding extracellular matrix are continuously adapted during angiogenesis, from early sprouting through to lumen formation and vessel maturation. Regulated control of these interactions is crucial to sustain normal responses in this rapidly changing environment, and dysfunctional endothelial cell behaviour results in angiogenic disorders. The proteoglycan decorin, an extracellular matrix component, is upregulated during angiogenesis. While it was shown previously that the absence of decorin leads to dysregulated angiogenesis in vivo, the molecular mechanisms were not clear. These abnormal endothelial cell responses have been attributed to indirect effects of decorin; however, our recent data provides evidence that decorin directly regulates endothelial cell-matrix interactions. This data will be discussed in conjunction with findings from previous studies, to better understand the role of this proteoglycan in angiogenesis.Key words: decorin, angiogenesis, motility, α2β1 integrin, insulin-like growth factor I receptor, Rac GTPaseLed by appropriate cues, the vascular system undergoes postnatal remodelling (angiogenesis), to maintain tissue homeostasis. Thus while much of the mature endothelium is quiescent, locally activated endothelial cells re-enter the cell cycle, and assume a motile phenotype essential for sprouting and neo-vessel formation. Concomitantly, the surrounding extracellular matrix (ECM) is significantly altered through de novo protein expression, deposition of plasma components and protease-mediated degradation. The latter liberates cryptic binding sites and sequestered growth factors in addition to intact and degraded ECM components, which themselves possess pro- and anti-angiogenic signalling properties. For supported blood flow, endothelium quiescence and integrity is re-established, and the ECM is organized into mature, cross-linked networks. In short, endothelial cells regulate ECM synthesis, assembly and turnover while the structure and composition of ECM in turn influences cellular phenotype. The ECM therefore, plays a critical role in control of endothelial cell behaviour during angiogenesis.Decorin is a member of the small leucine-rich repeat proteoglycan (SLRP) family, which was first discovered ‘decorating’ collagen I fibrils and was subsequently shown to regulate fibrillogenesis.1,2 Both the protein core and the single, covalently attached glycosaminoglycan (GAG) moieties of decorin are involved in this function, the relevance of which is demonstrated by the phenotype of the decorin null mouse, which exhibits loose, fragile skin due to dysregulated fibrillogenesis.2 Interestingly, a role for decorin in postnatal angiogenesis was also revealed by studies in the decorin null background. Corneal neoangiogenesis was reduced.3 Conversely, neo-angiogenesis was enhanced during dermal wound healing, although surprisingly this led to delayed wound closure.4 In this case, skin fragility due to the absence of decorin may have hindered wound closure, despite an increased blood supply. It is apparent however, that decorin plays a role in inflammation-associated angiogenesis. Indeed, endothelial cells undergoing angiogenic morphogenesis in this environment express decorin, while quiescent endothelial cells do not,36 indicating that decorin modulates endothelial cell behaviour specifically during inflammatory-associated remodelling of the vascular system.To understand decorin effects on angiogenic morphogenesis within a minimalist environment, various in vitro models of angiogenesis have been employed (6 Similarly, decorin expression enhanced tube formation on matrigel,8 but in other studies utilising this substrate was found to either have no influence9 or to inhibit tubulogenesis induced by growth factors.10 In yet another study, decorin inhibited tube formation when presented as a substrate prior to addition of collagen I.7 These contrasting observations may reflect the importance of the micro-environment within which decorin is presented. Alternatively, controversial results could result from different sources of decorin since cell types differ in their post-translational modifications of the GAG moiety. Hence, varying length or sulfation patterns of GAG chains may account for different biological activities of decorin. Discrepancies can also be explained as artefacts due to different purification protocols, such as when denaturing conditions are used to extract decorin from tissue. Taken together however, these observations suggest that decorin is neither a pro- nor an anti-angiogenic factor per se, but rather a regulator of angiogenesis, dependent on local cues for different activities. Further, that decorin is capable of both enhancing and inhibiting tubulogenesis may suggest a role in balancing vessel regression versus persistence. Immature vessels have a period of plasticity prior to maturation, during which they can be remodelled, and either regress, or given the appropriate signals, proceed to maturity.11 As a modulator of tube formation, it is tempting to speculate that decorin could influence the switch from immature to mature vessels, favouring one or the other in conjunction with signals from the local environment.

Table 1

Summary of the key functions of decorin in controlling cell behaviour
Cell typeFunctionDecorin additionEnvironment/MechanismReferences
Endothelial (HUVEC derived)Enhanced tubulogenesisOverexpressionCollagen I lattices, enhanced survival potentially IGF-IR mediated6, 18
Mouse cerebral endothelial cellsEnhanced tubulogenesisOverexpressionMatrigel substrate, EGFR activation leads to VEGF upregulation8
HUVECNo effect on tubulogenesisExogenousMatrigel substrate9
HUVECInhibited tubulogenesisExogenousMatrigel substrate, growth factor induced10
HUVEC, HDMECInhibited tubulogenesisSubstrateCollagen I lattice overlay7
HUVECMinimal adhesionSubstrateDecorin substrate7
HUVECInhibited adhesionExogenousCollagen I and fibronectin10
HUVECInhibited migrationExogenousVEGF-mediated chemotaxis through gelatin10
Endothelial (HUVEC derived)Enhanced adhesionExogenousCollagen I, fibronectin17
BAEInhibited migrationOverexpressionCollagen I, enhanced fibronectin fibrilllogenesis by decorin12
Endothelial (HUVEC derived)Enhanced motilityExogenousCollagen I, Decorin activates IGF-IR/Rac-1 and α2β1 integrin activity17
Human lung fibroblastEnhanced motilityExogenousDecorin activates Rho GTPases, mediators of motility20
Human foreskin fibroblastInhibited adhesionExogenousDecorin GAG moiety competes with CD44 for binding to collagen XIV14
Mouse Fibroblast (3T3)Inhibited adhesionExogenousDecorin competes with cells for interaction with thrombospondin at the cell-binding domain15
Human fibroblastInhibits adhesionExogenousDecorin GAG competes with cell-surface heparin-sulphate for interaction with fibronectin16
PlateletsSupported adhesionSubstrateDecorin interacts with, and signals through α2β1 integrin on platelets19
Open in a separate windowDecorin has been demonstrated to influence cell adhesion and motility, in particular, its influence on endothelial cell adhesion, migration and tube formation is controversial, and is the main focus of this table. Some additional key effects of decorin on fibroblast and platelet adhesion and motility are also summarised. In each case, the extracellular matrix environment in which the assay was conducted is shown, and where known, the proposed mechanism is stated.What are the molecular mechanisms by which decorin influences tubulogenesis? Since endothelial cell-matrix interactions control all aspects of angiogenesis, from motility, sprouting and lumen formation, to survival and proliferation, the role of decorin should be considered in this regard. Indirectly, decorin could quite feasibly modulate cell-matrix interactions through regulation of matrix structure and organisation2,12 and growth factor activity.13 However in vitro studies have begun to unravel rather more direct mechanisms. Studies on fibroblasts indicate that decorin can inhibit cell-matrix interactions by binding to and masking integrin attachment sites in matrix substrates. For instance, decorin inhibits fibroblast adhesion by competing with cell-surface GAG-containing CD44 for GAG binding sites on collagen XIV;14 similarly, decorin inhibits fibroblast adhesion to thrombospondin by interacting with the cell-binding domain of this substrate15 and may compete with fibroblast cell-surface heparin sulphate proteoglycans for binding to fibronectin.16 While such studies are rather lacking in endothelial cell systems, any one of these interactions could be relevant to endothelial cells. However, that decorin slightly enhanced endothelial cell attachment to fibronectin and collagen I in our system points to the existence of alternative mechanisms.17Indeed, a recent study demonstrated that decorin is an important signalling molecule in endothelial cells, where it both signals through the insulin-like growth factor I receptor (IGF-IR) and competes with the natural ligand for interaction.18 Further, decorin appears to be biologically available and relevant for interaction with this receptor in vivo. Increased receptor expression was observed in both native and neo-vessels in decorin knockout mouse cornea in conjunction with reduced neoangiogenesis. In accordance with this, decorin downregulates the IGF-IR in vitro,18 indicating that signalling through, and control of IGF-IR levels by decorin could be an important factor in regulating angiogenesis. Additionally, immobilised decorin supports platelet adhesion through interactions with the collagen I-binding integrin, α2β1.19 We have shown that decorin—α2β1 integrin interaction may play a part in modulating endothelial cell—collagen I interactions, and further, have demonstrated that decorin promotes motility in this context through activation of IGF-IR and the small Rho GTPase, Rac.17 Similarly, decorin stimulates fibroblast motility through activation of small Rho GTPases,20 supporting a direct mechanism by which decorin influences cell-matrix interactions and motility, via activation of key regulators of cytoskeleton and focal adhesion dynamics. It should also be noted that signalling by decorin directly through ErbB receptors has also been extensively demonstrated in cancer cell systems where these receptors are frequently overexpressed.21 This interaction was not relevant to human umbilical vein endothelial cells18 although a recent study found that decorin activated the epidermal growth factor receptor in mouse cerebral endothelial cells.8 These differences presumably depend on cell-specific factors such as receptor availability as well as relative receptor affinities. In a complex system such as angiogenesis, multiple mechanisms doubtlessly are involved. However, it is clear that modulation of cell-matrix interactions by decorin could certainly be expected to play a key role in contributing to regulation of postnatal angiogenesis.Signals from the extracellular matrix via integrins and from growth factors to their receptors are co-ordinately integrated into the complex angiogenic cascade. Evidence exists to suggest that decorin could regulate cell-matrix interactions during early tube formation, i.e., endothelial cell sprouting and cell alignment, through both influencing integrin activity and signalling through IGF-IR.17 Later stages of angiogenesis, such as lumen formation and maturation are also potentially regulated by decorin through activation of Rac and α2β1 integrin,17 since activity of both these molecules is integral to this phase of angiogenesis.22 Additionally, Rac activity is implicated in regulating endothelium permeability and integrity,23 providing further possibilities in control of endothelium function by decorin. Further investigations would be required however, to establish whether decorin exerts its effects on tubulogenesis through these molecular mechanisms.Of relevance to α2β1 integrin-dependent endothelial cell interaction with collagen I, sprouting endothelial cells would encounter interstitial ECM, of which collagen I is a major component. Further, a ‘provisional’ matrix containing collagen I is secreted by sprouting endothelial cells and may be required for motility,24 and tube formation.25 Theoretically, various interactions could exist between decorin, collagen type I and α2β1 integrin in this context, which may be differentially supported through various stages of angiogenesis. Up to eleven interaction sites of α2β1 integrin have been postulated to exist within collagen I, albeit with different affinities towards this receptor. Some of these binding sites may only be recognized by the integrin in its highly active conformation.26 By influencing the collagen I binding activity of α2β117 decorin could thus alter the number of endothelial cell—collagen I contacts, thereby modulating adhesion and motility. Additionally, some decorin and α2β1 integrin binding sites may overlap, or are in close proximity.27 By virtue of this location, decorin would be ideally placed to locally modulate collagen I—binding activity of the integrin. Interestingly, modulation of activity of both α2β1 integrin and the small Rho GTPase Rac by decorin also could have implications for collagen I fibrillogenesis, which in turn, would indirectly influence cell-matrix interactions. Both the related Rho GTPase RhoA, and α2β1 integrin are involved in cellular control of pericellular collagen I fibrillogenesis.28 Thus in addition to regulating cell independent fibrillogenesis1 decorin could potentially influence cell-mediated aspects of this process. Pertinent questions remain therefore, as to under which biological situations is the interaction between α2β1 integrin and decorin relevant, and does decorin influence α2β1 integrin activity on the cell-surface through direct interactions, and/or by inside-out signalling through the IGF-I receptor (or alternative receptors)? Further, how do differential decorin/α2β1 integrin/collagen I interactions mediate fibrillogenesis and cell-matrix interactions?Interaction of decorin with multiple binding partners makes it challenging to fully understand the role of decorin in angiogenesis (Fig. 1). A consideration of the relative accessibility and affinity of binding sites on both decorin and its'' binding partners would facilitate further understanding. It is still an open question whether collagen I—bound decorin can simultaneously interact with other ligands. In the case of the IGF-IR, the binding site on the concave surface of decorin overlaps with that of collagen I, thus mutually exclusive interactions seem more likely. That decorin clearly influences both collagen I matrix integrity and IGF-IR activity in vivo, would suggest that decorin is not exclusively associated with collagen I. Perhaps decorin occurs in a more ‘soluble’ form when locally secreted by endothelial cells undergoing angiogenic morphogenesis. Does collagen-bound decorin interact simultaneously with α2β1 integrin? This could be a possibility, since decorin core protein interacts with collagen I, allowing the possibility of GAG—integrin interaction. In this scenario however, interaction of α2β1 integrin with the GAG moiety of decorin in preference to collagen I might sound improbable. Nevertheless, during remodelling, interactions such as these could occur in a transient manner, and be crucial in controlling cell-matrix interactions in a rapidly changing environment. Interestingly, decorin interacts with IGF-IR via the core protein,18 and with α2β1 integrin via the GAG moiety17 raising yet another possibility of simultaneous decorin interaction with multiple binding partners. Additionally, while it is a matter of some debate whether decorin exists predominantly as a monomer or as a dimer in a physiologically relevant environment, it has been proposed that collagen-bound decorin could support simultaneous interactions of decorin with additional binding partners, and that dimer-monomer transitions also could facilitate differential interactions.29 Perhaps supporting multiple simultaneous interactions of decorin, the phenotype of patients with a progeroid variant of Ehlers-Danlos Syndrome indicates an essential role for properly glycosylated decorin (and the related SLRP biglycan). These patients exhibit skeletal and craniofacial abnormalities, loose skin and deficiencies in wound healing as a direct result of abnormal decorin and biglycan glycosylation, such that approximately half the population of decorin is secreted as the core protein only.30 Notably, the defect in loose skin and in wound healing is similar to the phenotype of the decorin knockout mouse.2,4 Evidently, the core protein alone cannot maintain normal function in vivo, despite being responsible for several important interactions of decorin, in particular, binding to collagen I and the IGF-IR. These studies may therefore support a requirement for simultaneous interactions of the core protein and GAG moieties for proper function of decorin.Open in a separate windowFigure 1Decorin influences cell-matrix interactions through multiple mechanisms. Decorin signals through the IGF-IR via the core protein moiety (grey diamond), and may simultaneously interact with the α2 subunit (cross-hatched subunit) of α2β1 integrin via the GAG moiety (wavy black line) (A). Activation of Rac through IGF-IR enhances motility by modulating cytoskeleton dynamics and may influence α2β1 integrin activity for collagen I through inside-out signalling (B). Decorin induces large, peripheral vinculin (grey oval)-positive focal adhesions by signalling through IGF-IR and/or α2β1 integrin (C and D). Decorin could also directly influence α2β1 integrin activity through binding to the α2 subunit and/or simultaneous interactions with collagen I (thick wavy black line) through the core protein. Collagen I interacts with the A-domain (white circle) of the α2 subunit at a site distinct to that of decorin (D). In summary, activation of IGF-IR, Rac and modulation of α2β1 integrin affinity for collagen I by decorin modulates cell-matrix interactions and contributes to enhanced motility and tubulogenesis in a collagen I environment.Modulation of cell-matrix interactions by decorin plays a key role in modulating endothelial cell motility and angiogenesis in vivo, and some of the mechanisms responsible have been elucidated in conjunction with in vitro studies. The large number of potential interactions of decorin with multiple matrix components and cell-surface receptors makes a clear understanding difficult. However, direct activation of signalling pathways by decorin has been highlighted recently as likely to play an important role. In conclusion, a better understanding of the mechanisms by which decorin regulates vessel formation and persistence would contribute to understanding how angiogenesis is dysregulated in a clinical setting, and how rational therapeutic strategies can be developed to restore tissue function and homeostasis.  相似文献   

6.
Dominant Bacteria and Biomass in the Kuytun 51 Glacier     
Shu-Rong Xiang  Tian-Cui Shang  Yong Chen  Ze-Fan Jing  Tandong Yao 《Applied and environmental microbiology》2009,75(22):7287-7290
  相似文献   

7.
Bar-Coded Pyrosequencing of 16S rRNA Gene Amplicons Reveals Changes in Ileal Porcine Bacterial Communities Due to High Dietary Zinc Intake     
W. Vahjen  R. Pieper  J. Zentek 《Applied and environmental microbiology》2010,76(19):6689-6691
Feeding high levels of zinc oxide to piglets significantly increased the relative abundance of ileal Weissella spp., Leuconostoc spp., and Streptococcus spp., reduced the occurrence of Sarcina spp. and Neisseria spp., and led to numerical increases of all Gram-negative facultative anaerobic genera. High dietary zinc oxide intake has a major impact on the porcine ileal bacterial composition.Zinc oxide (ZnO) is used as a feed additive for diarrhea prophylaxis in piglets (23). However, the mode of action of ZnO is not fully understood. Besides its effects on the host (10, 30, 31), high dietary zinc levels may affect the diversity of intestinal microbial communities (2, 11, 20). The prevention of postweaning diarrhea in piglets due to high dietary ZnO intake may not be directly related to a reduction of pathogenic E. coli (8) but, rather, to the diversity of the coliform community (15). Studies on the impact of high ZnO levels on the porcine ileal bacterial community are scarce but nevertheless important, as bacterial diarrhea is initiated in the small intestine (9, 17). The small intestine is a very complex habitat with many different factors shaping the bacterial community. Studies on the ecophysiology (22) and maturation of the porcine ileal microbiota (13, 27) indicate a drastic impact directly after weaning and a gradual decline of modifications during the following 2 weeks. Thus, the time point for analysis chosen in this study (14 days postweaning) does reflect a more stable period of the ileal porcine microbiota. In this study, we used bar-coded pyrosequencing of 16S rRNA genes to gain further insight into the mode of action of pharmacological levels of ZnO in the gastrointestinal tract of young pigs.Total DNA was extracted from the ileal digesta of 40- to 42-day-old piglets using a commercial kit (Qiagen stool kit; Qiagen, Hilden, Germany) and PCR amplified with unique bar-coded primer sets targeting the V1-to-V3 and the V6-to-V8 hypervariable regions (see the supplemental material for detailed methods). The rationale behind this approach was derived from the fact that no single “universal” primer pair can completely cover a complex bacterial habitat (4, 24, 32, 33). Furthermore, these studies also show that in silico information on the coverage of selected primer sets diverges from empirical results, and hence, two hypervariable regions were chosen in this study to maximize the detection of phylogenetically diverse bacterial groups.Equimolar dilutions of all samples were combined into one master sample. Pyrosequencing was performed by Agowa (Berlin, Germany) on a Roche genome sequencer FLX system using a Titanium series PicoTiterPlate. The resulting data files were uploaded to the MG-RAST server (http://metagenomics.nmpdr.org/) (19) and processed with its SEED software tool using the RDP database (5) as the reference database. After automated sequence analysis, all sequences with less than five identical reads per sample were deleted in order to increase the confidence of sequence reads and reduce bias from possible sequencing errors (12, 16). Thus, 0.43% of all sequences were not considered (1,882 of 433,302 sequences). These sequences were assigned to a total of 238 genera, of which most only occurred in a few samples (see the supplemental material). Furthermore, all unclassified sequences were removed (8.7%; 41,467 of 474,769 sequences). Due to the use of the RDP reference database, the SEED software incorrectly assigned the majority of unclassified sequences as unclassified Deferribacterales (83%; 34,393 sequences), which were actually identified as 16S soybean or wheat chloroplasts by BLAST or as cyanobacterial chloroplasts by the RDP II seqmatch tool.The pyrosequencing results for the two primer combinations were merged by taking only sequences from the primer combination that yielded the higher number of reads for a specific sequence assignment in a sample. The remaining reads were used to calculate the relative contribution of assigned sequences to total sequence reads in a sample.The Firmicutes phylum dominated the small intestinal bacterial communities in both the control group and the group with high dietary ZnO intake, with 98.3% and 97.0% of total sequence reads, respectively. No significant influence of high dietary ZnO intake was found for the main phyla Proteobacteria (0.92% versus 1.84%), Actinobacteria (0.61% versus 0.75%), Bacteroidetes (0.15% versus 0.17%), and Fusobacteria (0.09% versus 0.12%).On the order level, a total of 20 bacterial orders were detected (data not shown). Lactobacillales dominated bacterial communities in the control and high-dietary-ZnO-intake groups, with 83.37% and 93.24% of total reads. Lactic acid bacteria are well known to dominate the bacterial community in the ileum of piglets (11, 22). No significant difference between the control group and the group with high dietary ZnO intake was observed on the order level, although high dietary ZnO intake led to a strong numerical decrease for Clostridiales (14.4 ± 24.0% [mean ± standard deviation] versus 2.8 ± 1.7%), as well as to numerical increases for Pseudomonadales (0.3 ± 0.3% versus 0.6 ± 0.6%) and Enterobacteriales (0.2 ± 0.2% versus 0.5 ± 0.6%).On the genus level, a total of 103 genera were detected. Table Table11 summarizes the main 31 genera which exceeded 0.05% of total reads (see the supplemental material for a complete list). Lactobacilli clearly dominated the bacterial communities in both trial groups, but they also were numerically lower due to high dietary ZnO intake.

TABLE 1.

Bacterial genera in the ileum of piglets fed diets supplemented with 200 or 3,000 ppm ZnO
GenusProportion (% ± SD) of ileal microbiota in groupa receiving:
200 ppm ZnO3,000 ppm ZnO
Lactobacillus59.3 ± 30.640.7 ± 19.1
Weissella11.6 ± 7.8 A24.1 ± 8.3 B
Sarcina11.4 ± 20.5 A0.84 ± 1.2 B
Leuconostoc4.7 ± 3.2 A9.4 ± 3.1 B
Streptococcus1.8 ± 1.6 A5.7 ± 5.1 B
Lactococcus1.6 ± 1.52.6 ± 3.1
Veillonella0.57 ± 0.630.34 ± 0.30
Gemella0.34 ± 0.67 A0.45 ± 0.25 B
Acinetobacter0.25 ± 0.210.44 ± 0.50
Clostridium0.25 ± 0.400.22 ± 0.21
Enterococcus0.19 ± 0.150.26 ± 0.24
Acidovorax0.14 ± 0.040.16 ± 0.19
Arcobacter0.14 ± 0.150.16 ± 0.17
Neisseria0.14b0.03 ± 0.01
Enterobacter0.13 ± 0.090.29 ± 0.34
Lachnospira0.12 ± 0.130.13 ± 0.03
Peptostreptococcus0.11 ± 0.100.07 ± 0.09
Chryseobacterium0.10 ± 0.070.15 ± 0.16
Actinomyces0.09 ± 0.040.15 ± 0.16
Anaerobacter0.07 ± 0.080.02 ± 0.01
Aerococcus0.07 ± 0.040.07 ± 0.04
Dorea0.07b0.05 ± 0.05
Fusobacterium0.06 ± 0.090.08 ± 0.11
Microbacterium0.06 ± 0.010.07 ± 0.04
Carnobacterium0.06 ± 0.020.08 ± 0.13
Granulicatella0.06 ± 0.020.09 ± 0.10
Staphylococcus0.06 ± 0.040.05 ± 0.02
Facklamia0.05 ± 0.060.03 ± 0.01
Comamonas0.05 ± 0.030.04 ± 0.02
Citrobacter0.05 ± 0.020.07 ± 0.08
Erysipelothrix0.05 ± 0.010.22 ± 0.40
Open in a separate windowan = 6 piglets per trial group. A,B, results are significantly different by Kruskal-Wallis test.bSingle sample.Significant changes due to high dietary ZnO intake were observed for other lactic acid bacteria, including Weissella spp., Leuconostoc spp., and Streptococcus spp. A significant and strong decrease was observed for Sarcina spp., which is a genus of acid-tolerant strictly anaerobic species found in the intestinal tract of piglets and other mammals (6, 28, 29). This genus thus appeared to be very sensitive to modifications induced by high dietary ZnO intake.An interesting result was observed for Gram-negative Proteobacteria, (i.e., enterobacteria and relatives). Although not statistically significant, virtually all detected proteobacteria increased numerically due to high dietary ZnO intake (Enterobacter spp., Microbacterium spp., Citrobacter spp., Neisseria spp., and Acinetobacter spp.). Apparently, enterobacteria gained colonization potential by high dietary ZnO intake. This is in good agreement with the results of studies by Hojberg et al. (11), Amezcua et al. (1), and Castillo et al. (3). Therefore, the frequently observed diarrhea-reducing effect of zinc oxide may not be directly related to a reduction of pathogenic E. coli strains. Considering a possible antagonistic activity of lactobacilli against enterobacteria (25), it can be speculated that a numerical decrease of dominant lactobacilli may lead to increased colonization with Gram-negative enterobacteria. On the other hand, specific plasmid-borne genes for resistance against heavy metals have been reported for both Gram-positive and Gram-negative bacteria present in the intestine (21, 26), and an increased resistance against Zn ions may exist for Gram-negative enterobacteria. Zinc oxide is an amphoteric molecule and shows a high solubility at acid pH. The low pH in the stomach of piglets (pH 3.5 to 4.5) transforms a considerable amount of insoluble ZnO into zinc ions (54 to 84% free Zn2+ at 150 ppm and 24 ppm ZnO, respectively) (7), and thus, high concentrations of toxic zinc ions exist in the stomach. The stomach of piglets harbors large numbers of lactic acid bacteria, especially lactobacilli. Zn ions may thus lead to a modification of the lactic acid bacterial community in the stomach, and the changes observed in the ileum could have been created in the stomach. A reduction of dominant lactobacilli may thus point to an increased adaptation potential of Gram-negative facultative anaerobes and a generally increased bacterial diversity.Additionally, the direct effects of dietary ZnO on intestinal tissues include altered expression of genes responsible for glutathione metabolism and apoptosis (30), enhanced gastric ghrelin secretion, which increases feed intake (31), and increased production of digestive enzymes (10). An analysis of the intestinal morphology was beyond the scope of this study, but although ZnO concentrations are markedly increased in intestinal tissue, the influence of ZnO on morphology is apparently not always observed (10, 14, 18). Consequently, any changes in epithelial cell turnover, feed intake, or digestive capacity may influence the composition of bacterial communities in the small intestine.In conclusion, this study has shown that high dietary zinc oxide has a major impact on ileal bacterial communities in piglets. Future studies on the impact of zinc oxide in pigs should include a detailed analysis of host responses in order to identify the cause for the observed modifications of intestinal bacterial communities.  相似文献   

8.
Prion interference with multiple prion isolates     
Charles R Schutt  Jason C Bartz 《朊病毒》2008,2(2):61-63
Co-inoculation of prion strains into the same host can result in interference, where replication of one strain hinders the ability of another strain to cause disease. The drowsy (DY) strain of hamster-adapted transmissible mink encephalopathy (TME) extends the incubation period or completely blocks the hyper (HY) strain of TME following intracerebral, intraperitoneal or sciatic nerve routes of inoculation. However, it is not known if the interfering effect of the DY TME agent is exclusive to the HY TME agent by these experimental routes of infection. To address this issue, we show that the DY TME agent can block hamster-adapted chronic wasting disease (HaCWD) and the 263K scrapie agent from causing disease following sciatic nerve inoculation. Additionally, per os inoculation of DY TME agent slightly extends the incubation period of per os superinfected HY TME agent. These studies suggest that prion strain interference can occur by a natural route of infection and may be a more generalized phenomenon of prion strains.Key words: prion diseases, prion interference, prion strainsPrion diseases are fatal neurodegenerative diseases that are caused by an abnormal isoform of the prion protein, PrPSc.1 Prion strains are hypothesized to be encoded by strain-specific conformations of PrPSc resulting in strain-specific differences in clinical signs, incubation periods and neuropathology.27 However, a universally agreed upon definition of prion strains does not exist. Interspecies transmission and adaptation of prions to a new host species leads to the emergence of a dominant prion strain, which can be due to selection of strains from a mixture present in the inoculum, or produced upon interspecies transmission.8,9 Prion strains, when present in the same host, can interfere with each other.Prion interference was first described in mice where a long incubation period strain 22C extended the incubation period of a short incubation period strain 22A following intracerebral inoculation.10 Interference between other prion strains has been described in mice and hamsters using rodent-adapted strains of scrapie, TME, Creutzfeldt-Jacob disease and Gerstmannn-Sträussler-Scheinker syndrome following intracerebral, intraperitoneal, intravenous and sciatic nerve routes of inoculation.1015 We previously demonstrated the detection of PrPSc from the long incubation period DY TME agent correlated with its ability to extend the incubation period or completely block the superinfecting short incubation period HY TME agent from causing disease and results in a reduction of HY PrPSc levels following sciatic nerve inoculation.12 However, it is not known if a single long incubation period agent (e.g., DY TME) can interfere with more than one short incubation period agent or if interference can occur by a natural route of infection.To examine the question if one long incubation period agent can extend the incubation period of additional short incubation period agents, hamsters were first inoculated in the sciatic nerve with the DY TME agent 120 days prior to superinfection with the short-incubation period agents HY TME, 263K scrapie and HaCWD.1618 The HY TME and 263K scrapie agents have been biologically cloned and have distinct PrPSc properties.19,20 The HaCWD agent used in this study is seventh hamster passage that has not been biologically cloned and therefore will be referred to as a prion isolate. Sciatic nerve inoculations were performed as previously described.11,12 Briefly, hamsters were inoculated with 103.0 i.c. LD50 of the DY TME agent or equal volume (2 µl of a 1% w/v brain homogenate) of uninfected brain homogenate 120 days prior to superinfection of the same sciatic nerve with either 104.6 i.c. LD50 of the HY TME agent, 105.2 i.c. LD50 of the HaCWD agent or 104.6 i.c. LD50/g 263K scrapie agent (Bartz J, unpublished data).16,18,21 Animals were observed three times per week for the onset of clinical signs of HY TME, 263K and HaCWD based on the presence of ataxia and hyperexcitability, while the clinical diagnosis of DY TME was based on the appearance of progressive lethargy.1618 The incubation period was calculated as the number of days between the onset of clinical signs of the agent strain that caused disease and the inoculation of that strain. The Student''s t-test was used to compare incubation periods.12 We found that sciatic nerve inoculation of both the HaCWD agent and 263K scrapie agent caused disease with a similar incubation period to animals infected with the HY TME agent (12 In hamsters inoculated with the DY TME agent 120 days prior to superinfection with the HaCWD or 263K agents, the animals developed clinical signs of DY TME with an incubation period that was not different from the DY TME agent control group (12 The PrPSc migration properties were consistent with the clinical diagnosis and all co-infected animals had PrPSc that migrated similar to PrPSc from the DY TME agent infected control animal (Fig. 1, lanes 1–10). This data indicates that the DY TME agent can interfere with more than one isolate and that interference in the CNS may be a more generalized phenomenon of prion strains.Open in a separate windowFigure 1The strain-specific properties of PrPSc correspond to the clinical diagnosis of disease. Western blot analysis of 250 µg brain equivalents of proteinase K digested brain homogenate from prion-infected hamsters following intracerebral (i.c.), sciatic nerve (i.sc.) or per os inoculation with either the HY TME (HY), DY TME (DY), 263K scrapie (263K), hamster-adapted CWD (CWD) agents or mock-infected (UN). The unglycoyslated PrPSc glycoform of HY TME, 263K scrapie and hamster-adapted CWD migrates at 21 kDa. The unglycosylated PrPSc glycoform of DY PrPSc migrates at 19 kDa. Migration of 19 and 21 kDa PrPSc are indicated by the arrows on the left of the figure. n.a., not applicable.

Table 1

Clinical signs and incubation periods of hamsters inoculated in the sciatic nerve with either the HY TME, HaCWD or 263K scrapie agents, or co-infected with the DY TME agent 120 days prior to superinfection of hamsters with the HY TME, HaCWD or 263K agents
Onset of clinical signs
First inoculationInterval between inoculationsSecond inoculationClinical signsPrP-res migrationA/IaAfter 1st inoculationAfter 2nd inoculation
Mock120 daysHY TMEHY TME21 kDa5/5n.a.72 ± 3b
Mock120 daysHaCWDHaCWD21 kDa5/5n.a.73 ± 3
Mock120 days263K263K21 kDa5/5n.a.72 ± 3
DY TME120 daysMockDY TME19 kDa4/4224 ± 2n.a.
DY TME120 daysHY TMEDY TME19 kDa5/5222 ± 2c102 ± 2
DY TME120 daysHaCWDDY TME19 kDa5/5223 ± 3c103 ± 3
DY TME120 days263KDY TME19 kDa5/5222 ± 2c102 ± 2
Open in a separate windowaNumber affected/number inoculated;bAverage days postinfection ± standard deviation;cIncubation period similar compared to control animals inoculated with the DY TME agent alone (p > 0.05). n.a., not applicable.To examine the question if prion interference can occur following a natural route of infection, hamsters were first inoculated per os with the DY TME agent and then superinfected per os with the HY TME agent at various time points post DY TME agent infection. Hamsters were per os inoculated by drying the inoculum on a food pellet and feeding this pellet to an individual animal as described previously.22 For the per os interference experiment, 105.7 i.c. LD50 of the DY TME agent or an equal volume of uninfected brain homogenate (100 µl of a 10% w/v brain homogenate) was inoculated 60, 90 or 120 days prior to per os superinfection of hamsters with 107.3 i.c. LD50 of the HY TME agent. A 60 or 90 day interval between DY TME agent infection and HY TME agent superinfection resulted in all of the animals developing clinical signs of HY TME with incubation periods that are similar to control hamsters inoculated with the HY TME agent alone (Fig. 1, lanes 11–16). The eight-day extension in the incubation period of HY TME in the 120 day interval co-infected group is consistent with a 1 log reduction in titer.21 This is the first report of prion interference by the per os route of infection, a likely route of prion infection in natural prion disease and provides further evidence that prion strain interference could occur in natural prion disease.2325

Table 2

Clinical signs and incubation periods of hamsters per os inoculated with either the HY TME or DY TME agent, or per os co-infected with the DY TME agent 60, 90 or 120 days prior to superinfection of hamsters with the HY TME agent
Onset of clinical signs
First inoculationInterval between inoculationsSecond inoculationClinical signsPrP-res migrationA/IaAfter 1st inoculationAfter 2nd inoculation
Mock120 daysHY TMEHY TME21 kDa5/5n.a.140 ± 5b
DY TME60 daysHY TMEHY TME21 kDa5/5195 ± 6135 ± 6
DY TME90 daysHY TMEHY TME21 kDa5/5230 ± 5140 ± 5
DY TME120 daysHY TMEHY TME21 kDa5/5269 ± 3149 ± 3c
Open in a separate windowaNumber affected/number inoculated;bAverage days postinfection ± standard deviation;cIncubation period extended compared to control animals inoculated with the HY TME agent alone (p < 0.01); n.a., not applicable.The capacity of the DY TME agent to replicate modulates its ability to interfere with the HY TME agent. TME interference, following sciatic nerve inoculation, occurs in the lumbar spinal cord and DY PrPSc abundance in this structure correlates with the ability of the DY TME agent to interfere with the HY TME agent.12 Following extraneural routes of infection, DY TME agent replication and PrPSc deposition are not detected in spleen or lymph nodes, which is the major site of extraneural HY TME agent replication.11,21,26 The DY TME agent can interfere with the HY TME agent following intraperitoneal and per os infection, suggesting that the DY TME agent is replicating in other locations that are involved in HY TME agent neuroinvasion (11  相似文献   

9.
Long antisense non-coding RNAs and their role in transcription and oncogenesis     
Kevin V Morris  Peter K Vogt 《Cell cycle (Georgetown, Tex.)》2010,9(13):2544-2547
  相似文献   

10.
Cultivation and Genomic,Nutritional, and Lipid Biomarker Characterization of Roseiflexus Strains Closely Related to Predominant In Situ Populations Inhabiting Yellowstone Hot Spring Microbial Mats     
Marcel T. J. van der Meer  Christian G. Klatt  Jason Wood  Donald A. Bryant  Mary M. Bateson  Laurens Lammerts  Stefan Schouten  Jaap S. Sinninghe Damsté  Michael T. Madigan  David M. Ward 《Journal of bacteriology》2010,192(12):3033-3042
  相似文献   

11.
Plasmid pAMS1-Encoded,Bacteriocin-Related “Siblicide” in Enterococcus faecalis     
Christine M. Sedgley  Don B. Clewell  Susan E. Flannagan 《Journal of bacteriology》2009,191(9):3183-3188
  相似文献   

12.
De novo mammalian prion synthesis     
Federico Benetti  Giuseppe Legname 《朊病毒》2009,3(4):213-219
Prions are responsible for a heterogeneous group of fatal neurodegenerative diseases. They can be sporadic, genetic, or infectious disorders involving post-translational modifications of the cellular prion protein (PrPC). Prions (PrPSc) are characterized by their infectious property and intrinsic ability to convert the physiological PrPC into the pathological form, acting as a template. The “protein-only” hypothesis, postulated by Stanley B. Prusiner, implies the possibility to generate de novo prions in vivo and in vitro. Here we describe major milestones towards proving this hypothesis, taking into account physiological environment/s, biochemical properties and interactors of the PrPC.Key words: prion protein (PrP), prions, amyloid, recombinant prion protein, transgenic mouse, protein misfolding cyclic amplification (PMCA), synthethic prionPrions are responsible for a heterogeneous group of fatal neurodegenerative diseases (1 They can be sporadic, genetic or infectious disorders involving post-translational modifications of the cellular prion protein (PrPC).2 Prions are characterized by their infectious properties and by their intrinsic ability to encipher distinct biochemical properties through their secondary, tertiary and quaternary protein structures. In particular, the transmission of the disease is due to the ability of a prion to convert the physiological PrPC into the pathological form (PrPSc), acting as a template.3 The two isoforms of PrP appear to be different in terms of protein structures, as revealed by optical spectroscopy experiments such as Fourier-transform infrared and circular dichroism.4 PrPC contains 40% α-helix and 3% β-sheet, while the pathological isoform, PrPSc, presents approximately 30% α-helix and 45% β-sheet.4,5 PrPSc differs from PrPC because of its altered physical-chemical properties such as insolubility in non-denaturing detergents and proteinases resistance.2,6,7

Table 1

The prion diseases
Prion diseaseHostMechanism
iCJDhumansinfection
vCJDhumansinfection
fCJDhumansgenetic: octarepeat insertion, D178N-129V, V180I, T183A, T188K, T188R-129V, E196K, E200K, V203I, R208H, V210I, E211Q, M232R
sCJDhumans?
GSShumansgenetic: octarepeat insertion, P102L-129M, P105-129M, A117V-129V, G131V-129M, Y145*-129M, H197R-129V, F198S-129V, D202N-129V, Q212P, Q217R-129M, M232T
FFIhumansgenetic: D178-129M
Kurufore peopleinfection
sFIhumans?
Scrapiesheepinfection
BSEcattleinfection
TMEminkinfection
CWDmule deer, elkcontaminated soils?
FSEcatsinfection
Exotic ungulate encephalopathygreater kudu, nyala, oryxinfection
Open in a separate windowi, infective form; v, variant; f, familial; s, sporadic; CJD, Creutzfeldt-Jakob disease; GSS, Gerstmann-Straüssler-Sheinker disease; FFI, fatal familial insomnia; sFI, sporadic fatal insomnia; BSE, bovine spongiform encephalopathy; TME, transmissible mink encephalopathy; CWD, chronic wasting disease; FSE, feline spongiform encephalopathy.73,78The prion conversion occurring in prion diseases seems to involve only conformational changes instead of covalent modifications. However, Mehlhorn et al. demonstrated the importance of a disulfide bond between the two cysteine residues at position 179 and 214 (human (Hu) PrP numbering) to preserve PrP into its physiological form. In the presence of reducing conditions and pH higher than 7, recombinant (rec) PrP tends to assume high β-sheet content and relatively low solubility like PrPSc.8  相似文献   

13.
Efflux of hydraulically lifted water from mycorrhizal fungal hyphae during imposed drought     
Louise M Egerton-Warburton  José Ignacio Querejeta  Michael F Allen 《Plant signaling & behavior》2008,3(1):68-71
Apart from improving plant and soil water status during drought, it has been suggested that hydraulic lift (HL) could enhance plant nutrient capture through the flow of mineral nutrients directly from the soil to plant roots, or by maintaining the functioning of mycorrhizal fungi. We evaluated the extent to which the diel cycle of water availability created by HL covaries with the efflux of HL water from the tips of extramatrical (external) mycorrhizal hyphae, and the possible effects on biogeochemical processes. Phenotypic mycorrhizal fungal variables, such as total and live hyphal lengths, were positively correlated with HL efflux from hyphae, soil water potential (dawn), and plant response variables (foliar 15N). The efflux of HL water from hyphae was also correlated with bacterial abundance and soil enzyme activity (P), and the moistening of soil organic matter. Such findings indicate that the efflux of HL water from the external mycorrhizal mycelia may be a complementary explanation for plant nutrient acquisition and survival during drought.Key words: hydraulic lift, nitrogen, phosphorus, microbial abundance, mycorrhizal hyphae, QuercusIn environments that experience seasonal or extended drought, plant productivity, resource partitioning, and competition are limited by the availability of water and mineral nutrients. One mechanism that is important to whole plant water balance in these environments is hydraulic lift (HL), a passive process driven by gradients in water potential among soils layers. Soil water is transported upwards from deep moist soils and released into the nutrient-rich upper soil layers by root systems accessing both deep and shallow soil layers.1 HL water may improve the lifespan and activity of fine roots in a wide variety of plant life forms.2Hydraulic lift may also have a second ecological function in facilitating plant nutrient acquisition.2 It been hypothesized that HL water could enhance the supply of nutrients to roots through mass flow or diffusion,3 or trigger episodes of soil biotic activity such as microbe-mediated nutrient transformations4,5 that are analogous to the increased inflow of nitrogen (N) into roots and flushes of carbon (C) and N mineralization respectively that follow precipitation events.4,6 However, few data currently exist with which to test these possibilities.Hydraulically lifted water also sustains mycorrhizal fungi,7,8 a mutualism that enhances the acquisition of water and mineral nutrients in many terrestrial plant species. Mycorrhizal fungal hyphae provide comprehensive exploration and rapid access to small-scale or temporary nutrient flushes that may not be available to plant roots.9 This resource flow has often been assumed to be a unidirectional flux whereby resources are moved from source (soil) into the sink (plant) by the fungal hyphae. However, there is now evidence to suggest that the physiological plasticity of the peripheral extramatrical hyphae, and in particular the hyphal tips, permits the exudation, and subsequent reabsorption, of water and solutes.10,11 Laboratory experiments using pure cultures have demonstrated that water may be exuded from the hyphal tips, especially in fungal species with hydrophobic hyphae, along with a variety of organic molecules, such as free amino acids.1013 At the same time, water, mobile minerals, amino acids and other low-molecular weight metabolites may be selectively and actively reabsorbed by mycorrhizal fungal hyphae.11 However, quantitative data on the environmental impact of hyphal exudation and reabsorption is still largely lacking.We ask: could the diel cycle of water availability created by HL produce a water efflux from hyphal tips and if so, would this be sufficient to impact biogeochemical processes? Is there also an opposite rhythm driven by plant transpiration so that any resultant soil solution is pulled towards hyphal tips and consequently, the host plant? By imposing drought on seedlings of Quercus agrifolia Nee (coast live oak; Fagaceae) grown in mesocosms (Fig. 1), we identified a composite of feedbacks that could influence nutrient capture with HL (Fig. 2). Our analyses provide support for the key predictions of the HL-nutrient cycling scenario including the efflux of HL water from the extramatrical hyphae (Fig. 3), moistening of soil organic matter (Figs. 3 and and4),4), and the maintenance of soil microbial activity and nutrient capture (N, P; Open in a separate windowFigure 1Quercus mesocosms demonstrating the plant, root, and hyphal compartments. Details of soil conditions, plant inoculation protocol, mycorrhizal fungi and dye injection methods are detailed in previous work (ref. 7) Point 1 (tap root compartment) denotes the region in which fluorescent tracer dyes were injected into the mesocosm at dusk to track the path of HL water. Point 2 (hyphal chamber) denotes spots adjacent to or distant from the mesh screen into which a small volume (200 µl) of fluorescent and 15N tracers (99% as 15NH415NO3) were injected at dawn to measure water and nutrient uptake by the external hyphae.Open in a separate windowFigure 2Path analysis of the influence of different soil and mycorrhizal factors on nutrient capture with HL, and resultant model showing the significant path coefficients among variables in the Q. agrifolia mesocosms. Lines with a single arrow denote possible cause-effect relationships. The partial correlation coefficients adjacent to each line indicate the strength of the association between the individual factors. Thick lines are statistically significant (p < 0.05) whereas thin lines indicate no significant relationship between parameters (p > 0.05) and only significant coefficients are given (p < 0.05).Open in a separate windowFigure 3Fluorescently-labeled structures recovered from the hyphal chamber of Quercus microcosms following 80 days of soil drying and with nocturnal hydraulic lift. Yellow-green fluorescence indicates samples labeled with Lucifer yellow CH (LYCH), blue fluorescence denotes samples labeled with Cascade blue (CB) hydrazide. (A) CB-labeled leaf litter from the soil and (B) soil particle; (C) LYCH-labeled root fragment in the soil mixture with adherent extramatrical hyphae; (D) LYCH tracer dye fluorescence in labeled extramatrical hyphae and in efflux (arrow) from the hyphal tip onto organic matter; (E and F) external hyphae filled with LYCH (influx; arrow) and (G) background fluorescence in non-labeled extramatrical hyphae.Open in a separate windowFigure 4Measurements of hyphal efflux and influx based on the quantitative analysis of LYCH fluorescence intensity in soil solution. Fluorescent intensity values were converted to LYCH concentration using a standard curve generated for the dye since fluorescent intensity correlates with the number of fluorescent molecules in solution. Influx is the uptake of LYCH by hyphae as driven by plant transpiration demands (day), and measured efflux is the passive loss of LYCH from hyphae into the surrounding soil during HL (night). Vertical bars indicate the standard error of the means.

Table 1

Summary of soil, microbial, mycorrhizal and plant parameters in plant or hyphal compartments
Compartment and Location
TraitPlantHyphal (Near Mesh)Hyphal (Away from Mesh)
γs Dawn (MPa)-4.19 (0.31)b-2.04 (0.66)a-2.09 (0.31)a
γs Dusk (MPa)-20.3 (2.10)b-2.55 (0.49)a-2.09 (0.30)a
Phosphatase activity (µg pNP g-1 hr-1)346 (41)b1289 (38)a1128 (33)a
Microbial abundance (colonies g-1 soil x 106)2.55 (0.28)b4.72 (1.21)a3.54 (0.37)a
Total hyphal length (AMF + EM; m g-1 soil)29 (13)b235 (45)a208 (52)a
Live hyphal length (dye-labeled AMF + EM hyphae; m g-1 soil)29 (3.5) b75 (0.3)a69 (2.1)a
*Abundance of microbial genes:
16s rRNA++++++
nirK+++
nirSndndnd
amoA++++++
§Percentage of 15N incorporated into plant or fungal biomassOld leaves 0.10Hyphae 4.34Hyphae 5.70
New leaves 5.74
Fine roots 1.42
Open in a separate windowWithin each row, mean values with the same letter do not differ significantly at p < 0.05.*Microbial genes: + detected in soil; ++ abundant in soil; nd, not detected in sample.§Percentage of 15N uptake based on two-source mixing-model of δ15N (‰) in plant and hyphal material following the spot application of 15NH415NO3 to the hyphal compartment.  相似文献   

14.
Genome-wide analysis of lipoxygenase gene family in Arabidopsis and rice     
Pavan Umate 《Plant signaling & behavior》2011,6(3):335-338
The enzymes called lipoxygenases (LOXs) can dioxygenate unsaturated fatty acids, which leads to lipoperoxidation of biological membranes. This process causes synthesis of signaling molecules and also leads to changes in cellular metabolism. LOXs are known to be involved in apoptotic (programmed cell death) pathway, and biotic and abiotic stress responses in plants. Here, the members of LOX gene family in Arabidopsis and rice are identified. The Arabidopsis and rice genomes encode 6 and 14 LOX proteins, respectively, and interestingly, with more LOX genes in rice. The rice LOXs are validated based on protein alignment studies. This is the first report wherein LOXs are identified in rice which may allow better understanding the initiation, progression and effects of apoptosis, and responses to bitoic and abiotic stresses and signaling cascades in plants.Key words: apoptosis, biotic and abiotic stresses, genomics, jasmonic acid, lipidsLipoxygenases (linoleate:oxygen oxidoreductase, EC 1.13.11.-; LOXs) catalyze the conversion of polyunsaturated fatty acids (lipids) into conjugated hydroperoxides. This process is called hydroperoxidation of lipids. LOXs are monomeric, non-heme and non-sulfur, but iron-containing dioxygenases widely expressed in fungi, animal and plant cells, and are known to be absent in prokaryotes. However, a recent finding suggests the existence of LOX-related genomic sequences in bacteria but not in archaea.1 The inflammatory conditions in mammals like bronchial asthama, psoriasis and arthritis are a result of LOXs reactions.2 Further, several clinical conditions like HIV-1 infection,3 disease of kidneys due to the activation of 5-lipoxygenase,4,5 aging of the brain due to neuronal 5-lipoxygenase6 and atherosclerosis7 are mediated by LOXs. In plants, LOXs are involved in response to biotic and abiotic stresses.8 They are involved in germination9 and also in traumatin and jasmonic acid biochemical pathways.10,11 Studies on LOX in rice are conducted to develop novel strategies against insect pests12 in response to wounding and insect attack,13 and on rice bran extracts as functional foods and dietary supplements for control of inflammation and joint health.14 In Arabidopsis, LOXs are studied in response to natural and stress-induced senescence,15 transition to flowering,16 regulation of lateral root development and defense response.17The arachidonic, linoleic and linolenic acids can act as substrates for different LOX isozymes. A hydroperoxy group is added at carbons 5, 12 or 15, when arachidonic acid is the substrate, and so the LOXs are designated as 5-, 12- or 15-lipoxygenases. Sequences are available in the database for plant lipoxygenases (EC:1.13.11.12), mammalian arachidonate 5-lipoxygenase (EC:1.13.11.34), mammalian arachidonate 12-lipoxygenase (EC:1.13.11.31) and mammalian erythroid cell-specific 15-lipoxygenase (EC:1.13.11.33). The prototype member for LOX family, LOX-1 of Glycine max L. (soybean) is a 15-lipoxygenase. The LOX isoforms of soybean (LOX-1, LOX-2, LOX-3a and LOX-3b) are the most characterized of plant LOXs.18 In addition, five vegetative LOXs (VLX-A, -B, -C, -D, -E) are detected in soybean leaves.19 The 3-dimensional structure of soybean LOX-1 has been determined.20,21 LOX-1 was shown to be made of two domains, the N-terminal domain-I which forms a β-barrel of 146 residues, and a C-terminal domain-II of bundle of helices of 693 residues21 (Fig. 1). The iron atom was shown to be at the centre of domain-II bound by four coordinating ligands, of which three are histidine residues.22Open in a separate windowFigure 1Three-dimensional structure of soybean lipoxygenase L-1. The domain I (N-terminal) and domain II (C-terminal) are indicated. The catalytic iron atom is embedded in domain II (PDB ID-1YGE).21This article describes identification of LOX genes in Arabidopsis and rice. The Arabidopsis genome encodes for six LOX proteins23 (www.arabidopsis.org) (LocusAnnotationNomenclatureA*B*C*AT1G55020lipoxygenase 1 (LOX1)LOX185998044.45.2049AT1G17420lipoxygenase 3 (LOX3)LOX3919103725.18.0117AT1G67560lipoxygenase family proteinLOX4917104514.68.0035AT1G72520lipoxygenase, putativeLOX6926104813.17.5213AT3G22400lipoxygenase 5 (LOX5)LOX5886101058.86.6033AT3G45140lipoxygenase 2 (LOX2)LOX2896102044.75.3177Open in a separate window*A, amino acids; B, molecular weight; C, isoelectric point.Interestingly, the rice genome (rice.plantbiology.msu.edu) encodes for 14 LOX proteins as compared to six in Arabidopsis (and22). Of these, majority of them are composed of ∼790–950 aa with the exception for loci, LOC_Os06g04420 (126 aa), LOC_Os02g19790 (297 aa) and LOC_Os12g37320 (359 aa) (Fig. 2).Open in a separate windowFigure 2Protein alignment of rice LOXs and vegetative lipoxygenase, VLX-B,28 a soybean LOX (AA B67732). The 14 rice LOCs are indicated on left and sequence position on right. Gaps are included to improve alignment accuracy. Figure was generated using ClustalX program.

Table 2

Genes encoding lipoxygenases in rice
ChromosomeLocus IdPutative functionA*B*C*
2LOC_Os02g10120lipoxygenase, putative, expressed9271035856.0054
2LOC_Os02g19790lipoxygenase 4, putative29733031.910.4799
3LOC_Os03g08220lipoxygenase protein, putative, expressed9191019597.4252
3LOC_Os03g49260lipoxygenase, putative, expressed86897984.56.8832
3LOC_Os03g49380lipoxygenase, putative, expressed87898697.57.3416
3LOC_Os03g52860lipoxygenase, putative, expressed87197183.56.5956
4LOC_Os04g37430lipoxygenase protein, putative, expressed79889304.610.5125
5LOC_Os05g23880lipoxygenase, putative, expressed84895342.97.6352
6LOC_Os06g04420lipoxygenase 4, putative12614054.76.3516
8LOC_Os08g39840lipoxygenase, chloroplast precursor, putative, expressed9251028196.2564
8LOC_Os08g39850lipoxygenase, chloroplast precursor, putative, expressed9421044947.0056
11LOC_Os11g36719lipoxygenase, putative, expressed86998325.45.3574
12LOC_Os12g37260lipoxygenase 2.1, chloroplast precursor, putative, expressed9231046876.2242
12LOC_Os12g37320lipoxygenase 2.2, chloroplast precursor, putative, expressed35940772.78.5633
Open in a separate window*A, amino acids; B, molecular weight; C, isoelectric point.

Table 3

Percent homology of rice lipoxygenases against Arabidopsis
Loci (Os)Homolog (At)Identity/similarity (%)No. of aa compared
LOC_Os02g10120LOX260/76534
LOC_Os02g19790LOX554/65159
LOC_Os03g08220LOX366/79892
LOC_Os03g49260LOX556/73860
LOC_Os03g49380LOX560/75861
LOC_Os03g52860LOX156/72877
LOC_Os04g37430LOX361/75631
LOC_Os05g23880LOX549/66810
LOC_Os06g04420LOX549/62114
LOC_Os08g39840LOX249/67915
LOC_Os08g39850LOX253/70808
LOC_Os11g36719LOX552/67837
LOC_Os12g37260LOX253/67608
LOC_Os12g37320LOX248/60160
Open in a separate windowOs, Oryza sativa L.; At, Arabidopsis thaliana L.; aa, amino acids.In plants, programmed cell death (PCD) has been linked to different stages of development and senescence, germination and response to cold and salt stresses.24,25 To conclude, this study indicates that rice genome encodes for more LOX proteins as compared to Arabidopsis. The LOX members are not been thoroughly investigated in rice. The more advanced knowledge on LOXs function might spread light on the significant role of LOXs in PCD, biotic and abiotic stress responses in rice.  相似文献   

15.
Variation in Adult Plant Phenotypes and Partitioning among Seed and Stem-Borne Roots across Brachypodium distachyon Accessions to Exploit in Breeding Cereals for Well-Watered and Drought Environments     
Vincent Chochois  John P. Vogel  Gregory J. Rebetzke  Michelle Watt 《Plant physiology》2015,168(3):953-967
Seedling roots enable plant establishment. Their small phenotypes are measured routinely. Adult root systems are relevant to yield and efficiency, but phenotyping is challenging. Root length exceeds the volume of most pots. Field studies measure partial adult root systems through coring or use seedling roots as adult surrogates. Here, we phenotyped 79 diverse lines of the small grass model Brachypodium distachyon to adults in 50-cm-long tubes of soil with irrigation; a subset of 16 lines was droughted. Variation was large (total biomass, ×8; total root length [TRL], ×10; and root mass ratio, ×6), repeatable, and attributable to genetic factors (heritabilities ranged from approximately 50% for root growth to 82% for partitioning phenotypes). Lines were dissected into seed-borne tissues (stem and primary seminal axile roots) and stem-borne tissues (tillers and coleoptile and leaf node axile roots) plus branch roots. All lines developed one seminal root that varied, with branch roots, from 31% to 90% of TRL in the well-watered condition. With drought, 100% of TRL was seminal, regardless of line because nodal roots were almost always inhibited in drying topsoil. Irrigation stimulated nodal roots depending on genotype. Shoot size and tillers correlated positively with roots with irrigation, but partitioning depended on genotype and was plastic with drought. Adult root systems of B. distachyon have genetic variation to exploit to increase cereal yields through genes associated with partitioning among roots and their responsiveness to irrigation. Whole-plant phenotypes could enhance gain for droughted environments because root and shoot traits are coselected.Adult plant root systems are relevant to the size and efficiency of seed yield. They supply water and nutrients for the plant to acquire biomass, which is positively correlated to the harvest index (allocation to seed grain), and the stages of flowering and grain development. Modeling in wheat (Triticum aestivum) suggested that an extra 10 mm of water absorbed by such adult root systems during grain filling resulted in an increase of approximately 500 kg grain ha−1 (Manschadi et al., 2006). This was 25% above the average annual yield of wheat in rain-fed environments of Australia. This number was remarkably close to experimental data obtained in the field in Australia (Kirkegaard et al., 2007). Together, these modeling and field experiments have shown that adult root systems are critical for water absorption and grain yield in cereals, such as wheat, emphasizing the importance of characterizing adult root systems to identify phenotypes for productivity improvements.Most root phenotypes, however, have been described for seedling roots. Seedling roots are essential for plant establishment, and hence, the plant’s potential to set seed. For technical reasons, seedlings are more often screened than adult plants because of the ease of handling smaller plants and the high throughput. Seedling-stage phenotyping may also improve overall reproducibility of results because often, growth media are soil free. Seedling soil-free root phenotyping conditions are well suited to dissecting fine and sensitive mechanisms, such as lateral root initiation (Casimiro et al., 2003; Péret et al., 2009a, 2009b). A number of genes underlying root processes have been identified or characterized using seedlings, notably with the dicotyledonous models Arabidopsis (Arabidopsis thaliana; Mouchel et al., 2004; Fitz Gerald et al., 2006; Yokawa et al., 2013) and Medicago truncatula (Laffont et al., 2010) and the cereals maize (Zea mays; Hochholdinger et al., 2001) and rice (Oryza sativa; Inukai et al., 2005; Kitomi et al., 2008).Extrapolation from seedling to adult root systems presents major questions (Hochholdinger and Zimmermann, 2008; Chochois et al., 2012; Rich and Watt, 2013). Are phenotypes in seedling roots present in adult roots given developmental events associated with aging? Is expression of phenotypes correlated in seedling and adult roots if time compounds effects of growth rates and growth conditions on roots? Watt et al. (2013) showed in wheat seedlings that root traits in the laboratory and field correlated positively but that neither correlated with adult root traits in the field. Factors between seedling and adult roots seemed to be differences in developmental stage and the time that growing roots experience the environment.Seedling and adult root differences may be larger in grasses than dicotyledons. Grass root systems have two developmental components: seed-borne (seminal) roots, of which a number emerge at germination and continue to grow and branch throughout the plant life, and stem-borne (nodal or adventitious) roots, which emerge from around the three-leaf stage and continue to emerge, grow, and branch throughout the plant life. Phenotypes and traits of adult root systems of grasses, which include the major cereal crops wheat, rice, and maize, are difficult to predict in seedling screens and ideally identified from adult root systems first (Gamuyao et al., 2012).Phenotyping of adult roots is possible in the field using trenches (Maeght et al., 2013) or coring (Wasson et al., 2014). A portion of the root system is captured with these methods. Alternatively, entire adult root systems can be contained within pots dug into the ground before sowing. These need to be large; field wheat roots, for example, can reach depths greater than 1.5 m depending on genotype and environment. This method prevents root-root interactions that occur under normal field sowing of a plant canopy and is also a compromise.A solution to the problem of phenotyping adult cereal root systems is a model for monocotyledon grasses: Brachypodium distachyon. B. distachyon is a small-stature grass with a small genome that is fully sequenced (Vogel et al., 2010). It has molecular tools equivalent to those available in Arabidopsis (Draper et al., 2001; Brkljacic et al., 2011; Mur et al., 2011). The root system of B. distachyon reference line Bd21 is more similar to wheat than other model and crop grasses (Watt et al., 2009). It has a seed-borne primary seminal root (PSR) that emerges from the embryo at seed germination and multiple stem-borne coleoptile node axile roots (CNRs) and leaf node axile roots (LNRs), also known as crown roots or adventitious roots, that emerge at about three leaves through to grain development. Branch roots emerge from all root types. There are no known anatomical differences between root types of wheat and B. distachyon (Watt et al., 2009). In a recent study, we report postflowering root growth in B. distachyon line Bd21-3, showing that this model can be used to answer questions relevant to the adult root systems of grasses (Chochois et al., 2012).In this study, we used B. distachyon to identify adult plant phenotypes related to the partitioning among seed-borne and stem-borne shoots and roots for the genetic improvement of well-watered and droughted cereals (Fig. 1; Krassovsky, 1926; Navara et al., 1994), nitrogen, phosphorus (Tennant, 1976; Brady et al., 1995), oxygen (Wiengweera and Greenway, 2004), soil hardness (Acuna et al., 2007), and microorganisms (Sivasithamparam et al., 1978). Of note is the study by Krassovsky (1926), which was the first, to our knowledge, to show differences in function related to water. Krassovsky (1926) showed that seminal roots of wheat absorbed almost 2 times the water as nodal roots per unit dry weight but that nodal roots absorbed a more diluted nutrient solution than seminal roots. Krassovsky (1926) also showed by removing seminal or nodal roots as they emerged that “seminal roots serve the main stem, while nodal roots serve the tillers” (Krassovsky, 1926). Volkmar (1997) showed, more recently, in wheat that nodal and seminal roots may sense and respond to drought differently. In millet (Pennisetum glaucum) and sorghum (Sorghum bicolor), Rostamza et al. (2013) found that millet was able to grow nodal roots in a dryer soil than sorghum, possibly because of shoot and root vigor.Open in a separate windowFigure 1.B. distachyon plant scanned at the fourth leaf stage, with the root and shoot phenotypes studied indicated. Supplemental Table S1.
PhenotypeAbbreviationUnitRange of Variation
All Experiments (79 Lines and 582 Plants)Experiment 6 (36 Lines)
Whole plant
TDWTDWMilligrams88.6–773.8 (×8.7)285.6–438 (×1.5)
Shoot
SDWSDWMilligrams56.4–442.5 (×7.8)78.2–442.5 (×5.7)
 No. of tillersTillerNCount2.8–20.3 (×7.4)10–20.3 (×2)
Total root system
TRLTRLCentimeters1,050–10,770 (×10.3)2,090–5,140 (×2.5)
RDWRDWMilligrams28.9–312.17 (×10.8)62.2–179.1 (×2.9)
RootpcRootpcPercentage (of TDW)20.5–60.6 (×3)20.5–44.3 (×2.2)
R/SR/SUnitless ratio0.26–1.54 (×6)0.26–0.80 (×3.1)
PSRs
 Length (including branch roots)PSRLCentimeters549.1–4,024.6 (×7.3)716–2,984 (×4.2)
PSRpcPSRpcPercentage (of TRL)14.9–94.1 (×6.3)31.3–72.3 (×2.3)
 No. of axile rootsPSRcountCount11
 Length of axile rootPSRsumCentimeters17.45–52 (×3)17.45–30.3 (×1.7)
 Branch rootsPSRbranchCentimeters · (centimeters of axile root)−119.9–109.3 (×5.5)29.3–104.3 (×3.6)
CNRs
 Length (including branch roots)CNRLCentimeters0–3,856.70–2,266.5
CNRpcCNRpcPercentage (of TRL)0–57.10–49.8
 No. of axile rootsCNRcountCount0–20–2
 Cumulated length of axile rootsCNRsumCentimeters0–113.90–47.87
 Branch rootsCNRbranchCentimeters · (centimeters of axile root)−10–77.80–77.8
LNRs
 Length (including branch roots)LNRLCentimeters99.5–5,806.5 (×58.5)216.1–2,532.4 (×11.7)
LNRpcLNRpcPercentage (of TRL)4.2–72.7 (×17.5)6–64.8 (×10.9)
LNRcountLNRcountCount2–22.2 (×11.1)3.3–15.3 (×4.6)
LNRsumLNRsumCentimeters25.9–485.548–232 (×4.8)
 Branch rootsLNRbranchCentimeters · (centimeters of axile root)−12.1–25.4 (×12.1)3.2–15.9 (×5)
Open in a separate windowThe third reason for dissecting the different root types in this study was that they seem to have independent genetic regulation through major genes. Genes affecting specifically nodal root growth have been identified in maize (Hetz et al., 1996; Hochholdinger and Feix, 1998) and rice (Inukai et al., 2001, 2005; Liu et al., 2005, 2009; Zhao et al., 2009; Coudert et al., 2010; Gamuyao et al., 2012). Here, we also dissect branch (lateral) development on the seminal or nodal roots. Genes specific to branch roots have been identified in Arabidopsis (Casimiro et al., 2003; Péret et al., 2009a), rice (Hao and Ichii, 1999; Wang et al., 2006; Zheng et al., 2013), and maize (Hochholdinger and Feix, 1998; Hochholdinger et al., 2001; Woll et al., 2005).This study explored the hypothesis that adult root systems of B. distachyon contain genotypic variation that can be exploited through phenotyping and genotyping to increase cereal yields. A selection of 79 wild lines of B. distachyon from various parts of the Middle East (Fig. 2 shows the geographic origins of the lines) was phenotyped. They were selected for maximum genotypic diversity from 187 diploid lines analyzed with 43 simple sequence repeat markers (Vogel et al., 2009). We phenotyped shoots and mature root systems concurrently because B. distachyon is small enough to complete its life cycle in relatively small pots of soil with minimal influence of pot size compared with crops, such as wheat. We further phenotyped a subset of this population under irrigation (well watered) and drought to assess genotype response to water supply. By conducting whole-plant studies, we aimed to identify phenotypes that described partitioning among shoot and root components and within seed-borne and stem-borne roots. Phenotypes that have the potential to be beneficial to shoot and root components may speed up genetic gain in future.Open in a separate windowFigure 2.B. distachyon lines phenotyped in this study and their geographical origin. Capital letters in parentheses indicate the country of origin: Turkey (T), Spain (S), and Iraq (I; Vogel et al., 2009). a, Adi3, Adi7, Adi10, Adi12, Adi13, and Adi15; b, Bd21 and Bd21-3 are the reference lines of this study. Bd21 was the first sequenced line (Vogel et al., 2010) and root system (described in detail in Watt et al., 2009), and Bd21-3 is the most easily transformed line (Vogel and Hill, 2008) and parent of a T-DNA mutant population (Bragg et al., 2012); c, Gaz1, Gaz4, and Gaz7; d, Kah1, Kah2, and Kah3. e, Koz1, Koz3, and Koz5; f, Tek1 and Tek6; g, exact GPS coordinates are unknown for lines Men2 (S), Mur2 (S), Bd2.3 (I), Bd3-1 (I), and Abr1 (T).  相似文献   

16.
Lessons from investigation of regulation of APS reductase by salt stress     
Anna Koprivova  Stanislav Kopriva 《Plant signaling & behavior》2008,3(8):567-569
  相似文献   

17.
Growth of Arthrobacter sp. Strain JBH1 on Nitroglycerin as the Sole Source of Carbon and Nitrogen     
Johana Husserl  Jim C. Spain  Joseph B. Hughes 《Applied and environmental microbiology》2010,76(5):1689-1691
Arthrobacter sp. strain JBH1 was isolated from nitroglycerin-contaminated soil by selective enrichment. Detection of transient intermediates and simultaneous adaptation studies with potential intermediates indicated that the degradation pathway involves the conversion of nitroglycerin to glycerol via 1,2-dinitroglycerin and 1-mononitroglycerin, with concomitant release of nitrite. Glycerol then serves as the source of carbon and energy.Nitroglycerin (NG) is manufactured widely for use as an explosive and a pharmaceutical vasodilator. It has been found as a contaminant in soil and groundwater (7, 9). Due to NG''s health effects as well as its highly explosive nature, NG contamination in soils and groundwater poses a concern that requires remedial action (3). Natural attenuation and in situ bioremediation have been used for remediation in soils contaminated with certain other explosives (16), but the mineralization of NG in soil and groundwater has not been reported.To date, no pure cultures able to grow on NG as the sole carbon, energy, and nitrogen source have been isolated. Accashian et al. (1) observed growth associated with the degradation of NG under aerobic conditions by a mixed culture originating from activated sludge. The use of NG as a source of nitrogen has been studied in mixed and pure cultures during growth on alternative sources of carbon and energy (3, 9, 11, 20). Under such conditions, NG undergoes a sequential denitration pathway in which NG is transformed to 1,2-dinitroglycerin (1,2DNG) or 1,3DNG followed by 1-mononitroglycerin (1MNG) or 2MNG and then glycerol, under both aerobic and anaerobic conditions (3, 6, 9, 11, 20), and the enzymes involved in denitration have been characterized in some detail (4, 8, 15, 21). Pure cultures capable of completely denitrating NG as a source of nitrogen when provided additional sources of carbon include Bacillus thuringiensis/cereus and Enterobacter agglomerans (11) and a Rhodococcus species (8, 9). Cultures capable of incomplete denitration to MNG in the presence of additional carbon sources were identified as Pseudomonas putida, Pseudomonas fluorescens (4), an Arthobacter species, a Klebsiella species (8, 9), and Agrobacterium radiobacter (20).Here we describe the isolation of bacteria able to degrade NG as the sole source of carbon, nitrogen, and energy. The inoculum for selective enrichment was soil historically contaminated with NG obtained at a facility that formerly manufactured explosives located in the northeastern United States. The enrichment medium consisted of minimal medium prepared as previously described (17) supplemented with NG (0.26 mM), which was synthesized as previously described (18). During enrichment, samples of the inoculum (optical density at 600 nm [OD600] ∼ 0.03) were diluted 1/16 in fresh enrichment medium every 2 to 3 weeks. Isolates were obtained by dilution to extinction in NG-supplemented minimal medium. Cultures were grown under aerobic conditions in minimal medium at pH 7.2 and 23°C or in tryptic soy agar (TSA; 1/4 strength).Early stages of enrichment cultures required extended incubation with lag phases of over 200 h and exhibited slow degradation of NG (less than 1 μmol substrate/mg protein/h). After a number of transfers over 8 months, the degradation rates increased substantially (2.2 μmol substrate/mg protein/h). A pure culture capable of growth on NG was identified based on 16S rRNA gene analysis (504 bp) as an Arthrobacter species with 99.5% similarity to Arthrobacter pascens (GenBank accession no. GU246730). Purity of the cultures was confirmed microscopically and by formation of a single colony type on TSA plates. 16S gene sequencing and identification were done by MIDI Labs (Newark, DE) and SeqWright DNA Technology Services (Houston, TX). The Arthrobacter cells stained primarily as Gram-negative rods with a small number of Gram-positive cocci (data not shown); Gram variability is also a characteristic of the closely related Arthrobacter globiformis (2, 19). The optimum growth temperature is 30°C, and the optimum pH is 7.2. Higher pH values were not investigated because NG begins to undergo hydrolysis above pH 7.5 (data not shown). The isolated culture can grow on glycerol, acetate, succinate, citrate, and lactate, with nitrite as the nitrogen source. Previous authors described an Arthrobacter species able to use NG as a nitrogen source in the presence of additional sources of carbon. However, only dinitroesters were formed, and complete mineralization was not achieved (9).To determine the degradation pathway, cultures of the isolated strain (5 ml of inoculum grown on NG to an OD600 of 0.3) were grown in minimal medium (100 ml) supplemented with NG at a final concentration of 0.27 mM. Inoculated bottles and abiotic controls were continuously mixed, and NG, 1,2DNG, 1,3DNG, 1MNG, 2MNG, nitrite, nitrate, CO2, total protein, and optical density were measured at appropriate intervals. Nitroesters were analyzed with an Agilent high-performance liquid chromatograph (HPLC) equipped with an LC-18 column (250 by 4.6 mm, 5 μm; Supelco) and a UV detector at a wavelength of 214 nm (13). Methanol-water (50%, vol/vol) was used as the mobile phase at a flow rate of 1 ml/min. Nitrite and nitrate were analyzed with an ion chromatograph (IC) equipped with an IonPac AS14A anion-exchange column (Dionex, CA) at a flow rate of 1 ml/min. Carbon dioxide production was measured with a Micro Oxymax respirometer (Columbus Instruments, OH), and total protein was quantified using the Micro BCA protein assay kit (Pierce Biotechnology, IL) according to manufacturer''s instructions. During the degradation of NG the 1,2DNG concentration was relatively high at 46 and 72 h (Fig. (Fig.1).1). 1,3DNG, detected only at time zero, resulted from trace impurities in the NG stock solution. Trace amounts of 1MNG appeared transiently, and trace amounts of 2MNG accumulated and did not disappear. Traces of nitrite at time zero were from the inoculum. The concentration of NG in the abiotic control did not change during the experiment (data not shown).Open in a separate windowFIG. 1.Growth of strain JBH1 on NG. ×, NG; ▵, 1,2DNG; ⋄, 1MNG; □, 2MNG; ○, protein.Results from the experiment described above were used to calculate nitrogen and carbon mass balances (Tables (Tables11 and and2).2). Nitrogen content in protein was approximated using the formula C5H7O2N (14). Because all nitrogen was accounted for throughout, we conclude that the only nitrogen-containing intermediate compounds are 1,2DNG and 1MNG, which is consistent with previous studies (6, 9, 20). The fact that most of the nitrogen was released as nitrite is consistent with previous reports of denitration catalyzed by reductase enzymes (4, 8, 21). The minor amounts of nitrate observed could be from abiotic hydrolysis (5, 12) or from oxidation of nitrite. Cultures supplemented with glycerol or other carbon sources assimilated all of the nitrite (data not shown).

TABLE 1.

Nitrogen mass balance
Time (h)% of total initial nitrogen by mass recovered ina:
Total recovery (%)
1MNG2MNG1,2DNG1,3DNGNGProteinNitriteNitrate
0NDbND0.9 ± 0.70.8 ± 0.682 ± 5.20.8 ± 0.214 ± 0.70.8 ± 0.3100 ± 5.3
460.1 ± 0.00.8 ± 0.27.9 ± 0.4ND35 ± 3.62.0 ± 0.549 ± 1.11.7 ± 0.096 ± 4.2
720.1 ± 0.00.9 ± 0.24.3 ± 4.2ND5.0 ± 0.43.3 ± 0.281 ± 4.23.9 ± 1.998 ± 6.8
94ND0.6 ± 0.4NDND0.6 ± 0.43.2 ± 0.095 ± 102.6 ± 1.6102 ± 10
Open in a separate windowaData represent averages of four replicates ± standard deviations.bND, not detected.

TABLE 2.

Carbon mass balance
Time (h)% of total initial carbon by mass recovered in:
Total recovery (%)
1MNGa2MNGa1,2DNGa1,3DNGaNGaProteinaCO2b
0NDcND1.6 ± 1.21.9 ± 0.492 ± 5.84.4 ± 0.9100 ± 8.4
460.5 ± 0.22.6 ± 0.613 ± 0.7ND39 ± 3.913 ± 3.028 ± 5.796 ± 14.1
720.4 ± 0.02.9 ± 0.77.3 ± 7.0ND5.6 ± 0.422 ± 1.259 ± 8.397 ± 17.6
94ND2.8 ± 0.3NDND0.8 ± 0.518 ± 0.371 ± 4.593 ± 5.6
Open in a separate windowaData represent averages of four replicates ± standard deviations.bData represent averages of duplicates ± standard deviations.cND, not detected.In a separate experiment cells grown on NG were added to minimal media containing 1,3DNG, 1,2DNG, 1MNG, or 2MNG and degradation over time was measured. 1,2DNG, 1,3DNG, and 1MNG were degraded at rates of 6.5, 3.8, and 8 μmol substrate/mg protein/hour. No degradation of 2MNG was detected (after 250 h), which indicates that 2MNG is not an intermediate in a productive degradation pathway. Because 1,3DNG was not observed at any point during the degradation of NG and its degradation rate is approximately one-half the degradation rate of 1,2DNG, it also seems not to be part of the main NG degradation pathway used by Arthrobacter sp. strain JBH1. The above observations indicate that the degradation pathway involves a sequential denitration of NG to 1,2DNG, 1MNG, and then glycerol, which serves as the source of carbon and energy (Fig. (Fig.2).2). The productive degradation pathway differs from that observed by previous authors using both mixed (1, 3, 6) and pure cultures (4, 9, 11, 20), in which both 1,3- and 1,2DNG were intermediates during NG transformation. Additionally, in previous studies both MNG isomers were produced regardless of the ratio of 1,2DNG to 1,3DNG (3, 4, 6, 9, 20). Our results indicate that the enzymes involved in denitration of NG in strain JBH1 are highly specific and catalyze sequential denitrations that do not involve 1,3DNG or 2MNG. Determination of how the specificity avoids misrouting of intermediates will require purification and characterization of the enzyme(s) involved.Open in a separate windowFIG. 2.Proposed NG degradation pathway.Mass balances of carbon and nitrogen were used to determine the following stoichiometric equation that describes NG mineralization by Arthrobacter sp. strain JBH1: 0.26C3H5(ONO2)3 + 0.33O2 → 0.03C5H7O2N + 0.63CO2 + 0.75NO2 + 0.75H+ + 0.17H2O. The result indicates that most of the NG molecule is being used for energy. The biomass yield is relatively low (0.057 mg protein/mg NG), with an fs (fraction of reducing equivalents of electron donor used for protein synthesis) of 0.36 (10), which is low compared to the aerobic degradation of other compounds by pure cultures, for which fs ranges between 0.4 and 0.6 (10, 14). The results are consistent with the requirement for relatively large amounts of energy during the initiation of the degradation mechanism (each denitration probably requires 1 mole of NADH or NADPH [21]).Although NG degradation rates were optimal at pH 7.2, they were still substantial at values as low as 5.1. The results suggest that NG degradation is possible even at low pH values typical of the subsurface at sites where explosives were formerly manufactured or sites where nitrite production lowers the pH.NG concentrations above 0.5 mM are inhibitory, but degradation was still observed at 1.2 mM (data not shown). The finding that NG can be inhibitory to bacteria at concentrations that are well below the solubility of the compound is consistent with those of Accashian et al. (1) for a mixed culture.The ability of Arthrobacter sp. strain JBH1 to grow on NG as the carbon and nitrogen source provides the basis for a shift in potential strategies for natural attenuation and bioremediation of NG at contaminated sites. The apparent specificity of the denitration steps raises interesting questions about the evolution of the pathway.  相似文献   

18.
Multiple roles for cytokinin receptors and cross-talk of signaling pathways     
Teodoro Coba de la Pe?a  Claudia B Cárcamo  M Mercedes Lucas  José J Pueyo 《Plant signaling & behavior》2008,3(10):791-794
  相似文献   

19.
Recovery from drought stress in tobacco: An active process associated with the reversal of senescence in some plant parts and the sacrifice of others     
Radomíra Vanková  Jana Dobrá  Helena ?torchová 《Plant signaling & behavior》2012,7(1):19-21
  相似文献   

20.
Interactions of meniscal cells with extracellular matrix molecules: Towards the generation of tissue engineered menisci     
Guak-Kim Tan  Justin J Cooper-White 《Cell Adhesion & Migration》2011,5(3):220-226
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号