首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this survey, we studied the response of plant functional traits to calcareous grassland restoration in the Calestienne region, Southern Belgium (restoration protocol: forest clear-cutting followed by grazing at all sites). We considered traits related to dispersal, establishment, and persistence that integrate the main challenges of plants to re-establish and survive in restored areas. Functional traits were compiled from databases and compared among (i) pre-restoration and young restoration forests; (ii) restoration areas of different ages; and (iii) old restorations and reference grasslands. The following questions were addressed: (i) What is the early response (2–4 years) in terms of plant functional trait following one restorative clear-cut event? (ii) What plants functional trait responses occur from restorative management (i.e., sheep and goat grazing)? (iii) Which differences still persist between the oldest restored parcels (10–15 years), and the historical reference grasslands? Forest clear-cuts induced several changes among functional traits, including decreased mean seed mass and certain vegetative traits (i.e., decreased phanerophytes, branching species; and increased short lifespan species i.e., annuals and biennials). During restorative management, clonal, epizoochorous and autumn germinating species were favored. Despite numerous other changes during this phase, many differences remained compared to reference grasslands. In particular, geophytes, mycorrhizal and evergreen species abundance were not approaching reference grassland values. The observed pattern helped to draw inferences on the possible mechanisms operating under vegetation recovery following restorative forest clear-cut and subsequent management were identified and described in this study. Results indicated grazing was an important factor, which increased epizoochorous species, and autumn germinating taxa that filled niches in vegetation opened by summer grazing animals. Finally, differences between old restoration and reference grasslands emphasized that management should focus on reduction in soil fertility, and geophyte rhizomatous grasses. Long-term monitoring is vital to assess if management plans are effective in the complete restoration of species functional trait assemblages.  相似文献   

2.
Question: What is the importance of the seed bank in the maintenance of the restoration potential of a 60‐year‐old abandoned calcareous grassland overgrown by Pinus trees? Location: ‘Les Pairées’, province of Luxembourg, Belgium. Methods: The seed bank and the above‐ground vegetation were surveyed in three adjacent stands, previously forming a unique calcareous grassland: a 60‐year‐old Pinus forest, a four‐year‐old clear‐cutting and a typical calcareous grassland. Floristic diversity was compared among stands and between vegetation and seed bank. Results: The species richness of the vegetation and the seed bank was significantly lower in the Pinus forest. More floristic similarities were found between the clear‐cutting and the calcareous grassland. Seed bank was essentially transient, dominated by annual species. Its correspondence with the above‐ground vegetation was weak. Conclusion: Very few calcareous grassland species have persisted in the Pinus stand. Four years after clear‐cutting, the stand was nearing restoration towards a calcareous grassland. Seed longevity in the soil was not the most explicative factor. Dispersal of propagules from adjacent sources was also important.  相似文献   

3.
We investigated whether the seed banks of ex-arable lowland calcareous grasslands underwent restoration similar to that of the above-ground restoration, and whether this was influenced by seed-sowing or environmental conditions. We compared 40 sites, where some form of restoration work had been implemented between 2 and 60 years previously, with 40 paired reference sites of good quality calcareous grassland with no history of ploughing or agricultural improvement. We analysed differences between sites and between above- and below-ground vegetation using both a multivariate approach and proportions of selected plant attributes. Seed banks of reference sites were more characteristic of late successional communities, with attributes such as stress tolerance, perenniality and a reliance on fruit as the germinule form more abundant than in restoration sites. In restoration sites, these tended to decrease with restoration site isolation and increase with restoration site age and where soil nutrient conditions were more similar to reference sites (i.e. with relatively low phosphorus and high nitrogen). Seed bank communities of all sites differed considerably from above-ground communities, however, and no overall significant responses to site age, isolation or soil nutrients were detected by multivariate analyses of similarity of species between pairs of sites. Responses to different seeding methods were also barely detectable. While there is some indication from the plant attribute data that the regeneration potential contained in the seed banks of restored sites increasingly resembles that of references sites over time, even seed banks of good quality calcareous grassland are dominated by ruderal species. It is likely, therefore, that permanent seed banks do not facilitate the restoration of ex-arable grasslands.  相似文献   

4.
We investigated the restoration trajectories in vegetation and soil parameters of monospecific Rhizophora mucronata stands planted 6, 8, 10, 11, 12, 17, 18, and 50 years ago (restored system). We tested the hypothesis that the changes in vegetation characteristics, with progressing mangrove age, are related to the changes in soil characteristics. The vegetation and soil parameters were compared across this restoration sequence using a reference system comprising mature, natural mangrove stands of unknown age. Rapid increases in leaf area index and aboveground biomass, and declines in tree density and size (in terms of tree diameter and height) occurred with increasing stand age. Soil organic matter, total nitrogen, and soil redox potential increased, and soil temperature decreased as stands aged. These patterns tended to stabilize at approximately the 11th year, indicating the probable age that restoration plots tend toward forest maturity. The time for the restored systems to reach forest maturity, attaining characteristics similar to the reference system, is estimated at 25 years, which is relatively slow compared to forest regeneration trajectories estimated for natural mangroves. Our study describes the trajectory patterns for planted mangroves, which are important for the assessment of both the progress and success of mangrove rehabilitation programs.  相似文献   

5.
6.
7.
低覆盖度行带式固沙林对土壤及植被的修复效应   总被引:5,自引:0,他引:5  
姜丽娜  杨文斌  卢琦  姚云峰  蔺瑞岚 《生态学报》2013,33(10):3192-3204
在我国干旱、半干旱地区由于水分条件的制约,经过漫长的自然演替过程,逐步发育形成了广泛分布的低覆盖度植被,这些低覆盖度植被类型中存在大量的天然乔木疏林或稀疏灌丛,地表处于半流动状态,而配置成行带式后,能够完全固定流沙,并且不同配置模式下行带式固沙林土壤与植被自然恢复程度不同.因此,通过对不同带宽的低覆盖度行带式固沙林对土壤及植被修复的影响研究,揭示了不同带宽行带式固沙林带间土壤因子与植被因子的变化过程,从而阐明行带式固沙林对带间植被自然恢复和土壤发育的促进作用.结果表明,行带式杨树固沙林能够明显的促进带间土壤与植被修复;带间距离的宽窄影响植被恢复及土壤发育效果;宽带间距固沙林带间植被多样性指数高,地上生物量大,根系生物量,总长度及表面积均高,土壤水分养分条件好,微生物数量大植物残体分解快,有利于植被的生长;模糊综合评估结果表明,不同带间距行带式固沙林土壤植被恢复程度不同,宽带间距20m的恢复效果>带间距15m>带间距10m.行带式固沙林通过带间宽度的变化可以调节植被与土壤之间的相互作用,窄带间距固沙林土壤与植被的相互作用则由于造林密度大而受到抑制.宽带间距可以明显加快土壤及植被修复的速度,进而缩短土壤及植被修复的时间.  相似文献   

8.
Abstract. The paper summarizes ideas which were discussed during the ‘Spontaneous Succession in Ecosystem Restoration’ conference and elaborated through further discussion among the authors. It seeks to promote the integration of scientific knowledge on spontaneous vegetation succession into restoration programs. A scheme illustrating how knowledge of spontaneous succession may be applied to restoration is presented, and perspectives and possible future research on using spontaneous vegetation succession in ecosystem restoration are proposed. It is concluded that when implementing spontaneous succession for ecological restoration the following points must be considered: setting clear aims; evaluation of environmental site conditions; deciding whether spontaneous succession is an appropriate way to achieve the aims; prediction of successional development; monitoring of the results. The need for interdisciplinary approaches and communication between scientists, engineers and decision‐makers is emphasized.  相似文献   

9.
Revitalization of degraded landscapes may provide sinks for rising atmospheric CO2, especially in reconstructed prairies where substantial belowground productivity is coupled with large soil organic carbon (SOC) deficits after many decades of cultivation. The restoration process also provides opportunities to study the often‐elusive factors that regulate soil processes. Although the precise mechanisms that govern the rate of SOC accrual are unclear, factors such as soil moisture or vegetation type may influence the net accrual rate by affecting the balance between organic matter inputs and decomposition. A resampling approach was used to assess the control that soil moisture and plant community type each exert on SOC and total nitrogen (TN) accumulation in restored grasslands. Five plots that varied in drainage were sampled at least four times over two decades to assess SOC, TN, and C4‐ and C3‐derived C. We found that higher long‐term soil moisture, characterized by low soil magnetic susceptibility, promoted SOC and TN accrual, with twice the SOC and three times the TN gain in seasonally saturated prairies compared with mesic prairies. Vegetation also influenced SOC and TN recovery, as accrual was faster in the prairies compared with C3‐only grassland, and C4‐derived C accrual correlated strongly to total SOC accrual but C3‐C did not. High SOC accumulation at the surface (0–10 cm) combined with losses at depth (10–20 cm) suggested these soils are recovering the highly stratified profiles typical of remnant prairies. Our results suggest that local hydrology and plant community are critical drivers of SOC and TN recovery in restored grasslands. Because these factors and the way they affect SOC are susceptible to modification by climate change, we contend that predictions of the C‐sequestration performance of restored grasslands must account for projected climatic changes on both soil moisture and the seasonal productivity of C4 and C3 plants.  相似文献   

10.
Communities of soil macrofauna, oribatid mites, and nematodes as well as vegetation and soil chemistry were studied on twelve plots representing three replicates of the following treatments: agricultural meadow, heathland, and heathland restored either by partial or complete topsoil removal 15 years earlier. We also studied the effect of soil macrofauna on decomposition and the microstructure of the soil surface layer with litterbags in combination with the analysis of thin soil sections. The communities of soil macrofauna and oribatid mites significantly differed between agricultural meadows and heathlands. The partial and complete topsoil removal plots were more similar to heathlands with respect to macrofauna and to agricultural meadows with respect to oribatid mites. The density and diversity of soil macrofauna was higher in agricultural meadows than in heathlands; in particular, earthworms, litter transformers, root feeders, and microsaprophags were more abundant on meadows. Heathlands, in contrast, contained a much higher diversity of oribatid mites. The community structure of nematodes did not significantly differ among the treatments. Analysis of thin soil sections revealed a thick organic fermentation layer in heathlands, which was absent in agricultural meadows and only weakly developed in the topsoil removal plots. In agricultural meadows, litterbags and thin soil sections indicated that abundant macrofauna, including endogeic earthworms, were very effective in removing the litter from the soil surface and mixing it into the mineral soil. Possible effects of this soil mixing on restoration success are discussed.  相似文献   

11.
Vegetation composition differs significantly between ancientand recent forest, due to slow colonization capacity of typical forest speciesand the higher abundance of early successional species in recent forest.However, little is known about differences in persistent seed bank compositionbetween ancient and recent forest and about the interaction between seed bankand vegetation in relation with forest age. We surveyed the seed bank and theunderstorey vegetationcomposition in transects from ancient to recent forest. Seed bank and fieldlayer vegetation characteristics and similarity between seed bank andvegetationwere analysed in relation to recent forest age and distance to the ancientforest. A total of 39 species and 14,911 seedlings germinated, whichcorresponds with a seed density of 12,426 seeds/m2.Total seed density is significantly higher in the youngest recent forest parcel(55 years). Also the seed bank composition in the youngest forest parceldifferssignificantly from the other parcels. After a longer period of reforestation,the seed bank approaches that of the ancient forest, suggesting seed bankdepletion, although the seed bank is permanently replenished to some extent byseed bank forming species from local disturbances. Seed bank composition doesnot change significantly with distance to the ancient forest. Similaritybetween seed bank and vegetation composition, nomatter the forest age, is very low, but decreases with increasing forest age.The most frequent species in the vegetation are absent in the seed bank andvice versa. The contribution of forest species is highin the vegetation and they almost not occur in the seed bank, while species offorest edges and clearings, and species of disturbed environments are morefrequent in the seed bank. The seed bank is mainly composed of earlysuccessional species of former forest stages or species which temporary occurinsmall-scale disturbances. The seed bank may enhance the negative effects ofearlysuccessional, mainly competitive species to the forest species richness in therecent forest. In this respect, forest management should minimise forestdisturbances, to prevent germination of competitive species form buriedseeds.  相似文献   

12.
Restoration is increasingly being used to reverse degradation and destruction of forest ecosystems. With increasing investment in restoration, there is an urgent need to develop effective programs to assess treatment efficacy and effects. We conducted a global review of forest restoration assessments, in order to identify geographic trends in the locations where assessments have been implemented and the specific ecological attributes (ecosystem composition, structure, and function) and indicators being used to measure effects. We found that the number of forest restoration assessments varied by region and was not related to degree of degradation or restoration need. Some regions, like Africa, which have experienced high rates of forest loss and degradation, had few assessments. The majority (43%) of assessments included indicators for only two of three key ecological attributes (composition‐structure or composition‐function) and assessments on average used fewer than three indicators per attribute. The most commonly employed indicators for composition were richness and abundance of plant species and for structure were height and diameter of trees, variables that are generally relatively easy to measure. The use of functional indicators has been increasing over time and they are now more commonly used than structural indicators. The most common functional indicators were soil functions. Most investigators evaluated treatment effects for 6–10 years after implementation. Our findings related to gaps in analysis of ecological indicators can serve as a guide for developing monitoring and assessment protocols for current global forest restoration initiatives by 2020–2030.  相似文献   

13.
土壤温度变化及热传递是影响土壤和大气水热交换的重要过程,而植被是决定这种变化和影响的环境因子之一。通过比较林地与裸地土壤热特性的差异分析植被对土壤热扩散的影响。研究内容包括观测2007年长白山阔叶红松林区不同深度的土壤温度以及同期土壤含水量和叶面积指数。分析不同深度林地与裸地土壤温度年周期特征,根据热传导方程估算各土壤层温度的阻尼深度和热扩散率,并探讨引起林地与裸地土壤热特性差异的可能原因。结果表明,林地与裸地的土壤温度有明显的时空变化规律。随着深度的增加,土壤温度年周期的振幅逐渐减小、相位逐渐增大、平均值逐渐升高。林地土壤温度年平均值低于裸地,表层年平均温度相差约0.8℃;地表以下相同深度处,林地土壤温度年周期的振幅约低于裸地2.6—2.9℃,相位约小于裸地0.2—0.24 rad(角速度),这表明林地土壤温度极大值和极小值出现的时间比裸地滞后约11—14d。土壤温度阻尼深度和热扩散率随深度的增加而逐渐增大,而在1.6—3.2m则略有降低的趋势。林地与裸地土壤温度和热特性的时空特征和差异可能与土壤含水量和叶面积指数有关。  相似文献   

14.
Despite their low relative abundance, subordinate plant species may have larger impacts on ecosystem functioning than expected, but their role in plant communities remains poorly understood. The aim of this study was to test how subordinate plant species influence the functioning of a species-rich semi-natural grasslands. A plant removal experiment was set-up in the mountain grasslands of the Jura Mountains (Switzerland) to test the impact of subordinate plant species on soil microbial communities and ecosystem functioning. The experiment included three treatments: removal of all subordinate species, partial biomass removal of dominant species, and a no biomass removal control. After 2 years of treatments, we determined soil microbial community (bacteria and mycorrhizal fungi) by T-RFLP analysis and measured litter decomposition, soil respiration, soil inorganic nitrogen (DIN) availability and throughout above-ground biomass production as measures of ecosystem function. The removal of subordinate plant species strongly affected bacterial and weakly influenced mycorrhizal fungi communities and decreased rates of plant litter decomposition, soil respiration and DIN availability with larger effects than the partial loss of dominant biomass. The removal of subordinate plant species did not modify plant community structure, but it did reduce total above-ground biomass production compared to the control plots. Collectively, our findings indicate that the loss of subordinate species can have significant consequences for soil microbial communities and ecosystem functions, suggesting that subordinate species are important drivers of ecosystem properties.  相似文献   

15.
Current nitrogen (N) deposition rates are considerably higher than during pre-industrial times and the growing interest in forest fertilisation requires better understanding of how the N and carbon (C) cycles interact. This study is based on experimental data showing how Scots pine (Pinus sylvestris L.) forests respond to single or consecutive pulse doses of N. The data were used to support the implementation of a dynamic feedback mechanism in the Q model, allowing for changes in soil N availability to regulate the rate of decomposer efficiency. Simulations of the long-term effects of slowly increasing N deposition with and without dynamic decomposer efficiency were then compared. Both versions of the model accurately predicted the response of tree growth to N fertilisation. Slowly increasing inputs of N over a century in the modified version acted on the inputs and outputs of soil C in opposing ways: (a) rate of litter input slowed down because more N was retained in the soil and thus not available for tree growth; (b) rate of C output, through soil heterotrophic respiration, was also gradually reduced due to increasing decomposer efficiency, although not enough to sufficiently balance the reduced litter input. Accurate prediction of the amount of added N retained in the ecosystem seems to be one of the key issues for estimating enhanced C sequestration.  相似文献   

16.
Dodd  M. B.  Lauenroth  W. K. 《Plant Ecology》1997,133(1):13-28
We analyzed soil water data from three sites with different soil textures in the shortgrass steppe of northeastern Colorado, USA. Our objective was to evaluate the relationship between the occurrence of plant functional types and the effect of soil texture on soil water availability. Soil water availability was greatest in the upper soil layers at all three sites, but the loamy sand site had significantly greater soil water availability than the sandy clay loam and sandy clay sites in wetter years at depths below 60 cm. Calculations of proportional water availability by layer using both field data and fifty-year soil water model simulations, showed that the sandy clay loam and sandy clay soils on average had greater water availability in layers 30 cm and above, but that the loamy sand had the greatest water availability in layers beneath this, particularly at 105 cm. This observation can be linked to the occurrence of a fine textured subsoil at this site. The textural pattern in the loamy sand profile effectively creates two water resources: a shallow pool accessible to all plants; and a deep pool accessible only to deep-rooted plants. This is offered as an explanation for the co-dominance of the two main plant functional types at the loamy sand site. At the other two sites, shallow-rooted shortgrass vegetation dominated, being more consistent with the general pattern for the area. Thus the patterns of vegetation structure at the three sites were consistent with the hypothesis. Aboveground net primary production data for the three sites, along with transpiration estimates from the model simulations, indicated that the additional water availability in the coarse textured soil was associated with higher overall plant productivity.Nomenclature: Taxonomic nomenclature follows R. L. McGregor & T. M. Barkley (1986) Flora of the Great Plains. Great Plains Flora Association. University Press of Kansas, Lawrence.  相似文献   

17.
Grasslands in southeastern South America have been extensively converted to various land uses such as agriculture, threatening regional biodiversity. Active restoration has been viewed as a management alternative for recovery of degraded areas worldwide, although most studies are conducted in forests and none has evaluated the effect of active restoration of grasslands in southeastern South America. From 2015 through 2017 we monitored a federally owned tract of grassland from the beginning of the active‐restoration process. We compared the bird community in this active‐restoration area (AR) with a reference area (NG) in Pampa grasslands in southern Brazil. We sampled birds by point counts and surveyed vegetation structure in plots. Over the 3 years of active restoration, bird species richness and abundance were higher in AR (30 species, 171 individuals) than NG (22 species, 154 individuals). The species composition also differed between the two habitats. Grassland bird species were present in both AR and NG. The vegetation structure differed between AR and NG in five attributes: height, short and tall grasses, herbs, and shrubs. Since it has been found that active restoration is useful in promoting species diversity, we encourage studies of the use of long‐term restoration efforts. Our study, even on a local scale, showed a rapid recovery of the bird community in the active‐restoration compared to native grassland, and suggests the potential for recovery of the degraded grasslands of the Brazilian Pampa biome.  相似文献   

18.
增温和放牧对草地土壤和生态系统呼吸的影响   总被引:2,自引:0,他引:2  
草地生态系统作为世界陆地生态系统的主体类型,其土壤呼吸和生态系统呼吸是陆地生态系统碳循环的重要组成部分,土壤呼吸是未经扰动的土壤由于代谢活动而产生CO2的过程,生态系统呼吸包括地下部分的土壤呼吸和地上部分植被的自养呼吸。研究增温和放牧对草地土壤和生态系统呼吸的影响,可为预测未来气候变化条件下的全球碳收支以及草地的可持续经营与管理提供重要的科学依据。该文扼要综述了关于草地土壤和生态系统呼吸对增温和放牧的响应方面的研究。结果表明:草地土壤和生态系统呼吸对增温和放牧的响应非常复杂,受多种因素的综合影响,无论是增温还是放牧对草地土壤和生态系统呼吸的影响均具有不确定性,因草地类型、增温幅度、增温时间、放牧强度、放牧频度和放牧方式的不同而不同。在此基础上,指出了以后应加强研究的方向,草地的利用离不开放牧,对于未来气候变化条件下的草地,温度升高和放牧这两个因素必然是同时存在的,以前多数实验是单独研究增温或放牧对它们的影响,然而,这两者对草地生态系统的影响并非可加的,因此,需要加强增温与放牧的耦合试验,同时加强关于生态系统呼吸不同组分对两者的响应的研究,以便更好地理解增温和放牧的影响机制。另外,草地土壤和生态系统呼吸对增温和放牧的响应会随着时间的推移而发生变化,因而加强长期连续的试验观测很有必要。  相似文献   

19.
Soil seed banks can play an important role in the regeneration of wetland vegetation. However, their potential role in the restoration of degraded wetland forests is less certain. I surveyed the soil seed bank and extant floras of four sites across a eucalypt wetland forest of variable vegetation condition. At each site, the extant vegetation was surveyed within two 5 × 5 m2 quadrats, each from which five composite soil seed bank samples were collected. Across the four sites, 57 (including 18 exotic) species were identified in the extant vegetation, while from the seed bank samples 6379 seedlings emerged from 80 taxa, 33 of which were exotic species. The soil seed bank was dominated by native and exotic monocots, and contained very few seeds of wetland tree or shrub species. Overall, the similarity between the extant and seed bank floras was very low (~24 %). Soil seed banks are likely to be of limited use in the restoration of degraded wetland forests, because the dominant species in such systems—woody and clonal plants—are typically absent from the soil seed bank. Wetland soil seed banks may contribute to the maintenance and diversity of understorey vegetation, however, they may also act as a source of exotic plant invasions, particularly when a wetland is degraded.  相似文献   

20.
Extensive degraded short tussock grasslands of New Zealand's eastern South Island were dominated by woody vegetation prior to burning and livestock grazing associated with human settlement starting 800 years ago. There is increasing interest in restoring some of these grasslands back to a woody state. However, because of the long time frames involved in establishing a woody cover, it is difficult to predict the impacts that woody restoration will have on the extant herbaceous flora. Using a factorial trial with artificial shade and grazing exclusion, we assessed the potential impact of woody restoration on the structure and composition of the herbaceous flora over a six‐year period. The imposition of artificial shade resulted in significant increases in total species richness and the total cover of herbaceous vegetation, increases in cover of several individual forb and grass species and decreases in the cover of bare ground, moss and lichen in shade treatments. There were also changes in the overall community composition of shaded treatments reflecting these changes in vegetation cover and species richness. We found no statistically significant effects of grazing exclusion. We suggest that increased soil moisture resulting from shade addition plays an important role in increasing the herbaceous component of the flora. While woody restoration will have a range of effects on the herbaceous understorey, for example through competition and changes in soil conditions, our findings are important for planning future woody restoration in these degraded tussock grasslands. In particular, our results suggest that the best approach to ensure the persistence of herbaceous vegetation in woody restorations might be to ensure that restoration plantings result in a spatially heterogeneous vegetation arrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号