首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Two yeast Brix family members Ssf1 and Ssf2,involved in large ribosomal subunit synthesis, are essential for yeast cell viability and mating efficiency. Their putative homologs exist in the Arabidopsis genome; however, their role in plant development is unknown. Here, we show that Arabidopsis thaliana SNAIL1(At SNAIL1), a protein sharing high sequence identity with yeast Ssf1 and Ssf2, is critical to mitosis progression of female gametophyte development.The snail1 homozygous mutant was nonviable and its heterozygous mutant was semi-sterile with shorter siliques.The mutation in SNAIL1 led to absence of female transmission and reduced male transmission. Further phenotypic analysis showed that the synchronic development of female gametophyte in the snail1 heterozygous mutant was greatly impaired and the snail1 pollen tube growth, in vivo, was also compromised. Furthermore, SNAIL1 was a nucleolarlocalized protein with a putative role in protein synthesis.Our data suggest that SNAIL1 may function in ribosome biogenesis like Ssf1 and Ssf2 and plays an important role during megagametogenesis in Arabidopsis.  相似文献   

2.
3.
In flowering plants, the male and female gametogenesis is a crucial step of sexual reproduction. Although many genes have been identi fied as being involved in the gametogenesis process, the genetic mechanisms underlying gametogenesis remains poorly understood. We reported here characterization of the gene, ABORTED GAMETOPHYTE 1(AOG1) that is newly identi fied as essential for gametogenesis in Arabidopsis thaliana. AOG1 is expressed predominantly in reproductive tissues including the developing pollen grains and ovules. The AOG1 protein shares no signi ficant amino acid sequence similarity with other documented proteins and is located mainly in nuclei of the cells. Mutation in AOG1 caused degeneration of pollen at the uninucleate microspore stage and severe defect in embryo sacs, leading to a signi ficant reduction in male and female fertility.Furthermore, the molecular analyses showed that the aog1 mutant signi ficantly affected the expression of several genes, which are required for gametogenesis. Our results suggest that AOG1 plays important roles in gameto genesis at the stage prior to pollen mitosis I(PMI)in Arabidopsis, possibly through collaboration with other genes.  相似文献   

4.
RanGAP is the GTPase-activating protein of the small GTPase Ran and is involved in nucleocytoplasmic transport in yeast and animals via the Ran cycle and in mitotic cell division. Arabidopsis thaliana has two copies of RanGAP, RanGAP1 and RanGAP2. To investigate the function of plant RanGAP, T-DNA insertional mutants were analysed. Arabidopsis plants with a null mutant of either RanGAP1 or RanGAP2 had no observable phenotype. Analysis of segregating progeny showed that double mutants in RanGAP1 and RanGAP2 are female gametophyte defective. Ovule clearing with differential interference contrast optics showed that mutant female gametophytes were arrested at interphase, predominantly after the first mitotic division following meiosis. In contrast, mutant pollen developed and functioned normally. These results show that the two RanGAPs are redundant and indispensable for female gametophyte development in Arabidopsis but dispensable for pollen development. Nuclear division arrest during a mitotic stage suggests a role for plant RanGAP in mitotic cell cycle progression during female gametophyte development.  相似文献   

5.
Phosphatidylserine (PS) has many important biological roles, but little is known about its role in plants, partly because of its low abundance. We show here that PS is enriched in Arabidopsis floral tissues and that genetic disruption of PS biosynthesis decreased heterozygote fertility due to inhibition of pollen maturation. At1g15110, designated PSS1, encodes a base-exchange-type PS synthase. Escherichia coli cells expressing PSS1 accumulated PS in the presence of l-serine at 23°C. Promoter-GUS assays showed PSS1 expression in developing anther pollen and tapetum. A few seeds with pss1-1 and pss1-2 knockout alleles escaped embryonic lethality but developed into sterile dwarf mutant plants. These plants contained no PS, verifying that PSS1 is essential for PS biosynthesis. Reciprocal crossing revealed reduced pss1 transmission via male gametophytes, predicting a rate of 61.6%pss1-1 pollen defects in PSS1/pss1-1 plants. Alexander's staining of inseparable qrt1-1 PSS1/pss1-1 quartets revealed a rate of 42% having three or four dead pollen grains, suggesting sporophytic pss1-1 cell death effects. Analysis with the nuclear stain 4',6-diamidino-2-phenylindole (DAPI) showed that all tetrads from PSS1/pss1-1 anthers retain their nuclei, whereas unicellular microspores were sometimes anucleate. Transgenic Arabidopsis expressing a GFP-LactC2 construct that binds PS revealed vesicular staining in tetrads and bicellular microspores and nuclear membrane staining in unicellular microspores. Hence, distribution and/or transport of PS across membranes were dynamically regulated in pollen microspores. However, among unicellular microspores from PSS1/pss1-2 GFP-LactC2 plants, all anucleate microspores showed little GFP-LactC2 fluorescence, suggesting that pss1-2 microspores are more sensitive to sporophytic defects or show partial gametophytic defects.  相似文献   

6.
7.
Searches in the Arabidopsis thaliana genome using the La motif as query revealed the presence of eight La or La-like proteins. Using structural and phylogenetic criteria, we identified two putative genuine La proteins (At32 and At79) and showed that both are expressed throughout plant development but at different levels and under different regulatory conditions. At32, but not At79, restores Saccharomyces cerevisiae La nuclear functions in non-coding RNAs biogenesis and is able to bind to plant 3′-UUU-OH RNAs. We conclude that these La nuclear functions are conserved in Arabidopsis and supported by At32, which we renamed as AtLa1. Consistently, AtLa1 is predominantly localized to the plant nucleoplasm and was also detected in the nucleolar cavity. The inactivation of AtLa1 in Arabidopsis leads to an embryonic-lethal phenotype with deficient embryos arrested at early globular stage of development. In addition, mutant embryonic cells display a nucleolar hypertrophy suggesting that AtLa1 is required for normal ribosome biogenesis. The identification of two distantly related proteins with all structural characteristics of genuine La proteins suggests that these factors evolved to a certain level of specialization in plants. This unprecedented situation provides a unique opportunity to dissect the very different aspects of this crucial cellular activity.  相似文献   

8.
The initiation of meiotic recombination by the formation of DNA double-strand breaks (DSBs) catalysed by the Spo11 protein is strongly evolutionary conserved. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation, but, unlike Spo11, few of these proteins seem to be conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we have isolated a new gene, AtPRD1, whose mutation affects meiosis in Arabidopsis thaliana. In Atprd1 mutants, meiotic recombination rates fall dramatically, early recombination markers (e.g., DMC1 foci) are absent, but meiosis progresses until achiasmatic univalents are formed. Besides, Atprd1 mutants suppress DSB repair defects of a large range of meiotic mutants, showing that AtPRD1 is involved in meiotic recombination and is required for meiotic DSB formation. Furthermore, we showed that AtPRD1 and AtSPO11-1 interact in a yeast two-hybrid assay, suggesting that AtPRD1 could be a partner of AtSPO11-1. Moreover, our study reveals similarity between AtPRD1 and the mammalian protein Mei1, suggesting that AtPRD1 could be a Mei1 functional homologue.  相似文献   

9.
The female gametophyte is crucial for sexual reproduction of higher plants, yet little is known about the molecular mechanisms underlying its development. Here,we report that Arabidopsis thaliana NOP10(AtNOP10) is required for female gametophyte formation. AtNOP10 was expressed predominantly in the seedling and reproductive tissues, including anthers, pollen grains, and ovules.Mutations in AtNOP10 interrupted mitosis of the functional megaspore during early development and prevented polar nuclear fusion in the embryo sacs. AtNOP10 shares a high level of amino acid sequence similarity with Saccharomyces cerevisiae(yeast) NOP10(ScNOP10), an important component of the H/ACA small nucleolar ribonucleoprotein particles(H/ACA sno RNPs) implicated in 18 S r RNA synthesis and r RNA pseudouridylation. Heterologous expression of ScNOP10 complemented the mutant phenotype of Atnop10. Thus, AtNOP10 influences functional megaspore mitosis and polar nuclear fusion during gametophyte formation in Arabidopsis.  相似文献   

10.

Background

The Arabidopsis thaliana (Arabidopsis) DOUBLE-STRANDED RNA BINDING (DRB) protein family consists of five members, DRB1 to DRB5. The biogenesis of two developmentally important small RNA (sRNA) species, the microRNAs (miRNAs) and trans-acting small interfering RNAs (tasiRNAs) by DICER-LIKE (DCL) endonucleases requires the assistance of DRB1 and DRB4 respectively. The importance of miRNA-directed target gene expression in plant development is exemplified by the phenotypic consequence of loss of DRB1 activity (drb1 plants).

Principal Findings

Here we report that the developmental phenotype of the drb235 triple mutant plant is the result of deregulated miRNA biogenesis in the shoot apical meristem (SAM) region. The expression of DRB2, DRB3 and DRB5 in wild-type seedlings is restricted to the SAM region. Small RNA sequencing of the corresponding tissue of drb235 plants revealed altered miRNA accumulation. Approximately half of the miRNAs detected remained at levels equivalent to those of wild-type plants. However, the accumulation of the remaining miRNAs was either elevated or reduced in the triple mutant. Examination of different single and multiple drb mutants revealed a clear association between the loss of DRB2 activity and altered accumulation for both the elevated and reduced miRNA classes. Furthermore, we show that the constitutive over-expression of DRB2 outside of its wild-type expression domain can compensate for the loss of DRB1 activity in drb1 plants.

Conclusions/Significance

Our results suggest that in the SAM region, DRB2 is both antagonistic and synergistic to the role of DRB1 in miRNA biogenesis, adding an additional layer of gene regulatory complexity in this developmentally important tissue.  相似文献   

11.
The present study identified a family of six A. thaliana genes that share five limited regions of sequence similarity with LAZY1, a gene in Oryza sativa (rice) shown to participate in the early gravity signaling for shoot gravitropism. A T‐DNA insertion into the Arabidopsis gene (At5g14090) most similar to LAZY1 increased the inflorescence branch angle to 81° from the wild type value of 42°. RNA interference lines and molecular rescue experiments confirmed the linkage between the branch‐angle phenotype and the gene consequently named AtLAZY1. Time‐resolved gravitropism measurements of atlazy1 hypocotyls and primary inflorescence stems showed a significantly reduced bending rate during the first hour of response. The subcellular localization of AtLAZY1 protein was investigated to determine if the nuclear localization predicted from the gene sequence was observable and important to its function in shoot gravity responses. AtLAZY1 fused to green fluorescent protein largely rescued the branch‐angle phenotype of atlazy1, and was observed by confocal microscopy at the cell periphery and within the nucleus. Mutation of the nuclear localization signal prevented detectable levels of AtLAZY1 in the nucleus without affecting the ability of the gene to rescue the atlazy1 branch‐angle phenotype. These results indicate that AtLAZY1 functions in gravity signaling during shoot gravitropism, being a functional ortholog of rice LAZY1. The nuclear pool of the protein appears to be unnecessary for this function, which instead relies on a pool that appears to reside at the cell periphery.  相似文献   

12.
Promoter elements that contribute to high light (HL) induction of the Arabidopsis ELIP1 gene were defined using a transgenic promoter-reporter system. Two adjacent SORLIP1 elements (double SORLIP1, dSL) were found to be essential for HL induction of a GUS reporter gene. The dSL element was also found to be essential for HL induction conferred by the ELIP2 promoter. SORLIP1 elements were enriched in ELIP promoters throughout the plant kingdom, and showed a clade-specific pattern of gain or loss that suggested functionality. In addition, two G-box elements were found to redundantly contribute to HL induction conferred by the ELIP1 promoter.  相似文献   

13.
Su T  Xu J  Li Y  Lei L  Zhao L  Yang H  Feng J  Liu G  Ren D 《The Plant cell》2011,23(1):364-380
Camalexin, a major phytoalexin in Arabidopsis thaliana, consists of an indole ring and a thiazole ring. The indole ring is produced from Trp, which is converted to indole-3-acetonitrile (IAN) by CYP79B2/CYP79B3 and CYP71A13. Conversion of Cys(IAN) to dihydrocamalexic acid and subsequently to camalexin is catalyzed by CYP71B15. Recent studies proposed that Cys derivative, not Cys itself, is the precursor of the thiazole ring that conjugates with IAN. The nature of the Cys derivative and how it conjugates to IAN and subsequently forms Cys(IAN) remain obscure. We found that protein accumulation of multiple glutathione S-transferases (GSTs), elevation of GST activity, and consumption of glutathione (GSH) coincided with camalexin production. GSTF6 overexpression increased and GSTF6-knockout reduced camalexin production. Arabidopsis GSTF6 expressed in yeast cells catalyzed GSH(IAN) formation. GSH(IAN), (IAN)CysGly, and γGluCys(IAN) were determined to be intermediates within the camalexin biosynthetic pathway. Inhibitor treatments and mutant analyses revealed the involvement of γ-glutamyl transpeptidases (GGTs) and phytochelatin synthase (PCS) in the catabolism of GSH(IAN). The expression of GSTF6, GGT1, GGT2, and PCS1 was coordinately upregulated during camalexin biosynthesis. These results suggest that GSH is the Cys derivative used during camalexin biosynthesis, that the conjugation of GSH with IAN is catalyzed by GSTF6, and that GGTs and PCS are involved in camalexin biosynthesis.  相似文献   

14.
15.
The BRAHMA (BRM) gene encodes the SNF2-type ATPase of the putative Arabidopsis thaliana SWI/SNF chromatin remodelling complex. This family of ATPases is characterized by the presence of a conserved catalytic domain and an arrangement of auxiliary domains, whose functions in the remodelling activity remains unclear. Here, we characterize, at the molecular and functional level, the carboxy-terminal part of Arabidopsis BRM. We have found three DNA-binding regions that bind various free DNA and nucleosomal probes with different specificity. One of these regions contains an AT-hook motif. The carboxy terminus also contains a bromodomain able to bind histones H3 and H4. We propose that this array of domains constitute a nucleosome interaction module that helps BRM to interact with its substrate. We also characterize an Arabidopsis mutant that expresses a BRM protein lacking the last 454 amino acid residues (BRM-DeltaC), encompassing the bromodomain and two of the three DNA-binding activities identified. This mutant displays an intermediate phenotype between those of the wild-type and a null allele mutant, suggesting that the nucleosome interaction module is required for the normal function of BRM but it is not essential for the remodelling activity of BRM-containing SWI/SNF complexes.  相似文献   

16.
The HUA2 gene acts as a repressor of floral transition. Lesions in hua2 were identified through a study of natural variation and through two mutant screens. An allele of HUA2 from Landsberg erecta (Ler) contains a premature stop codon and acts as an enhancer of early flowering 4 (elf4) mutants. hua2 single mutants, in the absence of the elf4 lesion, flower earlier than wild type under short days. hua2 mutations partially suppress late flowering in FRIGIDA (FRI )-containing lines, autonomous pathway mutants, and a photoperiod pathway mutant. hua2 mutations suppress late flowering by reducing the expression of several MADS genes that act as floral repressors including FLOWERING LOCUS C (FLC ) and FLOWERING LOCUS M (FLM ).  相似文献   

17.
In the leaf epidermis, guard mother cells undergo a stereotyped symmetric division to form the guard cells of stomata. We have identified a temperature-sensitive Arabidopsis mutant, stomatal cytokinesis-defective 1-1 (scd1-1), which affects this specialized division. At the non-permissive temperature, 22 degrees C, defective scd1-1 guard cells are binucleate, and the formation of their ventral cell walls is incomplete. Cytokinesis was also disrupted in other types of epidermal cells such as pavement cells. Further phenotypic analysis of scd1-1 indicated a role for SCD1 in seedling growth, root elongation and flower morphogenesis. More severe scd1 T-DNA insertion alleles (scd1-2 and scd1-3) markedly affect polar cell expansion, most notably in trichomes and root hairs. SCD1 is a unique gene in Arabidopsis that encodes a protein related to animal proteins that regulate intracellular protein transport and/or mitogen-activated protein kinase signaling pathways. Consistent with a role for SCD1 in membrane trafficking, secretory vesicles were found to accumulate in cytokinesis-defective scd1 cells. In addition the scd1 mutant phenotype was enhanced by low doses of inhibitors of cell plate consolidation and vesicle secretion. We propose that SCD1 functions in polarized vesicle trafficking during plant cytokinesis and cell expansion.  相似文献   

18.
Patterned differentiation of distinct cell types is essential for the development of multicellular organisms. The root epidermis of Arabidopsis thaliana is composed of alternating files of root hair and non‐hair cells and represents a model system for studying the control of cell‐fate acquisition. Epidermal cell fate is regulated by a network of genes that translate positional information from the underlying cortical cell layer into a specific pattern of differentiated cells. While much is known about the genes of this network, new players continue to be discovered. Here we show that the SABRE (SAB) gene, known to mediate microtubule organization, anisotropic cell growth and planar polarity, has an effect on root epidermal hair cell patterning. Loss of SAB function results in ectopic root hair formation and destabilizes the expression of cell fate and differentiation markers in the root epidermis, including expression of the WEREWOLF (WER) and GLABRA2 (GL2) genes. Double mutant analysis reveal that wer and caprice (cpc) mutants, defective in core components of the epidermal patterning pathway, genetically interact with sab. This suggests that SAB may act on epidermal patterning upstream of WER and CPC. Hence, we provide evidence for a role of SAB in root epidermal patterning by affecting cell‐fate stabilization. Our work opens the door for future studies addressing SAB‐dependent functions of the cytoskeleton during root epidermal patterning.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号