首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Benthic diatoms are widely used indicators of human impacts on stream ecosystems because they are very responsive to changing environmental conditions. However, little research has explicitly focused on their reliability with regards to temporal variation in assemblage structure and environmental conditions. We examined variability in diatom-environment relationships at bi-weekly, monthly, and yearly time scales from 7 reference, 7 agricultural, and 2 acid mine drainage (AMD)-impacted streams, and how nutrient and pH fluctuations may affect the interpretation of diatom metrics and the Diatom Model Affinity (DMA) index. Reference streams had less bi-weekly variability in NO3-N concentrations than non-reference streams. The % eutraphentic diatoms and DMA scores were more strongly correlated with seasonal means of NO3-N and PO4-P concentrations than with same day concentrations. Most nutrient indicator metrics had strong correlations with watershed land use. All 14 non-AMD streams experienced substantial increases in NO3-N and decreases in temperature from November to May, which were associated with high species turnover, substantial changes in community structure, reduced diversity and richness, increased relative abundances of high nutrient diatoms, and decreases in low nutrient diatoms and DMA scores. The % acidophilic diatoms and DMA scores were significantly correlated with increased pH associated with greater precipitation at AMD sites from December to April (r = ?0.77, r = 0.62, respectively; P < 0.01). Yearly, DMA scores for all reference streams were consistently in the minimally impaired category, whereas scores for non-reference streams varied among impairment categories. Reference sites serve as reliable benchmarks for diatom ecological integrity during the summer. In this region, June to October is a recommended time period for diatom sampling in monitoring programs because subsequent shifts in hydrologic regimes, nutrients, and diatom assemblages occurred, affecting all sites and masking among stream differences attributable to agricultural land uses.  相似文献   

2.
通过对滦河流域66个河段大型底栖动物采集和生境指标监测,基于大型底栖动物完整性评价和13种景观指数构建,探讨了不同景观指数对于大型底栖无脊椎动物完整性的解释能力。景观指数类型包括流域及欧式距离缓冲区土地利用百分比、水流路径缓冲区土地利用百分比、局部区域土地利用百分比和基于水流路径的反距离权重指数。基于多元线性逐步回归模型,根据调整R2(Square of the coefficient)来判断不同指数的解释能力。研究结果表明基于水流路径的反距离权重指数对于大型底栖动物完整性的解释能力最好,其次为基于水流路径的缓冲区和局部区域的土地利用百分比指数,全流域及欧氏距离缓冲区内土地利用百分比解释能力最差。农田是影响大型底栖动物完整性最重要的景观类型,距离河流越近的农田对大型底栖动物完整性的影响越大,因此流域及河岸带农田的控制和管理对于滦河流域大型底栖动物完整性的恢复具有重要的作用。  相似文献   

3.
Water quality assessment at the watershed scale requires not only an investigation of water pollution and the recognition of main pollution factors, but also the identification of polluted risky regions resulted in polluted surrounding river sections. To realize this objective, we collected water samplings from 67 sampling sites in the Honghe River watershed of China with Grid GIS method to analyze six parameters including dissolved oxygen (DO), ammonia nitrogen (NH3-N), nitrate nitrogen (NO3-N), nitrite nitrogen (NO2-N), total nitrogen (TN) and total phosphorus (TP). Single factor pollution index and comprehensive pollution index were adopted to explore main water pollutants and evaluate water quality pollution level. Based on two evaluate methods, Geo-statistical analysis and Geographical Information System (GIS) were used to visualize the spatial pollution characteristics and identifying potential polluted risky regions. The results indicated that the general water quality in the watershed has been exposed to various pollutants, in which TP, NO2-N and TN were the main pollutants and seriously exceeded the standard of Category III. The zones of TP, TN, DO, NO2-N and NH3-N pollution covered 99.07%, 62.22%, 59.72%, 37.34% and 13.82% of the watershed respectively, and they were from medium to serious polluted. 83.27% of the watershed in total was polluted by comprehensive pollutants. These conclusions may provide useful and effective information for watershed water pollution control and management.  相似文献   

4.
The importance of agricultural land use activities for supplying nutrients (N, P) to the Chesapeake Bay is examined and nutrient sources for a typical agricultural hill-land watershed within the Chesapeake Basin are identified and assessed. Based on up to 30 years of experimental and monitoring data, the outflow, N, and P exported from this Pennsylvania watershed is examined in terms of critical source areas. Most of the surface runoff and P export occurs from areas near the stream. About 90% of the algal-available P exported in outflow was generated during the largest 7 storms/year. In contrast, nearly all the nitrate (NO3) exported originated as subsurface flow entering the soil or ground water some distance from the stream, and mostly occurred during nonstorm flow periods. The NO3 export observed over the long term corresponds to the N excess computed by N balance obtained by farmer survey for agricultural land. By combining land use, hydrologic processes, watershed position, soil P status, and N balance information for agricultural land, the major source areas for P and N are predictable and identifiable. We apply these ideas and techniques to our research watershed and present the results as an example of this approach.  相似文献   

5.
6.
We investigated scale dependence of landscape metrics and the relationship between land use parameters and FRAGSTATS-based landscape metrics (edge density (ED), patch density (PD), mean shape index (SHAPE_MN), mean euclidean nearest neighbor index (ENN_MN), contagion (CONTAG), patch richness density (PRD), and Shannon's diversity index (SHDI)) and nutrient/organic-matter-based water quality indicators (BOD7 and CODKMnO4 values, total-N and total-P concentrations in water) in 24 catchments with various land use patterns in Estonia. We used the Basic Map of Estonia (1:10,000), the Base Map of Estonia (1:50,000) and the CORINE Land Cover Map (1:100,000). In scale analysis, we calculated landscape metrics on artificial and real landscapes. Scale analysis showed that responses of landscape metrics to changing grain size vary among landscapes and metrics. Analysis of artificial landscapes showed that mean euclidean nearest neighbor distance and contagion are directly dependent on grain size and should therefore be used carefully. When finding relationships between landscape metrics and water quality indicators, significant differences between the relationships derived from the Base Map and the CORINE Land Cover Map were found. In the case of the Base Map, landscape metrics correlated strongly with land use and showed no expected relationships with water quality data. This underlines the importance of land use classification in such kind of analysis. Correlation between the landscape metrics calculated on the basis of the CORINE Land Cover Map and water quality data was stronger than in the case of the Base Map. The CODKMnO4 value significantly correlated with all land use types. For instance, the CODKMnO4 values are higher when fens and natural areas form a higher proportion of the catchments’ land use. Except for the BOD7 value, all the water quality indicators showed significant correlation with urban land use proportions. Strong relationship between the patch density and the CODKMnO4 value is most likely caused by the fact that both parameters were significantly correlated with the proportion of natural areas. As the landscape metrics depend on pixel size, topographic scale, and land use classification, and as the effect of land use on water quality in catchments is the most significant of the factors, it was impossible to separate the influence of land use pattern from the influence of FRAGSTATS-based landscape metrics.  相似文献   

7.
The aim of this study was to determine the effects of catchment and riparian stream buffer-wide urban and non-urban land cover/land use (LC/LU) on total nitrogen (TN) and total phosphorus (TP) runoff to the Chesapeake Bay. The effects of the composition and configuration of LC/LU patches were explored in particular. A hybrid-statistical-process model, the SPAtially Referenced Regression On Watershed attributes (SPARROW), was calibrated with year 1997 watershed-wide, average annual TN and TP discharges to Chesapeake Bay. Two variables were predicted: (1) yield per unit watershed area and (2) mass delivered to the upper estuary. The 166,534 km2 watershed was divided into 2339 catchments averaging 71 km2. LC/LU was described using 16 classes applied to both the catchments and also to riparian stream buffers alone. Seven distinct landscape metrics were evaluated. In all, 167 (TN) and 168 (TP) LC/LU class metric combinations were tested in each model calibration run. Runs were made with LC/LU in six fixed riparian buffer widths (31, 62, 125, 250, 500, and 1000 meters (m)) and entire catchments. The significance of the non-point source type (land cover, manure and fertilizer application, and atmospheric deposition) and factors affecting land-to-water delivery (physiographic province and natural or artificial land surfaces) was assessed. The model with a 31 m riparian stream buffer width accounted for the highest variance of mean annual TN (r2 = 0.9366) and TP (r2 = 0.7503) yield (mass for a specified time normalized by drainage area). TN and TP loadings (mass for a specified time) entering the Chesapeake Bay were estimated to be 1.449 × 108 and 5.367 × 106 kg/yr, respectively. Five of the 167 TN and three of the 168 TP landscape metrics were shown to be significant (p-value  0.05) either for non-point sources or land-to-water delivery variables. This is the first demonstration of the significance of riparian LC/LU and landscape metrics on water quality simulation in a watershed as large as the Chesapeake Bay. Land cover metrics can therefore be expected to improve the precision of estimated TN and TP annual loadings to the Chesapeake Bay and may also suggest changes in land management that may be beneficial in control of nutrient runoff to the Chesapeake Bay and similar watersheds elsewhere.  相似文献   

8.
Land use and land cover change has a marked affect on wetland condition, and different wetland types are affected differentially depending on many abiotic and biotic variables. To assess wetland condition, we have developed a Florida wetland condition index (FWCI) composed of indicators of community structure in the diatom, macrophyte, and macroinvertebrate assemblages for 216 wetlands (n = 74 depressional marsh, n = 118 depressional forested, n = 24 flowing water forested wetlands). Depressional wetlands located along a human disturbance gradient throughout Florida were sampled for each assemblage. Forested flowing water wetlands were sampled for macrophytes only. The landscape development intensity index (LDI) was used to quantify the human disturbance gradient. In general, human disturbance in adjacent areas had the greatest impact on depressional herbaceous wetlands, followed by depressional forested wetlands. Forested flowing water wetlands (i.e., forested strands and floodplain wetlands) were less affected by local conditions, with most of their changes in wetland condition correlated with alterations at the larger watershed scale. Strong correlations between the FWCIs and LDI index scores suggest that changes in community structure can be detected along a gradient of human land use activities adjacent to wetland ecosystems.  相似文献   

9.
田迪  李叙勇 《生态学报》2012,32(1):27-37
以美国切斯比克湾地区为例,对该区域150个小流域的下垫面特性(包括土地利用类型、地面不透水系数和土壤物理属性)进行了提取,根据1984—2004年间逐日流量观测数据计算出了33个水文指标,运用逐步回归方法在不同地理区分析了9种下垫面特性对其中17个重要水文指标的影响。结果表明:随着草地和林地比例的增加,流量趋于减小、流量变化趋于稳定,随着建设用地和不透水层的增加,流量增加、流量变化剧烈,随着土壤水文组等级的升高,流量减少;在整个切斯比克湾流域,对流域下垫面特性响应最为显著的水文指标是高脉冲个数及历时,在阿巴拉契亚高地地区响应最为显著的水文指标是年极值流量、高脉冲个数及历时,在皮德蒙特山地响应最为显著的水文指标是高脉冲个数及历时,在沿海平原地区响应最为显著的水文指标是高脉冲个数及历时、流量变化的速率与频率。  相似文献   

10.
Dramatic changes in imperviousness exert significant influence on the rainfall-runoff process in urban catchments. In urban rainwater management, imperviousness is generally adopted as an effective indicator for assessing potential runoff risk. However, the effects of imperviousness on rainfall-runoff at the scale of small urbanized drainage areas have not been fully determined, particularly when various storm characteristics are considered. In this paper, a model-based analysis is conducted in a typical urban residential catchment in Beijing, China, in which 69 subareas are delineated within the catchment as the basic drainage units. Two metrics, total impervious area (TIA) and directly connected impervious area (DCIA), are employed to quantify the spatial characteristics of imperviousness of the subareas. Three runoff variables within the delineated subareas including total runoff depth (Qt), peak runoff depth (Qp), and lag time (Tlag) are simulated by using the Storm Water Management Model (SWMM) to represent the specific rainfall-runoff characteristics. Moreover, model input storms are designated to several typical flood-induced rainfall events with varying amounts, locations of rainfall peak, and durations for holistic assessment of imperviousness. Regression analyses are conducted to explore the contributions and relative significances of impervious metrics in predicting runoff variables under various storm cases. The results indicate that the performances of imperviousness with fine spatial scale (<1 ha) and heavy rainfall conditions (>34 mm) may vary markedly according to storm conditions. Specifically, TIA rather than DCIA acts as a dominate factor affecting total runoff, and its significance maintains relatively stable with various storm conditions. In addition, the combined use of both TIA and DCIA are more effective for predicting peak runoff than that using a single impervious metric; however, rainfall amount, peak location, and duration alter the contribution gaps between TIA and DCIA and the overall performance of the regression model. Moreover, DCIA is more likely to affect runoff lag time without the contribution of TIA; however, an increase in rainfall peak ratio or duration will significantly limit its performance. These results can provide insight into the hydrologic performance of imperviousness, which is essential for landscape design and runoff regulation in small urban catchments.  相似文献   

11.
流溪河流域景观空间特征与河流水质的关联分析   总被引:13,自引:0,他引:13  
人类活动影响或改变流域景观空间结构,并有可能对河流水质产生不同程度的影响,以流溪河流域为研究区,分析流域景观空间格局特征与水质指数之间的相关关系。将流域划分为27个子流域,采集水样分析水质状况,所选用的水质指标有氨氮(NH3-N)、硝态氮-亚硝态氮(NO3-N+NO2-N)、总磷(TP)、化学需氧量(CODCr)。结果表明:1)该流域土地利用结构与水质具有显著相关性,其中居住用地对水质的影响作用最强,林地对河流水质具有净化功能,与水质指标之间的关系表现为负相关,园地与水质指标关系具有不确定性;2)流域景观特征从上游到下游之间表现为城市化增强的梯度,水质状况响应这个梯度变化表现为上游优于下游,人类活动及城市化发展引起的土地利用变化及土地管理方式对水质变化有显著影响;(3)景观破碎度与水质呈现显著正相关性,是影响水质的重要指标,景观聚集程度和斑块形状复杂程度与水质有负相关关系;子流域尺度和河岸带尺度景观空间特征对水质的影响差异不明显。  相似文献   

12.
The use of contour and riparian buffer strips planted with perennial vegetation has been found to improve surface water quality by reducing NO3-N and sediment outflow from cropland to a river. Modeling such a system to compare alternative layout and different strip sizes often faces challenges in flow routing scheme. The hillslope scheme in the Soil and Water Assessment Tool (SWAT) offers the flexibility of allowing the flow from a crop area to be routed through a buffer and/or contour strip, in which a thin sheet flow represents more closely the natural condition of a watershed. In this study, the SWAT model was applied to the Walnut Creek watershed and the hillslope option was used to examine the effectiveness of contour and riparian buffer strips in reducing NO3-N outflows from crop fields to the river. Numerical experiments were conducted to identify potential subbasins in the watershed that have high water quality impact, and to examine the effects of strip size and location on NO3-N reduction in the subbasins under various meteorological conditions (dry, average and wet). Variable sizes of contour and riparian buffer strips (10%, 20%, 30% and 50%, respectively, of a subbasin area) planted with perennial switchgrass were used to simulate the effects of strip size on stream water quality. Simulation results showed that a filter strip having 10–50% of the subbasin area could lead to 55–90% NO3-N reduction in the subbasin during an average rainfall year. Strips occupying 10–20% of the subbasin area were found to be more efficient in reducing NO3-N when placed along the contour than that when placed along the river. Varying the area and location of the contour and buffer strip affects NO3-N outflow and crop yields as well since it takes the land out of production. The size of the filter strip has economic implications in deciding how much land area to dedicate to prevent NO3-N loss to a desired limit or vice versa. The results of this study can assist in cost-benefit analysis and decision-making in best management practices for environmental protection.  相似文献   

13.
《Ecological Indicators》2008,8(5):588-598
Indices developed for stream bioassessment are typically based on either fish or macroinvertebrate assemblages. These indices consist of metrics which subsume attributes of various species into aggregate measures reflecting community-level ecological responses to disturbance. However, little is known about the relationship between fish and macroinvertebrate metrics, or about how ecological health assessments are affected by assemblage-specific responses to disturbance. We used principal component analysis (PCA) and regression analysis of existing fish (n = 371) and macroinvertebrate (n = 442) stream bioassessment data from a multi-source dataset to determine broad scale, within-assemblage metric patterns, and to examine the intercorrelation of fish and macroinvertebrate metrics (n = 246) and their response to watershed area and land use/land cover gradients. Fish and macroinvertebrate metrics expressed as principal components (PCs) accounted for 72.4 and 85.4% of dataset variance, respectively, with PC-metric patterns reflecting aspects of stream impairment including water and habitat quality. Model components predicting fish metric response differed among fish PCs, with watershed area and macroinvertebrate metric response strongly correlated with the first fish PC, and remaining fish PC models consisting of watershed area, land use, and macroinvertebrate PCs. Correlation between fish and macroinvertebrate PCs, and models relating fish and macroinvertebrate PCs generally explained less variation (13–27%) than metric response models of fish (25–34%) and macroinvertebrates (8–38%) to watershed area and land use/land cover variables. Best-response models integrating fish and macroinvertebrate PCs, watershed area, and land use/land cover variables accounted for the greatest variation in fish PCs (32–50%) across sites. Because fish and macroinvertebrate metrics provide different information on ecological condition, integrated use of information from multiple groups may be appropriate when developing monitoring programs.  相似文献   

14.
流域景观格局与河流水质的多变量相关分析   总被引:12,自引:0,他引:12  
赵鹏  夏北成  秦建桥  赵华荣 《生态学报》2012,32(8):2331-2341
流域内的景观格局改变是人类活动的宏观表现,会对河流水质产生显著影响,因此明确影响水质变化的关键景观因子,对于深入了解景观对水质的影响机制具有重要的研究价值。选择广东省淡水河流域为研究对象,以2007年ALOS卫星影像以及水质监测数据为基础,运用空间分析和多变量分析方法,分析淡水河流域景观格局与河流水质的相关关系。用包括流域和河岸带尺度的景观组成和空间结构信息的景观指数表征景观格局,用Spearman秩相关分析、多元线性逐步回归模型和典型相关分析(CCA)研究景观指数和水质指标的相关关系。研究结果表明:林地、城镇用地和农业用地占淡水河流域总面积超过90%,其中城镇用地超过20%。多元线性逐步回归分析和CCA结果说明水质指标受到多个景观指数的综合影响,反映了景观格局对水质的复杂影响机制。流域景观格局对河流水质有显著影响,流域尺度的景观指数比河岸带尺度的景观指数对水质影响更大。城镇用地比例是影响耗氧污染物和营养盐等污染物浓度最重要的景观指数,林地和农业用地对水质的影响较小。另外,景观破碎化对pH值、溶解氧和重金属等水质指标有显著影响。CCA的第一排序轴解释了景观指数与水质指标相关性的54.0%,前两排序轴累积能解释景观指数与水质指标相关性的87.6%,前两轴分别主要表达了城市化水平和景观破碎化水平的变化梯度。淡水河流域的景观格局特征从上游到下游呈现出城市—城乡交错—农村的景观梯度,水质变化也对应了这个梯度的变化,说明人类活动引起的流域土地覆盖及土地管理措施变化会对水质变化产生显著影响。  相似文献   

15.
张柳柳  刘睿  张静  肖作林  冀琴 《生态学报》2022,42(16):6704-6717
景观组成及景观格局特征决定了污染物的来源和地表景观的拦截消纳潜力,地表坡降会加剧土壤侵蚀,坡地景观特征是影响河流水质的重要因素。研究基于长江上游重庆段2015年水质监测数据和30 m空间分辨率土地利用数据,提取河岸带100 m、200 m、300 m、500 m、1000 m和子流域6种空间尺度上景观格局和景观组成,并进一步将景观组成分为总地类、缓坡地类和陡坡地类三种不同坡度尺度,再采用相关分析和冗余分析(RDA)等方法定量探讨了坡地景观特征(坡地景观组成、景观格局)对河流水质的多时空尺度影响。结果表明:坡地景观特征对2015年长江上游重庆段河流水质的影响具有空间尺度效应;坡地景观特征对河流水质的影响在河岸带尺度强于子流域尺度,其中关键尺度为河岸带100 m至300 m,最有效尺度为河岸带200 m。坡地景观特征影响水质的季节差异随空间尺度不同而变化,在河岸带100 m至300 m尺度为汛期强于非汛期,在河岸带1000 m尺度相反,在子流域尺度无季节差异。建设用地面积比与溶解氧(DO)和高锰酸盐指数(CODMn)正相关,耕地面积百分比与氨氮(NH4+-N)参数正相关,两者为水质污染"源景观",且缓坡耕地对水质的解释率高于总地类耕地;林地与水质参数呈负相关,对缓解水质恶化具有积极作用;集聚度(COHESION)、聚合度(AI)指标与NH4+-N参数及斑块密度(PD)、边缘密度(ED)与DO、CODMn参数均呈正相关。在集水区尤其是河岸带300 m范围内,严格把控建设用地污水收集与处理,种植河岸带防护林,采取横坡耕种方式,并通过优化景观结构(如种植植物篱)以增强景观拦截力以减少污染物的集中输出,从而改善河流水质。  相似文献   

16.
Understanding the primary effects of anthropogenic activities and natural factors on river water quality is important in the study and efficient management of water resources. In this study, analysis of Variance (ANOVA), Principal component analysis (PCA), Pearson correlations, Multiple regression analysis (MRA) and Redundancy analysis (RDA) were applied as an integrated approach in a GIS environment to explore the temporal and spatial variations in river water quality and to estimate the influence of watershed land use, topography and socio-economic factors on river water quality based on 3 years of water quality monitoring data for the Cao-E River system. The statistical analysis revealed that TN, pH and temperature were generally higher in the rainy season, whereas BOD5, DO and turbidity were higher in the dry season. Spatial variations in river water quality were related to numerous anthropogenic and natural factors. Urban land use was found to be the most important explanatory variable for BOD5, CODMn, TN, DN, NH4 +-N, NO3 -N, DO, pH and TP. The animal husbandry output per capita was an important predictor of TP and turbidity, and the gross domestic product per capita largely determined spatial variations in EC. The remaining unexplained variance was related to other factors, such as topography. Our results suggested that pollution control of animal waste discharge in rural settlements, agricultural runoff in cropland, industrial production pollution and domestic pollution in urban and industrial areas were important within the Cao-E River basin. Moreover, the percentage of the total overall river water quality variance explained by an individual variable and/or all environmental variables (according to RDA) can assist in quantitatively identifying the primary factors that control pollution at the watershed scale.  相似文献   

17.
The green-tide macroalga, Ulva prolifera, was tested in the laboratory to determine its nutrient uptake and photosynthesis under different conditions. In the nutrient concentration experiments U. prolifera showed a saturated uptake for nitrate but an escalating uptake in the tested range for phosphorus. Both N/P and NO3 ?/NH4 + ratios influenced nutrient uptake significantly (p?<?0.05) while the PSII quantum yield [Y(II)] (p?>?0.05) remained unaffected. The maximum N uptake rate (33.9?±?0.8 μmol g?1 DW h?1) and P uptake rate (11.1?±?4.7) was detected at N/P ratios of 7.5 and 2.2, respectively. U. prolifera preferred NH4 +-N to NO3 ?-N when the NO3 ?-N/NH4 +-N ratio was less than 2.2 (p?<?0.05). But between ratios of 2.2 and 12.9, the uptake of NO3 ?-N surpassed that of NH4 +-N. In the temperature experiments, the highest N uptake rate and [Y(II)] were observed at 20 °C, while the lowest rates were detected at 5 °C. P uptake rates were correlated with increasing temperature.  相似文献   

18.
随着流域城镇化的加速,流域城镇化景观格局对流域水质的影响逐渐加剧。以城镇化趋势明显的于桥水库流域为例,基于流域"源-汇"景观特征指数,并结合于桥水库流域2013、2014和2015年33个子流域的水质数据,采用空间分析、相关分析和冗余分析等方法,探讨了在城镇化影响下,于桥水库流域景观特征指数和水质指标的定量关系。结果表明:整个流域从上游到下游呈现"汇"景观面积减小,"源"景观面积增大的趋势,居民建设用地面积比在中下游子流域达34.6%,"汇"型景观中林地面积为33.5%;景观空间负荷对比指数(LWLI)全局Moran′s I的值为0.637,P0.01,在空间上存在趋于集群的现象,LWLI高-高聚集区与城镇化集中区域具有一致性。LWLI与流域氮、磷空间分布存在极显著的相关性,平水期TN与LWLI的复相关系数R_2为0.811,丰水期LWLI与TP的复相关系数R_2为0.741;子流域所有水质参数NH_4~+-N、TN、NO_3~--N、TP及LWLI均集中在同一象限,与其它景观特征指数相比,LWLI对河流中氮、磷的影响最大。城镇居民用地与水质指标存在极显著的相关性,是流域水质污染重要的贡献源。流域城镇化发展中,建议提高村镇的景观连通性,便于污染物集中处理,同时增加林地、草地面积,改善流域的生态水文功能。  相似文献   

19.
Reservoirs are intrinsically linked to the rivers that feed them, creating a river–reservoir continuum in which water and sediment inputs are a function of the surrounding watershed land use. We examined the spatial and temporal variability of sediment denitrification rates by sampling longitudinally along an agriculturally influenced river–reservoir continuum monthly for 13 months. Sediment denitrification rates ranged from 0 to 63 μg N2O g ash free dry mass of sediments (AFDM)−1 h−1 or 0–2.7 μg N2O g dry mass of sediments (DM)−1 h−1 at reservoir sites, vs. 0–12 μg N2O gAFDM−1 h−1 or 0–0.27 μg N2O gDM−1 h−1 at riverine sites. Temporally, highest denitrification activity traveled through the reservoir from upper reservoir sites to the dam, following the load of high nitrate (NO3-N) water associated with spring runoff. Annual mean sediment denitrification rates at different reservoir sites were consistently higher than at riverine sites, yet significant relationships among theses sites differed when denitrification rates were expressed per gDM vs. per gAFDM. There was a significant positive relationship between sediment denitrification rates and NO3-N concentration up to a threshold of 0.88 mg NO3 -N l−1, above which it appeared NO3-N was no longer limiting. Denitrification assays were amended seasonally with NO3-N and an organic carbon source (glucose) to determine nutrient limitation of sediment denitrification. While organic carbon never limited sediment denitrification, all sites were significantly limited by NO3-N during fall and winter when ambient NO 3-N was low.  相似文献   

20.
We apply a linear regression mixed effects model to explore the influence of landscape factors on nitrate-N concentrations in a coastal watershed of Portugal. Landscape composition and configuration metrics, together with variables assessing the physical characteristics of the study area, were used. The analysis was performed using seasonal data from the years 2001 and 2006. The seasonal influence was included as a random effect to account for temporal correlations. Together, the fixed and the random factors explain 78% of the variance, whereas the fixed factors alone explain 10%. Urban, slope, elevation and aggregation index of urban class contribute to the differences found in the NO3-N concentrations. Urban has the weakest effect, whereas slope and elevation show a conditioned negative effect on nitrate-N. The effect of slope gets stronger for higher standard deviations of elevation and the effect of the standard deviation of elevation, measuring the variation of elevation within a sub-watershed, gets stronger for steeper slopes. Of the configuration class level metrics included in the analysis, only aggregation index of urban played a significant role in the final model, and it revealed to be related to urban percentage. The influence of landscape configuration metrics, though observed by others, was not obvious in this study. Future analysis evaluating the effect of metrics selection could be performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号