首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biodiversity often suffers from urbanization. In the present study, we focused on how the duration of urbanization affects the richness of 17 epiphytic lichen species and their cover on large oaks in urban environments in a city of 100 000 inhabitants in southeast Sweden. We also surveyed trees in adjacent rural areas, selected to have similar distributions of tree trunk circumference and surrounding oak density (within 300 m). Lichen richness and cover were lower on urban trees compared to rural trees. Furthermore, richness and cover decreased with the length of time that urban trees had been surrounded by houses. Most of the species that were analysed demonstrated a decline in occurrence with respect to the duration of housing development. The reduction in the probability of occurrence varied from 60% (Calicium viride, Evernia prunastri), 80% (Chrysothrix candelaris) to 90% (Ramalina spp.) during the considered 160‐year period of urbanization. Therefore, even if valuable trees survive over the course of development, their lichen biota is likely to become depleted over time.  相似文献   

2.
Aim Urbanization is a major driver of global land‐use change, substantially modifying patterns of biodiversity. Managing these impacts has become a conservation priority. The creation and maintenance of greenways, such as river corridors, is frequently promoted as a strategy for mitigating habitat fragmentation in urban areas by bringing semi‐natural habitat cover into city centres. However, there is little evidence to support this assertion. Here, we examine whether riparian zones maintain semi‐natural habitat cover in urban areas and how species richness varies along such zones. Location Sheffield, Northern England. Methods Multiple taxonomic groups (birds, butterflies, plants) were surveyed at 105 sites spanning seven riparian corridors that transect the study system. For all groups, we model the relationships between species richness and environmental variables pertinent to an urban system. To test whether riparian zones can act to maintain semi‐natural habitats within a city, we modelled the proportion of semi‐natural land cover within 250 m grid squares that do, and do not, contain a river. Results Species richness varied markedly in relation to distance from the urban core. Trends differed both between taxonomic groups and between rivers, reflecting the complex patterns of environmental variation associated with cities. This suggests that biodiversity surveys that focus on a single group or transect cannot reliably be used as surrogates even within the same city. Nonetheless, there were common environmental predictors of species richness. Plant, avian and butterfly richness all responded positively to Habitat Diversity and the latter two declined with increases in sealed surface. Main conclusions Multiple transects and taxonomic groups are required to describe species richness responses to urbanization as no single pattern is evident. Although riparian zones are an important component of the mosaic of urban habitats, we find that river corridors do not disproportionately support tree and Natural Surface Cover when compared to non‐riverine urban areas.  相似文献   

3.
The effect of air pollution from nitrogen dioxide (NO2) on the epiphytic lichens of the city of Seville (Spain) has been studied. Indices of air purity (IAP) were calculated, based on the lichen flora ofMelia azedarach L. present at 25 stations distributed through the city. The arrangement and classification of the stations by principal component analysis and cluster analysis, respectively, enabled the study area to be zoned into four zones of air purity. Accordingly, the zonal map of air purity for the city of Seville yields a gradient of air purity that is very steep from the centre to the outskirts. The dependence of 77.6% of IAP variability with NO2 pollution levels detected with air emission sensors distributed through the city suggests the relationship between NO2 levels and zones of air purity.  相似文献   

4.
Lichens are valuable bio-indicators for evaluating the consequences of human activities that are increasingly changing the earth’s ecosystems. Since a major objective of national parks is the preservation of biodiversity, our aim is to analyse how natural resource management, the availability of lichen substrates and environmental parameters influence lichen diversity in Rodnei Mountains National Park situated in the Eastern Carpathians. Three main types of managed vegetation were investigated: the transhumance systems in alpine meadows, timber exploitation in mixed and pure spruce forests, and the corresponding conserved sites. The data were sampled following a replicated design. For the analysis, we considered not only all lichen species, but also species groups from different substrates such as soil, trees and deadwood. The lichen diversity was described according to species richness, red-list status and substrate-specialist species richness. The variation in species composition was related to the environmental variables. Habitat management was found to negatively influence species richness and alter the lichen community composition, particularly for threatened and substrate-specialist species. It reduced the mean level of threatened species richness by 59%, when all lichen species were considered, and by 81%, when only epiphytic lichens were considered. Management-induced disturbance significantly decreased lichen species richness in forest landscapes with long stand continuity. The diversity patterns of the lichens indicate a loss of species richness and change in species composition in areas where natural resources are still exploited inside the borders of the national park. It is thus imperative for protected areas, in particular old-growth forests and alpine meadows, to receive more protection than they have received in the past to ensure populations of the characteristic species remain viable in the future.  相似文献   

5.
Previous studies from Central Europe and North America showed that species richness is higher in urban than in rural landscapes. Do protected areas, which can be found in both city and countryside, reflect this species richness pattern? The impact of urban land-use might reduce conservation success and necessitate special management strategies. We compared species richness and species spatial turnover of selected animal and plant taxa (carabids, butterflies, snails, birds, lichens, mosses, vascular plants) in 30 protected areas in the city of Halle and 56 protected areas in the adjacent rural district of Saalkreis (Central Germany). Species were mapped by experienced biologists within a systematic species inventory. We corrected species numbers for the effects of landscape structure (e.g. size, shape and distance of habitats) which might influence species diversity beyond urbanisation effects. Butterflies, birds and lichens had significantly higher species numbers in the rural protected areas. Species spatial turnover was higher among urban areas than among rural areas or pairs of urban and rural areas for most taxa. Diversity in all taxa depended on the size of a protected area. We discussed these patterns in the context of the general urban-rural species diversity patterns. Our results indicate an increasing isolation of species assemblages with urbanisation and highlight that space for protected areas is even more limited in urban than rural areas. An effective conservation of urban species diversity should include both typical urban and semi-natural habitats to cover the full range of species living in cities.  相似文献   

6.
Lichens are very sensitive to habitat changes and their species richness is likely to decline under intensive land use. Currently, a comprehensive study analyzing lichen species richness in relation to land-use types, extending over different regions and including information on habitat variables, is missing for temperate grasslands. In three German regions we studied lichen species richness in 490 plots of 16 m2 representing different land-use types, livestock types, and habitat variables. Due to the absence of low-intensity pastures and substrates such as woody plants, deadwood and stones, there were no lichens in the 78 plots in Schorfheide-Chorin. In the two other regions, the richness of lichen species was 45 % higher in pastures than in meadows, and 77 % higher than in mown pastures, respectively. Among the pastures, the richness of all lichen species was on average 10 times higher in sheep-grazed pastures than in the ones grazed by cattle or horses. On average, the richness of all lichen species increased by 3.3 species per additional microhabitat. Furthermore, the richness of corticolous lichens increased by 1.2 species with 10 % higher cover of woody plants, lignicolous lichen species richness increased by 4.8 species with 1 % higher cover of deadwood, and saxicolous lichen species richness increased by 1.0 species with 1 % higher cover of stones. Our findings highlight the importance of low-intensity land use for lichen conservation. In particular, the degradation of grasslands rich in microhabitats and the destruction of lichen substrates by intensification, and conversion of unfertilized pastures formerly grazed at low intensity to meadows should be avoided to maintain lichen diversity.  相似文献   

7.
In the tropics, corticolous lichen richness and cover tend to increase from the trunk base to the top of the crown of trees. In this study we calculated the total beta diversity of the lichen community along a vertical gradient on Quercus laurina in Mexican cloud forest. By comparing the richness and cover of the lichens by zone, we show that foliose and fruticose lichens are a minor component of the total lichen species richness, but have a higher cover than the crustose lichens. Five zones were identified along each phorophyte (n = 15) with a diameter at breast height >40 cm. A total of 92 species were identified. Of these, 38% were found only in a single zone, 51% were shared between the different zones and 11% occurred across all zones. Species richness and cover increased from the lowest to the highest zones of the phorophytes. Dissimilarity in species composition between the zones could be explained by species replacement. An indicator species analysis revealed that only a few species, e.g. Hypotrachyna vexans, H. cf. sublaevigata and Ramalina cf. sinaloensis prefer a particular zone. The results show that the lichen community associated with Quercus laurina phorophytes is highly diverse and suggest that species richness and cover are related to the zone and the various growth forms.  相似文献   

8.
We used data from the French breeding bird survey to estimate local bird species richness within sampled sites, using capture–recapture models. We investigated the possible effects of habitat structure and composition (landscape fragmentation, habitat cover and diversity) on estimated species richness at a local scale, and used the identified trends to help with modeling species richness at a large spatial scale. We performed geostatistical analyses based on spatial autocorrelation – cokriging models – to interpolate estimated species richness over the entire country, providing an opportunity to predict species-rich areas. We further compared species richness obtained with this method to species and rarity richness obtained using a national atlas of breeding birds. Estimated species richness was higher in species richness hotspots identified by the atlas. Combining informations on rare species from Atlas and species richness estimates from sound sampling based schemes should help with identifying species-rich areas for various taxa and locating biodiversity hotspots to be protected as high conservation value areas, especially in temperate zones where diversity hotspots are likely to match centers of high species richness because of very few centers of true endemicity.  相似文献   

9.
《Acta Oecologica》1999,20(3):159-170
The distribution and abundance of soil crust lichens and bryophytes was examined in a patterned Callitris glaucophylla woodland in eastern Australia. Twenty-one lichen species and 26 bryophyte species were collected within thirty quadrats along a sequence of runoff, interception and runoff zones. Crust cover was significantly greatest in the interception zones (79.0 %), followed by the runoff zones (24.0 %), and lowest in the groved, runon zones (6.6 %). Lichens and bryophytes were distributed across all geomorphic zones, and, although there were significantly more moss species in the interception zones (mean = 9.1) compared with either the runoff (4.2) or runon (3.2) zones, the number of lichen species did not vary between zones. Ordination of a reduced data set of 32 species revealed a separation of taxa into distinct groups corresponding to the three geomorphic zones. Canonical correspondence analysis (CCA) of the 32 species and thirteen environmental variables revealed that the most important factors associated with the distribution of species were sheet and scarp erosion, soil stability and coherence, litter cover and crust cover. Surface cracking, microtopography and plant cover were of intermediate importance. The CCA biplot revealed that the timbered runon zones (groves) were dominated by `shade-tolerant' mosses Fissidens vittatus and Barbula hornschuchiana, whilst the heavily eroded runoff zones supported sparse populations of `erosion tolerant' lichens (Endocarpon rogersii) and mosses (Bryum argenteum and Didymodon torquatus). Interception zones supported a rich suite of `crust forming' mosses and lichens capable of tolerating moderate inundation by overland flow. Two other groups of taxa were identified by this analysis: the `pioneer' group, comprising mainly nitrogen-fixing lichens which occupy the zone of active erosion at the lower edge of the groves, and the `opportunists' dominated by liverworts, occupying the shallow depressions or bays at the margins of the groves and the interception zones. This study confirms that the non-vascular lichens and bryophytes in these arid soil crusts, are, like the vascular plants, strongly patterned according to geomorphic zone, being most strongly associated with soil surface and erosional features.  相似文献   

10.
Urbanization poses a serious threat to local biodiversity, yet towns and cities with abundant natural features may harbor important species populations and communities. While the contribution of urban greenspaces to conservation has been demonstrated by numerous studies within temperate regions, few consider the bird communities associated with different landcovers in Neotropical cities. To begin to fill this knowledge gap, we examined how the avifauna of a wetland city in northern Amazonia varied across six urban landcover types (coastal bluespace; urban bluespace; managed greenspace; unmanaged greenspace; dense urban; and sparse urban). We measured detections, species richness, and a series of ground cover variables that characterized the heterogeneity of each landcover, at 114 locations across the city. We recorded >10% (98) of Guyana's bird species in Georgetown, including taxa of conservation interest. Avian detections, richness, and community composition differed with landcover type. Indicator species analysis identified 29 species from across dietary guilds, which could be driving community composition. Comparing landcovers, species richness was highest in managed greenspaces and lowest in dense urban areas. The canal network had comparable levels of species richness to greenspaces. The waterways are likely to play a key role in enhancing habitat connectivity as they traverse densely urbanized areas. Both species and landcover information should be integrated into urban land-use planning in the rapidly urbanizing Neotropics to maximize the conservation value of cities. This is imperative in the tropics, where anthropogenic pressures on species are growing significantly, and action needs to be taken to prevent biodiversity collapse.  相似文献   

11.
We report lichen cover change over a 20 years period for the Costa Rican capitol city. Foliaceous lichen cover was measured with a 10 x 10 cm template positioned 1.5 m above ground on the south, east, north and west sides of ten phorophytic trees per station (11 stations) from 1976 through 1997. Results were compared with previous measurements along an urban transect (at three heights above ground) and in a rural station. Lichen cover was correlated with traffic density and varied between stations and years. Mean lichen cover was 23% in 1976, 12% in 1986, 9% in 1990 and 22% in 1997. Most stations suffered a large cover reduction after 1976 but improved after 1990, possibly reflecting improved traffic regulations and elimination of lead (Pb) from gasoline. Cover values by cardinal orientation were: west 17%, east 14%, north 13% and south 12%. Sidewalks of streets with more traffic had lower cover values. In the rural station, cover was lower than expected (possibly because of climate), and was not correlated with height above ground or cardinal orientation, in contrast with temperate regions. In polluted cities human activity should concentrate above the first floor of buildings (particularly in hospitals or schools) because pollution was found to concentrate in the first 2 m above ground.  相似文献   

12.
A widely accepted paradigm for speciation in tropical forests, the refuge theory, requires periodic habitat fragmentation driven by global climatic fluctuations to provide conditions for allopatric speciation. This implies that comparative species richness in refugia is due to loss of diverse communities in areas affected by climatic cycles. In this study we compare distribution patterns of bird and plant taxa which we consider to be of either deep phylogenetic lineages or recent radiations. It is demonstrated that lowland areas which have been postulated as Pleistocene refugia are dominated by species which represent lineages of pre-Pleistocene age. Since variations in species richness within these forest tracts reflect currently apparent environmental variables which might be considered to determine carrying capacity, we do not need to postulate that richness is the result of changes in forest cover in the past. Recently diversified taxa of plants and birds are found mainly at the periphery of the main rain forest blocks and in habitat islands outside them. Here, peak concentrations of young restricted-range species are often congruent with clusters of old and biogeographically relictual species. It is suggested that this reflects special intrinsic environmental properties of these areas, in the form of long-term environmental stability caused mainly by persistent orographic rain or mist. In this case, richness is not necessarily due to extinction outside these areas. Stability not only enables survival of relictual taxa, but also promotes morphological differentiation of radiating taxa, leading to aggregates of taxa of restricted distribution.  相似文献   

13.
Lichens are a key component of forest biodiversity. However, a comprehensive study analyzing lichen species richness in relation to several management types, extending over different regions and forest stages and including information on site conditions is missing for temperate European forests. In three German regions (Schwäbische Alb, Hainich-Dün, Schorfheide-Chorin), the so-called Biodiversity Exploratories, we studied lichen species richness in 631 forest plots of 400 m2 comprising different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests resulting from clear cutting or shelterwood logging), various stand ages, and site conditions, typical for large parts of temperate Europe. We analyzed how lichen species richness responds to management and habitat variables (standing biomass, cover of deadwood, cover of rocks). We found strong regional differences with highest lichen species richness in the Schwäbische Alb, probably driven by regional differences in former air pollution, and in precipitation and habitat variables. Overall, unmanaged forests harbored 22% more threatened lichen species than managed age-class forests. In general, total, corticolous, and threatened lichen species richness did not differ among management types of deciduous forests. However, in the Schwäbische-Alb region, deciduous forests had 61% more lichen species than coniferous forests and they had 279% more threatened and 76% more corticolous lichen species. Old deciduous age classes were richer in corticolous lichen species than young ones, while old coniferous age-classes were poorer than young ones. Overall, our findings highlight the importance of stand continuity for conservation. To increase total and threatened lichen species richness we suggest (1) conserving unmanaged forests, (2) promoting silvicultural methods assuring stand continuity, (3) conserving old trees in managed forests, (4) promoting stands of native deciduous tree species instead of coniferous plantations, and (5) increasing the amount of deadwood in forests.  相似文献   

14.
根据西藏地衣分类和区系的文献资料,对西藏地衣物种多样性的海拔梯度进行了分析。267个分类群按照生长型或者基物被分为六组。每一组地衣的物种丰度随海拔增加呈现单峰曲线形式的变化。多数组物种丰度的峰值出现在海拔3400~3900m之间,对应于山地寒温带针叶林带的上半部分,比尼泊尔对应类群出现极值的海拔要高。此植物带谱内复杂的生态系统可能是物种多样性高的主要原因。壳状地衣物种丰度的峰值出现在5100~5400m区间则可能是因为该区内高大的树木的消失以及具有充裕的阳光。西藏的地衣物种多样性远低于尼泊尔,两地共有的物种数量很少。对西藏地衣物种多样性的调查不充分应当是其主要原因,因此今后中国地衣学工作者应当加强西藏地衣多样性的研究。  相似文献   

15.
In the present study, a first inventory of benthic macroinvertebrates in the Banco Stream, Côte d'Ivoire, and the correlations between environmental variables and taxonomic richness were analysed. Seven stations were sampled monthly over a 1‐year period, using a hand net (10 × 10 cm, 250 μm mesh, 50 cm length). One hundred and thirty‐two macroinvertebrate taxa were recorded. These taxa were distributed among 74 families and 15 orders belonging to Insecta (118 taxa; 89% of total richness), Oligochaeta (seven taxa), Crustacea (five taxa) and Mollusca (two taxa). Kruskal–Wallis test revealed significant difference (at least P < 0.05) in macroinvertebrate richness between upstream stations (S1 and S2) and stations S4, S5 and S6. Chironominae and Tanypodinae (Insecta) were the two very frequent taxa in all the stations. Lumbriculidae (Oligochaeta), Desmocaris trispinosa (Crustacea) and Eurymetra sp. (Insecta) were frequently found in the samples. Hierarchical cluster analysis revealed three groups of sampling stations according to taxonomic similarity. Taxonomic richness was significantly and negatively correlated with conductivity, while it was significantly and positively correlated with substrate types (woody debris and gravel). Due to the fact that Banco stream is the locality type of an endemic shrimp species (Macrobrachium thysi), this basin is of high conservation priority.  相似文献   

16.
This study was carried out at Imboassica Lagoon, located in an urban zone in the municipality of Macaé, Rio de Janeiro state, Brazil. This lagoon has been subject to anthropogenic impacts due to the increasing city population, such as the input of sewage. Areas of variable degree of anthropogenic influence in the lagoon were compared regarding the structure of the macroinvertebrate community associated to Typha domingensis leaves. For sampling, we used 35 x 20 cm net plastic bags, with 6.8 mm mesh containing T. domingensis leaves for colonization. Two different sampling stations were selected: station A, under direct input of sewage; and station B with lesser sewage influence. The bags were removed after 20, 40 and 75 days of colonization. For each sample the Shannon-Wiever Diversity, Pielou Evenness, Jaccard Similarity Indices, Correspondence Analysis and taxonomic richness were calculated. A total of 31,874 individuals were sampled, belonging to 34 taxa. The main taxonomical groups were: Oligochaeta (41%), Chironomidae (40%), Ancylidae (4.6%), Polymitarcyidae (4%) and Thiaridae (3%). At station A, the taxonomic richness, the Evenness and Diversity values were lower than in station B. On the other hand, the total density was three times higher in station A than in B. It was already possible to discriminate the community structure of each sampling station in the first sampling. Trichoptera and Ephemeroptera were the main exclusive groups of station B and are considered good water quality indicators due to their high sensibility to contamination. The major contribution to discriminate between the macroinvertebrate communities of the two sample stations came from Chironomidae, Oligochaeta and Ephemeroptera.  相似文献   

17.
Tree crowns typically cover the vast majority of the surface area of trees, but they are rarely considered in diversity surveys of epiphytic bryophytes and lichens, especially in temperate Europe. Usually only stems are sampled. We assessed the number of bryophyte and lichen species on stems and in crowns of 80 solitary sycamore maple trees (Acer pseudoplatanus) at six sites in wooded pastures in the northern Alps. The total number of species detected per tree ranged from 13 to 60 for bryophytes, from 25 to 67 for lichens, and from 42 to 104 for bryophytes and lichens considered together. At the tree level, 29 % of bryophyte and 61 % of lichen species were recorded only in the crown. Considering all sampled trees together, only 4 % of bryophyte, compared to 34 % of lichen species, were never recorded on the stem. Five out of 10 red-listed bryophyte species and 29 out of 39 red-listed lichen species were more frequent in crowns. The species richness detected per tree was unexpectedly high, whereas the proportion of exclusive crown species was similar to studies from forest trees. For bryophytes, in contrast to lichens, sampling several stems can give a good estimation of the species present at a site. However, frequency estimates may be highly biased for lichens and bryophytes if crowns are not considered. Our study demonstrates that tree crowns need to be considered in research on these taxa, especially in biodiversity surveys and in conservation tasks involving lichens and to a lesser degree also bryophytes.  相似文献   

18.
Lichens are symbiotic organisms that comprise a fungus and a photosynthetic partner wich are recognized as a good indicator of climate change. However, our understanding of how aridity affects the diversity of saxicolous lichens in drylands is still limited. To evaluate the relationship between saxicolous lichen diversity and aridity in a central México dryland, a geographical transect was established of 100 km to build an aridity gradient in the semiarid zone of the State of Querétaro, Mexico, comprising ten sampling sites with a 10 km separation. Species richness, abundance and diversity of soil lichen species were recorded using two sampling methods: the quadrat-intercept and the line-intercept method, to compare their performance in assessing soil lichen diversity in drylands. The number of species and Shannon diversity of saxicolous lichens were higher at intermediate values of the aridity index (AI = 0.10–0.34). Quadrat intercept and point intercept methods gave quite similar results, which means that the selected method does not influence the results in a significant way. This study confirms the role of saxicolous lichens as climate change indicators and reveals the importance of the sampling method selection in the evaluation of different parameters of soil lichen diversity in drylands.  相似文献   

19.
根据西藏地衣分类和区系的文献资料,对西藏地衣物种多样性的海拔梯度进行了分析。267个分类群按照生长型或者基物被分为六组。每一组地衣的物种丰度随海拔增加呈现单峰曲线形式的变化。多数组物种丰度的峰值出现在海拔3400~3900m之间,对应于山地寒温带针叶林带的上半部分,比尼泊尔对应类群出现极值的海拔要高。此植物带谱内复杂的生态系统可能是物种多样性高的主要原因。壳状地衣物种丰度的峰值出现在5100~5400m区间则可能是因为该区内高大的树木的消失以及具有充裕的阳光。西藏的地衣物种多样性远低于尼泊尔,两地共有的物种数量很少。对西藏地衣物种多样性的调查不充分应当是其主要原因,因此今后中国地衣学工作者应当加强西藏地衣多样性的研究。  相似文献   

20.
Question: Is epiphytic lichen community structure significantly affected by isolation from source community? Location: Foothills of the Southern Alps, South Island, New Zealand. Methods: Epiphytic lichen richness and environmental variables were measured on 382, young Nothofagus solandri var. cliffortioides (Hook. f.) Poole (mountain beech) trees that had recently colonized grassland adjacent to a forest remnant. Richness and the presence of individual lichen taxa were modelled as a function of isolation from the forest fragment, tree size and other habitat conditions. Results: Richness of epiphytic lichen communities was negatively related to tree isolation, although this effect was much smaller than the effects of tree size and other local (tree‐scale) habitat conditions. Different lichen taxa responded in different ways to isolation, area effects and local habitat conditions. Conclusions: This study shows that many epiphytic lichens on mountain beech are limited in their ability to colonize new substrate, even over distances of less than 1 km, which may be due to limitation in dispersal and/or establishment. Lichens are greatly influenced by local habitat conditions, such as tree size, and in this particular environment their negative interaction with sooty moulds is an important driver of community structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号