首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationships among the members of a population can be visualized using individual networks, where each individual is a node connected to each other by means of links describing the interactions. The centrality of a given node captures its importance within the network. We hypothesize that in mutualistic networks, the centrality of a node should benefit its fitness. We test this idea studying eight individual-based networks originated from the interaction between Erysimum mediohispanicum and its flower visitors. In these networks, each plant was considered a node and was connected to conspecifics sharing flower visitors. Centrality indicates how well connected is a given E. mediohispanicum individual with the rest of the co-occurring conspecifics because of sharing flower visitors. The centrality was estimated by three network metrics: betweenness, closeness and degree. The complex relationship between centrality, phenotype and fitness was explored by structural equation modelling. We found that the centrality of a plant was related to its fitness, with plants occupying central positions having higher fitness than those occupying peripheral positions. The structural equation models (SEMs) indicated that the centrality effect on fitness was not merely an effect of the abundance of visits and the species richness of visitors. Centrality has an effect even when simultaneously accounting for these predictors. The SEMs also indicated that the centrality effect on fitness was because of the specific phenotype of each plant, with attractive plants occupying central positions in networks, in relation to the distribution of conspecific phenotypes. This finding suggests that centrality, owing to its dependence on social interactions, may be an appropriate surrogate for the interacting phenotype of individuals.  相似文献   

2.
Globalisation persistently fuels the establishment of non‐native species outside their natural ranges. While alien plants have been intensively studied, little is known about alien flower visitors, and especially, how they integrate into natural communities. Here, we focus on mutualistic networks from five Galápagos islands to quantify whether alien and native flower visitors differ consistently in their pairwise interactions. We find that (1) alien flower visitors have more interaction partners and larger species strengths (i.e. plants are more connected to alien insects), (2) native insects tend to have higher partner fidelity as they deviate more from random partner utilisation, and iii) the difference between native and alien flower visitors in network integration intensifies with island degradation. Thus, native and alien flower visitors are not interchangeable, and alien establishment might have yet unforeseen consequences for the pairwise dynamics between plants and flower visitors on the Galápagos – especially on the heavily disturbed islands.  相似文献   

3.
The topological importance of species within networks is an important way of bringing a species-level consideration to the study of whole ecological networks. There are many different indices of topological importance, including centrality indices, but it is likely that a small number are sufficient to explain variation in topological importance. We used 14 indices to describe topological importance of plants and pollinators in 12 quantitative mutualistic (plant–pollinator) networks. The 14 indices varied in their consideration of interaction strength (weighted versus unweighted indices) and indirect interactions (from the local measure of degree to meso-scale indices). We use principal components approximation to assess how well every combination of 1–14 indices approximated to the results of principal components analysis (PCA). We found that one or two indices were sufficient to explain up to 90% of the variation in topological importance in both plants and pollinators. The choice of index was crucial because there was considerable variation between the best and the worst approximating subsets of indices. The best single indices were unweighted degree and unweighted topological importance (Jordán's TI index) with two steps (a measurement of apparent competition). The best pairs of indices consisted of a measure of a TI index and one of closeness centrality (weighted or unweighted) or d′ (a standardised species-level measure of partner diversity). Although we have found indices that efficiently explain variation in topological importance, we recommend further research to discover the real-world relevance of different aspects of topological importance to species in ecological networks.  相似文献   

4.
Successful pollination in animal‐pollinated plants depends on the temporal overlap between flower presentation and pollinator foraging activity. Variation in the temporal dimension of plant–pollinator networks has been investigated intensely across flowering seasons. However, over the course of a day, the dynamics of plant–pollinator interactions may vary strongly due environmental fluctuations. It is usually assumed there is a unimodal, diurnal, activity pattern, while alternative multimodal types of activity patterns are often neglected and deserve greater investigation. Here, we quantified the daily activity pattern of flower visitors in two different habitats contrasting high elevation meadows versus forests in Southwest China to investigate the role of abiotic conditions in the temporal dynamics of plant–pollinator interactions. We examined diurnal activity patterns for the entire pollinator community. Pollinator groups may differ in their ability to adapt to habitats and abiotic conditions, which might be displayed in their patterns of activity. We hypothesized that (a) pollinator communities show multimodal activity patterns, (b) patterns differ between pollinator groups and habitat types, and (c) abiotic conditions explain observed activity patterns. In total, we collected 4,988 flower visitors belonging to six functional groups. There was a bimodal activity pattern when looking at the entire pollinator community and in five out of six flower visitor groups (exempting solitary bees) regardless of habitat types. Bumblebees, honeybees, dipterans, lepidopterans, and other insects showed activity peaks in the morning and afternoon, whereas solitary bees were most active at midday. Activity of all six pollinator groups increased as solar radiation increased and then decreased after reaching a certain threshold. Our findings suggest that in habitats at higher elevations, a bimodal activity pattern of flower visitation is commonly employed across most pollinator groups that are diurnal foragers. This pattern may be caused by insects avoiding overheating due to elevated temperatures when exposed to high solar radiation at midday.  相似文献   

5.
Seed dispersal by animals is a complex phenomenon, characterized by multiple mechanisms and variable outcomes. Most researchers approach this complexity by analysing context‐dependency in seed dispersal and investigating extrinsic factors that might influence interactions between plants and seed dispersers. Intrinsic traits of seed dispersers provide an alternative way of making sense of the enormous variation in seed fates. I review causes of intraspecific variability in frugivorous and granivorous animals, discuss their effects on seed dispersal, and outline likely consequences for plant populations and communities. Sources of individual variation in seed‐dispersing animals include sexual dimorphism, changes associated with growth and ageing, individual specialization, and animal personalities. Sexual dimorphism of seed‐dispersing animals influences seed fate through diverse mechanisms that range from effects caused by sex‐specific differences in body size, to influences of male versus female cognitive functions. These differences affect the type of seed treatment (e.g. dispersal versus predation), the number of dispersed seeds, distance of seed dispersal, and likelihood that seeds are left in favourable sites for seeds or seedlings. The best‐documented consequences of individual differences associated with growth and ageing involve quantity of dispersed seeds and the quality of seed treatment in the mouth and gut. Individual specialization on different resources affects the number of dispersed plant species, and therefore the connectivity and architecture of seed‐dispersal networks. Animal personalities might play an important role in shaping interactions between plants and dispersers of their seeds, yet their potential in this regard remains overlooked. In general, intraspecific variation in seed‐dispersing animals often influences plants through effects of these individual differences on the movement ecology of the dispersers. Two conditions are necessary for individual variation to exert a strong influence on seed dispersal. First, the individual differences in traits should translate into differences in crucial characteristics of seed dispersal. Second, individual variation is more likely to be important when the proportions of particular types of individuals fluctuate strongly in a population or vary across space; when proportions are static, it is less likely that intraspecific differences will be responsible for changes in the dynamics and outcomes of plant–animal interactions. In conclusion, focusing on variation among foraging animals rather than on species averages might bring new, mechanistic insights to the phenomenon of seed dispersal. While this shift in perspective is unlikely to replace the traditional approach (based on the assumption that all important variation occurs among species), it provides a complementary alternative to decipher the enormous variation observed in animal‐mediated seed dispersal.  相似文献   

6.
The link-prediction problem is an open issue in data mining and knowledge discovery, which attracts researchers from disparate scientific communities. A wealth of methods have been proposed to deal with this problem. Among these approaches, most are applied in unweighted networks, with only a few taking the weights of links into consideration. In this paper, we present a weighted model for undirected and weighted networks based on the mutual information of local network structures, where link weights are applied to further enhance the distinguishable extent of candidate links. Empirical experiments are conducted on four weighted networks, and results show that the proposed method can provide more accurate predictions than not only traditional unweighted indices but also typical weighted indices. Furthermore, some in-depth discussions on the effects of weak ties in link prediction as well as the potential to predict link weights are also given. This work may shed light on the design of algorithms for link prediction in weighted networks.  相似文献   

7.
Although pollination networks between plants and flower visitors are diverse and flexible, seed production of many plant species is restricted by pollen limitation. Obligate outcrossers often suffer from low pollinator activity or severe interspecific competition for pollinator acquisition among co-flowering species. This study focused on seasonal changes in plant–flower visitor linkages in an alpine ecosystem and examined whether and how this seasonality affected the seed-set of Primula modesta, a self-incompatible distylous herb having long-tubed flowers. First, we recorded the linkages between plants and flower visitors along the snowmelt gradient. Then, pollination experiment was conducted to estimate the degree of pollen limitation over the course of flowering season of P. modesta. Flower visitors were classified by their tongue length based on the morphological matching with P. modesta flowers. As the season progressed, plant–visitor linkages became more diverse and generalized, and the visitation frequency to P. modesta flowers increased. In the later part of the season, however, the seed set of P. modesta was significantly reduced due to severe pollen limitation, presumably because of increased competition for long-tongued pollinators among co-flowering species. The present study revealed that pollinator availability for specialist species may be restricted even when plant–visitor linkages are diverse and generalized as a whole. In the case of P. modesta, morphological matching and competition for pollinators might be the main factors explaining this discrepancy.  相似文献   

8.
9.
Many plants invest substantial resources in signaling to and rewarding two kinds of ‘interguild’ mutualists, pollinators and seed dispersers. The signals and rewards are expressed via traits of flowers and fruits. Pollinators and seed dispersers could act in synergistic or antagonistic ways to influence selection on these traits. Here, we address the issue of whether plant species might be constrained in signaling to and rewarding multiple mutualists that provide different types of benefits to plants. Specifically, does investment in one type of mutualist limit investment in another? We examined the correlation between flower size and fruit size for 472 plant species spanning three regional floras. Our analyses made the assumption that structure size is related to plant investment in signals and/or rewards. We expect that a constraint due to interguild mutualisms would be evidenced by a negative correlation between flower and fruit size. Instead, we found significantly positive relationships between flower size and fruit size in all three regional floras. These relationships remained robust after correcting for plant evolutionary history using phylogenetically independent contrasts. These patterns may reflect synergies in selection by pollinators and seed dispersers, genetically-based or resource-based constraints on investment in reproductive tissues, and/or an underlying trade-off in structure size versus number.  相似文献   

10.
It has been observed that mutualistic bipartite networks have a nested structure of interactions. In addition, the degree distributions associated with the two guilds involved in such networks (e.g., plants and pollinators or plants and seed dispersers) approximately follow a truncated power law (TPL). We show that nestedness and TPL distributions are intimately linked, and that any biological reasons for such truncation are superimposed to finite size effects. We further explore the internal organization of bipartite networks by developing a self-organizing network model (SNM) that reproduces empirical observations of pollination systems of widely different sizes. Since the only inputs to the SNM are numbers of plant and animal species, and their interactions (i.e., no data on local abundance of the interacting species are needed), we suggest that the well-known association between species frequency of interaction and species degree is a consequence rather than a cause, of the observed network structure.  相似文献   

11.
Failure to quantify differences in the shape of inter‐specific trait distributions (e.g., skew, kurtosis) when comparing co‐occurring alien and native plants hinders the integration of biological invasions and plant community ecology. Within a plant community, understanding the circumstances that lead to the shape of the inter‐specific distribution of one or more functional plant traits being unimodal, bimodal, multimodal or skewed has the potential to shed new light on community vulnerability to invasion, subsequent ecosystem impacts and the selection pressures (e.g., stabilizing, directional or disruptive) acting upon native and alien species. Ignoring differences in the shape of inter‐specific trait distributions of alien and native species could miss important insights into plant invasions, including: the existence of unsaturated native plant communities, empty niches, shifting trait optima of species as a result of environmental change and incomplete colonization–extinction processes following invasion. Future comparisons of functional trait differences between native and alien species should include assessment of the shapes of inter‐specific trait distributions since these may differ even when the mean values of traits are similar for native and alien species. The infrequent application of such approaches may explain the limited generalizations regarding the drivers and consequences of plant invasions in plant communities.  相似文献   

12.
Responses of multisensory neurons to combinations of sensory cues are generally enhanced or depressed relative to single cues presented alone, but the rules that govern these interactions have remained unclear. We examined integration of visual and vestibular self-motion cues in macaque area MSTd in response to unimodal as well as congruent and conflicting bimodal stimuli in order to evaluate hypothetical combination rules employed by multisensory neurons. Bimodal responses were well fit by weighted linear sums of unimodal responses, with weights typically less than one (subadditive). Surprisingly, our results indicate that weights change with the relative reliabilities of the two cues: visual weights decrease and vestibular weights increase when visual stimuli are degraded. Moreover, both modulation depth and neuronal discrimination thresholds improve for matched bimodal compared to unimodal stimuli, which might allow for increased neural sensitivity during multisensory stimulation. These findings establish important new constraints for neural models of cue integration.  相似文献   

13.
Establishing wildflower strips has been suggested as an effective measure to promote pollination services, pest control or general insect biodiversity, but little is known about the integration of these different objectives when selecting flower seed mixtures. In ten agricultural landscapes in the Netherlands, we established a wildflower strip (0.4 – 4.9 ha) with half of each strip sown with a mixture targeting longer-tongued pollinators and the other half sown with a mixture targeting shorter-tongued pollinators and natural enemies. We determined establishment success of sown wildflowers and evaluated the attractiveness of the established flower communities to multiple functional groups of flower visitors: bumblebees (long-tongued pollinators), hoverflies (short-tongued pollinators and natural enemies), and butterflies and total flower-visitor richness (indicators of wider biodiversity values). Bumblebees clearly preferred the pollinator-targeted seed mixture and were positively associated with cover of Fabaceae and negatively with Apiaceae. Hoverflies consistently preferred the natural enemy mixture and were positively associated with Apiaceae. The other target groups displayed no clear responses to seed mixture type but instead were associated with local flower richness within strips. Across sites, responses of flower-visitors to sown mixture types did not depend on wildflower strip size, proportion of surrounding semi-natural habitat, or flower variables. However, all flower-visitors except butterflies increased with increasing established cover or richness of (sown) flower species across sites. Our results suggest that, although species-rich wildflower strips may benefit several species groups, maximising different objectives involves trade-offs between functional groups that prefer short- or long-corolla flowers. Furthermore, our study suggests that sowing a wildflower mixture does not necessarily result in a vegetation with the same composition as the seed mixture as species may establish poorly or not at all. Selection of flower species for seed mixtures should therefore, in addition to insect target group, take the establishment characteristics of plant species into account.  相似文献   

14.
Pollination networks are usually constructed and assessed by direct field observations which commonly assume that all flower visitors are true pollinators. However, this assumption is often invalid and the use of data based on mere visitors to flowers may lead to a misunderstanding of intrinsic pollination networks. Here, using a large dataset by both sampling floral visitors and analyzing their pollen loads, we constructed 32 networks pairs (visitation versus pollen transport) across one flowering season at four elevation sites in the Himalaya–Hengduan Mountains region. Pollen analysis was conducted to determine which flower visitors acted as potential pollinators (pollen vectors) or as cheaters (those not carrying pollen of the visited plants). We tested whether there were topological differences between visitation and pollen transport networks and whether different taxonomic groups of insect visitors differed in their ability to carry pollen of the visited plants. Our results indicated that there was a significantly higher degree of specialization at both the network and species levels in the pollen transport networks in contrast to the visitation networks. Modularity was lower but nestedness was higher in the visitation networks compared to the pollen transport networks. All the cheaters were identified as peripheral species and most of them contributed positively to the nested structure. This may explain in part the differences in modularity and nestedness between the two network types. Bees carried the highest proportion of pollen of the visited plants. This was followed by Coleoptera, other Hymenoptera and Diptera. Lepidoptera carried the lowest proportion of pollen of the visited plants. Our study shows that the construction of pollen transport networks could provide a more in‐depth understanding of plant–pollinator interactions. Moreover, it suggests that detecting and removing cheater interactions when studying the topology of other mutualistic networks might be also important.  相似文献   

15.
Many island bird species have been driven to extinction by introduced predators. Although poorly understood, these extinctions could have a 2-fold impact on bird–plant mutualisms, because island bird species can serve as both pollinators and seed dispersers. We investigated how avian translocations into a mammal-free reserve in New Zealand affected the structure of bird–flower and bird–fruit interactions. We observed bird–fruit and bird–flower interactions over a 9-year period to establish (1) the extent to which native birds are both nectivorous and frugivorous (i.e. “dual mutualists”) and (2) how avian translocations and conservation reestablished nectivory and frugivory networks. Results showed that all but one native bird species were dual mutualists. Pairwise species interaction frequencies were positively correlated between networks. However, overall levels of nectivory by each bird species were unrelated to levels of frugivory. Interaction specialization and species strength also did not differ between networks. The reintroduction of threatened and endangered bird species appeared to have restored both interaction networks, and the sequence of species recovery accelerated restorative changes. Overall results indicate that not only does the extinction of dual mutualists have a 2-fold, negative effect on mutualistic interactions with plants, they can also accelerate the recovery of ecosystem services following restoration efforts.  相似文献   

16.
Seasonal tropical forests show rhythms in reproductive activities due to water stress during dry seasons. If both seed dispersal and seed germination occur in the best environmental conditions, mortality will be minimised and forest regeneration will occur. To evaluate whether non-seasonal forests also show rhythms, for 2 years we studied the seed rain and seedling emergence in two sandy coastal forests (flooded and unflooded) in southern Brazil. In each forest, one 100 x 30-m grid was marked and inside it 30 stations comprising two seed traps (0.5 x 0.5 m each) and one plot (2 x 2 m) were established for monthly monitoring of seed rain and a seedling emergence study, respectively. Despite differences in soil moisture and incident light on the understorey, flooded and unflooded forests had similar dispersal and germination patterns. Seed rain was seasonal and bimodal (peaks at the end of the wetter season and in the less wet season) and seedling emergence was seasonal and unimodal (peaking in the wetter season). Approximately 57% of the total species number had seedling emergence 4 or more months after dispersal. Therefore, both seed dormancy and the timing of seed dispersal drive the rhythm of seedling emergence in these forests. The peak in germination occurs in the wetter season, when soil fertility is higher and other phenological events also occur. The strong seasonality in these plant communities, even in this weakly seasonal climate, suggests that factors such as daylength, plant sensitivity to small changes in the environment (e.g. water and nutrient availability) or phylogenetic constraints cause seasonal rhythms in the plants.  相似文献   

17.
1. Crab spiders (Thomisidae) indirectly affect insect flower‐visitor and flowering plant interactions by consuming and altering the behaviour of insects. 2. Although one expects insect flower‐visitors to avoid crab spiders actively, some crab spider species are known to attract flower‐visitors. Crab spiders may use UV signalling to lure potential prey to the flowers they occupy. 3. In the present study, a field experiment was conducted to examine the effects of crab spiders occupying three prairie plant species for the insect flower‐visitor community. Pollinating insects were significantly attracted to inflorescences with crab spiders compared to inflorescences without crab spiders for two plant species, and herbivorous insects were attracted to inflorescences with crab spiders for one of these plant species. The two flowering plant species with increased pollinator visitation showed increased seed weights for plants with crab spiders, indicating crab spider presence indirectly increased pollination. 4. To test the UV signalling hypothesis, inflorescences with crab spiders of one plant species were observed under both a UV‐blocking plastic and a clear plastic control. Contrary to our prediction, flower‐visitors were not more likely to land on inflorescences under the clear plastic; the UV signalling hypothesis was not supported. Other unknown explanations underlie prey attraction to inflorescences with crab spiders.  相似文献   

18.
Network models of frugivory and seed dispersal are usually static. To date, most studies on mutualistic networks assert that interaction properties such as species' degree (k) and strength (s) are strongly influenced by species abundances. We evaluated how species' degree and strength change as a function of temporal variation not only in species abundance, but also in species persistence (i.e., phenology length). In a two-year study, we collected community-wide data on seed dispersal by birds and examined the seasonal dynamics of the above-mentioned interaction properties. Our analyses revealed that species abundance is an important predictor for plant strength within a given sub-network. However, our analyses also reveal that species' degree can often be best explained by the length of fruiting phenology (for plants degree) or by the number of fruiting species (for dispersers degree), which are factors that can be decoupled from the relative abundance of the species participating in the network. Moreover, our results suggest that generalist dispersers (when total study period is considered) act as temporal generalists, with degree constrained by the number of plant species displaying fruits in each span. Along with species identity, our findings underscore the need for a temporal perspective, given that seasonality is an inherent property of many mutualistic networks.  相似文献   

19.
A central issue in ecology is the definition and identification of keystone species, i.e. species that are relatively more important than others for maintaining community structure and ecosystem functioning. Network theory has been pointed out as a robust theoretical framework to enhance the operationality of the keystone species concept. We used the concept of centrality as a proxy for a species’ relative importance for the structure of seed dispersal networks composed of either frugivorous bats or birds and their food‐plants. Centrality was expected to be determined mainly by dietary specialization, but also by body mass and geographic range size. Across 15 Neotropical datasets, only specialized frugivore species reached the highest values of centrality. Furthermore, the centrality of specialized frugivores varied widely within and among networks, whereas that of secondary and opportunistic frugivores was consistently low. A mixed‐effects model showed that centrality was best explained by dietary specialization, but not by body mass or range size. Furthermore, the relationship between centrality and those three ecological correlates differed between bat– and bird–fruit networks. Our findings suggest that dietary specialization is key to understand what makes a frugivore species a keystone in seed dispersal networks, and that taxonomic identity also plays a significant role. Specialized frugivores may play a central role in network structuring and ecosystem functioning, which has important implications for conservation and restoration.  相似文献   

20.
Dioecy allows separation of female and male functions and therefore facilitates separate co‐evolutionary pathways with pollinators and seed dispersers. In monoecious figs, pollinators' offspring develop inside the syconium by consuming some of the seeds. Flower‐stage syconia must attract pollinators, then ripen and attract seed dispersers. In dioecious figs, male (“gall”) figs produce pollen but not viable seeds, as the pollinators' larvae eat all seeds, while female (“seed”) figs produce mostly viable seeds, as pollinators cannot oviposit in the ovules. Hence, gall and seed figs are under selection to attract pollinators, but only seed figs must attract seed dispersers. We test the hypothesis that seed and gall syconia at the flower stage will be similar, while at the fruiting stage they will differ. Likewise, monoecious syconia will be more similar to seed than gall figs because they must attract both pollinators and seed dispersers. We quantified syconium characteristics for 24 dioecious and 11 monoecious fig species and recorded frugivore visits. We show that seed and gall syconia are similar at the flower stage but differ at the fruit stage; monoecious syconia are more similar to seed syconia than they are to gall syconia; seed and gall syconia differentiate through their ontogeny from flower to fruit stages; and frugivores visit more monoecious and seed syconia than gall syconia. We suggest that similarity at the flower stage likely enhances pollination in both seed and gall figs and that differentiation after pollination likely enhances attractiveness to seed dispersers of syconia containing viable seeds. These ontogenetic differences between monoecious and dioecious species provide evidence of divergent responses to selection by pollinators and seed dispersers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号