首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ju PJ  Liu R  Yang HJ  Xia YY  Feng ZW 《Cytotherapy》2012,14(5):608-620
Background aimsThe widespread NG2-expressing neural progenitors in the central nervous system (CNS) are considered to be multifunctional cells with lineage plasticity, thereby possessing the potential for treating CNS diseases. Their lineages and functional characteristics have not been completely unraveled. The present study aimed to disclose the lineage potential of clonal NG2+ populations in vitro and in vivo.MethodsTwenty-four clones from embryonic cerebral cortex-derived NG2+ cells were induced for oligodendrocyte, astrocyte, neuronal and chondrocyte differentiation. The expression profiles of neural progenitor markers chondroitin sulfate proteoglycan 4 (NG2), platelet-derived growth factor-α receptor (PDGFαR); nestin and neuronal cell surface antigen (A2B5) were subsequently sorted on cells with distinct differentiation capacity. Transplantation of these NG2+ clones into the spinal cord was used to examine their lineage potential in vivo.ResultsIn vitro differentiation analysis revealed that all the clones could differentiate into oligodendrocytes, and seven of them were bipotent (oligodendrocytes and astrocytes). Amazingly, one clone exhibited a multipotent capacity of differentiating into not only neuronal–glial lineages but also chondrocytes. These distinct subtypes were further found to exhibit phenotypic heterogeneity based on the examination of a spectrum of neural progenitor markers. Transplanted clones survived, migrated extensively and differentiated into oligodendrocytes, astrocytes or even neurons to integrate with the host spinal cord environmentConclusionsThese results suggest that NG2+ cells contain heterogeneous progenitors with distinct differentiation capacities, and the immortalized clonal NG2+ cell lines might provide a cell source for treating spinal cord disorders.  相似文献   

2.
Background aimsThe purpose of this study was to investigate therapeutic potential of green fluorescent protein expressing porcine embryonic stem (pES/GFP+) cells in A rat model of spinal cord injury (SCI).MethodsUndifferentiated pES/GFP+ cells and their neuronal differentiation derivatives were transplanted into the contused spinal cord of the Long Evans rat, and in situ development of the cells was determined by using a live animal fluorescence optical imaging system every 15 days. After pES/GFP+ cell transplantation, the behavior functional recovery of the SCI rats was assessed with the Basso, Beattie, and Bresnahan Locomotor Rating Scale (BBB scale), and the growth and differentiation of the grafted pES/GFP+ cells in the SCI rats were analyzed by immunohistochemical staining.ResultsThe relative green fluorescent protein expression level was decreased for 3 months after transplantation. The pES/GFP+-derived cells positively stained with neural specific antibodies of anti-NFL, anti-MBP, anti-SYP and anti-Tuj 1 were detected at the transplanted position. The SCI rats grafted with the D18 neuronal progenitors showed a significant functional recovery of hindlimbs and exhibited the highest BBB scale score of 15.20 ± 1.43 at week 24. The SCI rats treated with pES/GFP+-derived neural progenitors demonstrated a better functional recovery.ConclusionsTransplantation of porcine embryonic stem (pES)-derived D18 neuronal progenitors has treatment potential for SCI, and functional behavior improvement of grafted pES-derived cells in SCI model rats suggests the potential for further application of pES cells in the study of replacement medicine and functionally degenerative pathologies.  相似文献   

3.
Background aimsSeveral studies have reported functional improvement after transplantation of in vivo-derived neural progenitor cells (NPC) into injured spinal cord. However, the potential of human embryonic stem cell-derived NPC (hESC-NPC) as a tool for cell replacement of spinal cord injury (SCI) should be considered.MethodsWe report on the generation of NPC as neural-like tubes in adherent and feeder-free hESC using a defined media supplemented with growth factors, and their transplantation in collagen scaffolds in adult rats subjected to midline lateral hemisection SCI.ResultshESC-NPC were highly expressed molecular features of NPC such as Nestin, Sox1 and Pax6. Furthermore, these cells exhibited the multipotential characteristic of differentiating into neurons and glials in vitro. Implantation of xenografted hESC-NPC into the spinal cord with collagen scaffold improved the recovery of hindlimb locomotor function and sensory responses in an adult rat model of SCI. Analysis of transplanted cells showed migration toward the spinal cord and both neural and glial differentiation in vivo.ConclusionsThese findings show that transplantation of hESC-NPC in collagen scaffolds into an injured spinal cord may provide a new approach to SCI.  相似文献   

4.
Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence of multiple progenitors, which are different types of proliferating populations like Sox2+ neural progenitor, A2B5+ astrocyte/ glial progenitor, NG2+ oligodendrocyte progenitor, radial glia and Schwann cell like progenitor. We analyzed the expression levels of two common markers of dedifferentiation like msx-b and vimentin during regeneration along with some of the pluripotency associated factors to explore the possible role of these two processes. Among the several key factors related to pluripotency, pou5f1 and sox2 are upregulated during regeneration and associated with activation of neural progenitor cells. Uncovering the molecular mechanism for endogenous regeneration of adult zebrafish spinal cord would give us more clues on important targets for future therapeutic approach in mammalian spinal cord repair and regeneration.  相似文献   

5.
Adipose-derived stromal cells (ASCs) are an alternative source of stem cells for cell-based therapies of neurological disorders such as spinal cord injury (SCI). In the present study, we predifferentiated ASCs (pASCs) and compared their behavior with naïve ASCs in vitro and after transplantation into rats with a balloon-induced compression lesion. ASCs were predifferentiated into spheres before transplantation, then pASCs or ASCs were injected intraspinally 1 week after SCI. The cells’ fate and the rats’ functional outcome were assessed using behavioral, histological, and electrophysiological methods. Immunohistological analysis of pASCs in vitro revealed the expression of NCAM, NG2, S100, and p75. Quantitative RT-PCR at different intervals after neural induction showed the up-regulated expression of the glial markers NG2 and p75 and the neural precursor markers NCAM and Nestin. Patch clamp analysis of pASCs revealed three different types of membrane currents; however, none were fast activating Na+ currents indicating a mature neuronal phenotype. Significant improvement in both the pASC and ASC transplanted groups was observed in the BBB motor test. In vivo, pASCs survived better than ASCs did and interacted closely with the host tissue, wrapping host axons and oligodendrocytes. Some transplanted cells were NG2- or CD31-positive, but no neuronal markers were detected. The predifferentiation of ASCs plays a beneficial role in SCI repair by promoting the protection of denuded axons; however, functional improvements were comparable in both the groups, indicating that repair was induced mainly through paracrine mechanisms.  相似文献   

6.
Background aimsIn this study we investigated the effect of neurotrophin-3 (NT-3) and knockdown of NG2, one of the main inhibitory chondroitin sulfate proteoglycans (CSPG), in the glial scar following spinal cord injury (SCI).MethodsShort hairpin (sh) RNA were designed to target NG2 and were cloned into a lentiviral vector (LV). A LV was also constructed containing NT-3. LV expressing NT-3, shRNA to NG2 or combinations of both vectors were injected directly into contused rat spinal cords 1 week post-injury. Six weeks post-injection of LV, spinal cords were examined by histology for changes in scar size and by immunohistochemistry for changes in expression of CSPG, NT-3, astrocytes, neurons and microglia/macrophages. Motor function was assessed using the Basso, Beattie and Bresnahan (BBB) locomotor scale.ResultsAnimals that received the combination treatment of LV shNG2 and LV NT-3 showed reduced scar size. These animals also showed an increase in levels of neurons and NG2, a decrease in levels of astrocytes and a significant functional recovery as assessed using the BBB locomotor scale at 2 weeks post-treatment.ConclusionsThe improvement in locomotor recovery and decrease in scar size shows the potential of this gene therapy approach as a therapeutic treatment for SCI.  相似文献   

7.
NG2(+) cells in the adult rat spinal cord proliferate after spinal cord injury (SCI) and are postulated to differentiate into mature glia to replace some of those lost to injury. To further study these putative endogenous precursors, tissue at 3 days after SCI or from uninjured adults was dissociated, myelin partially removed and replicate cultures grown in serum-containing or serum-free medium with or without growth factors for up to 7 days in vitro (DIV). Cell yield after SCI was 5-6 times higher than from the normal adult. Most cells were OX42(+) microglia/macrophages but there were also more than twice the normal number of NG2(+) cells. Most of these coexpressed A2B5 or nestin, as would be expected for glial progenitors. Few cells initially expressed mature astrocyte (GFAP) or oligodendrocyte (CC1) markers, but more did at 7 DIV, suggesting differentiation of glial precursors in vitro. To test the hypothesis that NG2(+) cells after SCI express progenitor-like properties, we prepared free-floating sphere and single cell cultures from purified suspension of NG2(+) cells from injured spinal cord. We found that sphere cultures could be passaged in free-floating subcultures, and upon attachment the spheres clonally derived from an acutely purified single cell differentiated into oligodendrocytes and rarely astrocytes. Taken together, these data support the hypothesis that SCI stimulates proliferation of NG2(+) cells that are glial progenitor cells. Better understanding the intrinsic properties of the NG2(+) cells stimulated by SCI may permit future therapeutic manipulations to improve recovery after SCI.  相似文献   

8.
9.
Background aimsSpinal cord injury (SCI) is a medically untreatable condition for which stem cells have created hope. Pre-clinical and clinical studies have established that these cells are safe for transplantation. The dose dependency, survivability, route of administration, cell migration to injury site and effect on sensory and motor behavior in an SCI-induced paraplegic model were studied.MethodsA spinal cord contusion injury model was established in rats. Bone marrow (BM) mesenchymal stromal cells (MSC) were tagged to facilitate tracing in vivo. Two different doses (2 and 5 million cells/kg body weight) and two different routes of infusion (site of injury and lumbar puncture) were tested during and after the spinal shock period. The animals were tested post-transplantation for locomotor capacity, motor control, sensory reflex, posture and body position. Stem cell migration was observed 1 month post-transplantation in spinal cord sections.ResultsThe overall results demonstrated that transplantation of BM MSC significantly improved the locomotor and sensory behavior score in the experimental group compared with the sham control group, and these results were dose dependent. All the infused stem cells could be visualized at the site of injury and none was visualized at the injected site. This indicated that the cells had survived in vivo, were probably chemoattracted and had migrated to the lesion site.ConclusionsMSC transplanted with a lumbar puncture method migrate to the site of injury and are the most suitable for SCI healing. These cells demonstrate a dose-dependent effect and promote functional recovery when injected during or after the spinal shock period.  相似文献   

10.
Rare neural cell adhesion molecule (NCAM) positive cells have been previously described within the normal human adult kidney interstitium, speculating that they could increase in the interstitium with incipient interstitial renal fibrosis (IRF). In the present study, among 93 biopsy samples of various kidney diseases, NCAM+ interstitial cells were detected in 62.4% cases. An increased number of NCAM+ cells was significantly observed only in incipient IRF compared to normal renal tissues and advanced IRF stages (p<0.001), independently of underlying diseases (p = 0.657). All three major NCAM isoforms’ RT-PCR bands were visible either in normal or in kidneys with incipient IRF, albeit their mRNA expression levels measured by qRT-PCR were different. Applying qRT-PCR on pure NCAM+ cells population, obtained by laser capture microdissection, significant mRNA over-expression of NCAM140kD isoform was found in NCAM+ cells within incipient IRF (p = 0.004), while NCAM120kD and NCAM180kD isoforms were not changed significantly (p = 0.750; p = 0.704; respectively). Simultaneously, qRT-PCR also showed significant αSMA (p = 0.014) and SLUG (p = 0.004) mRNAs up-regulation within the NCAM+ cells of incipient IRF, as well as highly decreased matrix metalloproteinases (MMP) -2 and -9 mRNAs (p = 0.028; p = 0.036; respectively). However, using double immunofluorescence MMP-9 could still be detectable on the protein level in rare NCAM+ cells within the incipient IRF. Further characterization of NCAM+ cells by double immunofluorescent labeling revealed their association with molecules involved in fibrosis. Fibroblast growth factor receptor 1 (FGFR1) and α5β1 integrin were extensively expressed on NCAM+ cells within the incipient IRF areas, whereas human epididymis protein-4 (HE4) was found to be present in few NCAM+ cells of both normal and interstitium with incipient fibrosis. Heterogeneity of NCAM+ interstitial cells in normal and incipient IRF, concerning molecules related to fibrosis and variable expression of NCAM isoforms, could suggest diverse role of NCAM+ cells in homeostasis and in regulation of renal fibrosis in diseased kidneys.  相似文献   

11.
BACKGROUNDThe development of regenerative therapy for human spinal cord injury (SCI) is dramatically restricted by two main challenges: the need for a safe source of functionally active and reproducible neural stem cells and the need of adequate animal models for preclinical testing. Direct reprogramming of somatic cells into neuronal and glial precursors might be a promising solution to the first challenge. The use of non-human primates for preclinical studies exploring new treatment paradigms in SCI results in data with more translational relevance to human SCI.AIMTo investigate the safety and efficacy of intraspinal transplantation of directly reprogrammed neural precursor cells (drNPCs).METHODSSeven non-human primates with verified complete thoracic SCI were divided into two groups: drNPC group (n = 4) was subjected to intraspinal transplantation of 5 million drNPCs rostral and caudal to the lesion site 2 wk post injury, and lesion control (n = 3) was injected identically with the equivalent volume of vehicle.RESULTSFollow-up for 12 wk revealed that animals in the drNPC group demonstrated a significant recovery of the paralyzed hindlimb as well as recovery of somatosensory evoked potential and motor evoked potential of injured pathways. Magnetic resonance diffusion tensor imaging data confirmed the intraspinal transplantation of drNPCs did not adversely affect the morphology of the central nervous system or cerebrospinal fluid circulation. Subsequent immunohistochemical analysis showed that drNPCs maintained SOX2 expression characteristic of multipotency in the transplanted spinal cord for at least 12 wk, migrating to areas of axon growth cones.CONCLUSIONOur data demonstrated that drNPC transplantation was safe and contributed to improvement of spinal cord function after acute SCI, based on neurological status assessment and neurophysiological recovery within 12 wk after transplantation. The functional improvement described was not associated with neuronal differentiation of the allogeneic drNPCs. Instead, directed drNPCs migration to the areas of active growth cone formation may provide exosome and paracrine trophic support, thereby further supporting the regeneration processes.  相似文献   

12.
Bone marrow mesenchymal stem cell (BMSC) transplantation represents a promising repair strategy following spinal cord injury (SCI), although the therapeutic effects are minimal due to their limited neural differentiation potential. Polydatin (PD), a key component of the Chinese herb Polygonum cuspidatum, exerts significant neuroprotective effects in various central nervous system disorders and protects BMSCs against oxidative injury. However, the effect of PD on the neuronal differentiation of BMSCs, and the underlying mechanisms remain inadequately understood. In this study, we induced neuronal differentiation of BMSCs in the presence of PD, and analysed the Nrf2 signalling and neuronal differentiation markers using routine molecular assays. We also established an in vivo model of SCI and assessed the locomotor function of the mice through hindlimb movements and electrophysiological measurements. Finally, tissue regeneration was evaluated by H&E staining, Nissl staining and transmission electron microscopy. PD (30 μmol/L) markedly facilitated BMSC differentiation into neuron‐like cells by activating the Nrf2 pathway and increased the expression of neuronal markers in the transplanted BMSCs at the injured spinal cord sites. Furthermore, compared with either monotherapy, the combination of PD and BMSC transplantation promoted axonal rehabilitation, attenuated glial scar formation and promoted axonal generation across the glial scar, thereby enhancing recovery of hindlimb locomotor function. Taken together, PD augments the neuronal differentiation of BMSCs via Nrf2 activation and improves functional recovery, indicating a promising new therapeutic approach against SCI.  相似文献   

13.
Park SS  Lee YJ  Lee SH  Lee D  Choi K  Kim WH  Kweon OK  Han HJ 《Cytotherapy》2012,14(5):584-597
Background aimsPrevious studies have reported that scaffold or cell-based transplantation may improve functional recovery following spinal cord injury (SCI), but these results were based on neuronal regeneration and cell replacement. In this study, we investigated whether a combination of Matrigel and neural-induced mesenchymal stem cells (NMSC) improved hindlimb function in dogs with SCI, and what mechanisms were involved.MethodsWe pre-differentiated canine adipose-derived mesenchymal stem cells into NMSC. A total of 12 dogs subjected to SCI procedures were assigned to one of the following three transplantation treatment groups: phosphate-buffered saline (PBS); Matrigel; or Matrigel seeded with NMSC. Treatment occurred 1 week after SCI. Basso, Beattie and Bresnahan (B.B.B.) and Tarlov scores, histopathology, immunofluorescence staining and Western blot analysis were used to evaluate the treatment effects.ResultsCompared with dogs administered PBS or Matrigel alone, dogs treated with Matrigel + NMSC showed significantly better functional recovery 8 weeks after transplantation. Histology and immunochemical analysis revealed that the combination of Matrigel + NMSC reduced fibrosis from secondary injury processes and improved neuronal regeneration more than the other treatments. In addition, the combination of Matrigel + NMSC decreased the expression of inflammation and/or astrogliosis markers. Increased expressions of intracellular molecules related to neuronal extension, neuronal markers and neurotrophic factors were also found in the Matrigel + NMSC group. However, the expression of nestin as a neural stem cell marker was increased with Matrigel aloneConclusionsThe combination of Matrigel + NMSC produced beneficial effects in dogs with regard to functional recovery following SCI through enhancement of anti-inflammation, anti-astrogliosis, neuronal extension and neuronal regeneration effects.  相似文献   

14.
In the CSN including the spinal cord, NG2 proteoglycan is a marker of oligodendrocyte progenitors. To elucidate the dynamics of the endogenous neural stem (progenitor) cells in adult rats with spinal cord injury (SCI), we examined an immunohistochemical analysis of NG2, GFAP, and 3CB2, a specific marker of radial glia (RG). SD rats were divided into a SCI group (n = 25) and a sham-operated group (n = 5). In the injury group, laminectomy was performed at Th11–12 and contusive compression injury was created by applying a weight of 30 g for 10 min. Rats were sacrificed at 24 h, and 1, 4, 8 and 12 weeks post-injury. Frozen 20-μ m sections of tissue 5 and 10 mm rostral and caudal to the epicenter of injury were prepared. Immunohistochemistry was performed using antibodies against NG2, GFAP and 3CB2. At 4 weeks after injury, NG2-positive glial cells arose from below the pial surface as bipolar cells with processes extending throughout the entire white matter. NG2 expression peaked at 4 weeks after injury, showing a 7-fold increase compared to the 24 h after injury. The NG2-positive cells with processes which increased in the white matter of the spinal cord were GFAP-positive and also co-localized with 3CB2 antigen. The pattern of NG2 expression of these cells was temporally and spatially different from the pattern of NG2 expression that accumulated around the hemorrhagic and necrotic epicenter. These results suggest that NG2 positive cells which derived from subpial layer, may have some lineage to RG after SCI in adult rodents.  相似文献   

15.
Mature adipocyte-derived dedifferentiated fat cells (DFAT) have a potential to be useful as new cell-source for cell-based therapy for spinal cord injury (SCI), but the mechanisms remain unclear. The objective of this study was to examine whether DFAT-induced functional recovery is achieved through remyelination and/or glial scar reduction in a mice model of SCI. To accomplish this we subjected adult female mice (n = 22) to SCI. On the 8th day post-injury locomotor tests were performed, and the mice were randomly divided into two groups (control and DFAT). The DFAT group received stereotaxic injection of DFAT, while the controls received DMEM medium. Functional tests were conducted at repeated intervals, until the 36th day, and immunohistochemistry or staining was performed on the spinal cord sections. DFAT transplantation significantly improved locomotor function of their hindlimbs, and promoted remyelination and glial scar reduction, when compared to the controls. There were significant and positive correlations between promotion of remyelination or/and reduction of glial scar, and recovery of locomotor function. Furthermore, transplanted DFAT expressed markers for neuron, astrocyte, and oligodendrocyte, along with neurotrophic factors, within the injured spinal cord. In conclusion, DFAT-induced functional recovery in mice after SCI is probably mediated by both cell-autonomous and cell-non-autonomous effects on remyelination of the injured spinal cord.  相似文献   

16.
Demyelination contributes to the functional impairment of irradiation injured spinal cord. One potential therapeutic strategy involves replacing the myelin-forming cells. Here, we asked whether transplantation of Olig2+-GFP+-oligodendrocyte precursor cells (OPCs), which are derived from Olig2-GFP-mouse embryonic stem cells (mESCs), could enhance remyelination and functional recovery after spinal cord irradiation injury. We differentiated Olig2-GFP-mESCs into purified Olig2+-GFP+-OPCs and transplanted them into the rats’ cervical 4–5 dorsal spinal cord level at 4 months after irradiation injury. Eight weeks after transplantation, the Olig2+-GFP+-OPCs survived and integrated into the injured spinal cord. Immunofluorescence analysis showed that the grafted Olig2+-GFP+-OPCs primarily differentiated into adenomatous polyposis coli (APC+) oligodendrocytes (54.6±10.5%). The staining with luxol fast blue, hematoxylin & eosin (LFB/H&E) and electron microscopy demonstrated that the engrafted Olig2+-GFP+-OPCs attenuated the demyelination resulted from the irradiation. More importantly, the recovery of forelimb locomotor function was enhanced in animals receiving grafts of Olig2+-GFP+-OPCs. We concluded that OPC transplantation is a feasible therapy to repair the irradiated lesions in the central nervous system (CNS).  相似文献   

17.
Stem cell transplantation has shown promising regenerative effects against neural injury, and photobiomodulation (PBM) can aid tissue recovery. This study aims to evaluate the therapeutic effect of human umbilical cord mesenchymal stem cells (hUCMSCs) and laser alone or combined on spinal cord injury (SCI). The animals were divided into SCI, hUCMSCs, laser treatment (LASER) and combination treatment (hUCMSCs + LASER) groups. Cell‐enriched grafts of hUCMSCs (1 × 106 cells/ml) were injected at the site of antecedent trauma in SCI model rats. A 2 cm2 damaged area was irradiated with 630 nm laser at 100 mW/cm2 power for 20 min. Locomotion was evaluated using Basso–Beattie–Bresnahan (BBB) scores, and neurofilament repair were monitored by histological staining and diffusion tensor imaging (DTI). First, after SCI, the motor function of each group was restored with different degrees, the combination treatment significantly increased the BBB scores compared to either monotherapy. In addition, Nissl bodies were more numerous, and the nerve fibers were longer and thicker in the combination treatment group. Consistent with this, the in situ expression of NF‐200 and glial fibrillary acidic protein in the damaged area was the highest in the combination treatment group. Finally, DTI showed that the combination therapy optimally improved neurofilament structure and arrangement. These results may show that the combination of PBM and hUCMSCs transplantation is a feasible strategy for reducing secondary damage and promoting functional recovery following SCI.  相似文献   

18.
Background aimsBone marrow and subcutaneous adipose tissue are both considered prospective sources of mesenchymal stromal cells (MSCs), which can be used in cell therapy for spinal cord injury (SCI). The present study investigated whether human adipose tissue-derived mesenchymal stromal cells (hADSCs) transplanted into a rat model of SCI would lead to similar or improved neurologic effects compared with human bone marrow-derived mesenchymal stromal cells (hBMSCs).MethodshADSCs and hBMSCs were isolated from five adult donors. These MSCs were characterized using flow cytometry, immunocytochemistry, real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Immediately after SCI, 2 × 105 hBMSCs or hADSCs were injected into the injured spinal cord. Locomotor function, cell survival and differentiation, spinal cord tissue morphology and brain-derived neurotrophic factor (BDNF) expression were compared between groups.ResultshADSCs and hBMSCs showed similar surface protein expression, and hADSCs showed higher proliferative activity with higher expression of vascular endothelial cell growth factor, hepatocyte growth factor and BDNF than hBMSCs. After transplant, both hADSCs and hBMSCs migrated within the injured spinal cord without differentiating into glial or neuronal elements. Administration of hADSCs was associated with marked changes in the SCI environment, with significant increases in BDNF levels. This was simultaneously associated with increased angiogenesis, preserved axons, decreased numbers of ED1-positive macrophages and reduced lesion cavity formation. These changes were accompanied by improved functional recovery.ConclusionsThe present results suggest that hADSCs would be more appropriate for transplant to treat SCI than hBMSCs.  相似文献   

19.
Presently, few treatments for spinal cord injury (SCI) are available and none have facilitated neural regeneration and/or significant functional improvement. Agmatine (Agm), a guanidinium compound formed from decarboxylation of L-arginine by arginine decarboxylase, is a neurotransmitter/neuromodulator and been reported to exert neuroprotective effects in central nervous system injury models including SCI. The purpose of this study was to demonstrate the multifaceted effects of Agm on functional recovery and remyelinating events following SCI. Compression SCI in mice was produced by placing a 15 g/mm2 weight for 1 min at thoracic vertebra (Th) 9 segment. Mice that received an intraperitoneal (i.p.) injection of Agm (100 mg/kg/day) within 1 hour after SCI until 35 days showed improvement in locomotor recovery and bladder function. Emphasis was made on the analysis of remyelination events, neuronal cell preservation and ablation of glial scar area following SCI. Agm treatment significantly inhibited the demyelination events, neuronal loss and glial scar around the lesion site. In light of recent findings that expressions of bone morphogenetic proteins (BMPs) are modulated in the neuronal and glial cell population after SCI, we hypothesized whether Agm could modulate BMP- 2/4/7 expressions in neurons, astrocytes, oligodendrocytes and play key role in promoting the neuronal and glial cell survival in the injured spinal cord. The results from computer assisted stereological toolbox analysis (CAST) demonstrate that Agm treatment dramatically increased BMP- 2/7 expressions in neurons and oligodendrocytes. On the other hand, BMP- 4 expressions were significantly decreased in astrocytes and oligodendrocytes around the lesion site. Together, our results reveal that Agm treatment improved neurological and histological outcomes, induced oligodendrogenesis, protected neurons, and decreased glial scar formation through modulating the BMP- 2/4/7 expressions following SCI.  相似文献   

20.
Accordingly to its known function in corticospinal tract (CST) developmental growth, previous reports have shown an inhibitory role of Wnt5a in CST regeneration after spinal cord injury (SCI). Interestingly, it has been subsequently demonstrated that Wnt5a also modulates the developmental growth of non-CST axons and that different Wnt5a receptors are expressed in neurons, oligodendrocytes, NG2+ glial precursors and reactive microglia/macrophages and astrocytes after SCI. However, the role of Wnt5a in the response of these cell types, in the regeneration of non-CST axons and in functional recovery after SCI is currently unknown. To evaluate this, rats were subjected to spinal cord contusion and injected with a lentiviral vector generated to overexpress Wnt5a. Histological analyses were performed in spinal cord sections processed for the visualization of myelin, oligodendrocytes, neurons, microglia/macrophages, astrocytes, NG2+ glial precursors and serotonergic axons. Motor and bladder function recovery were also assessed. Further advancing our knowledge on the role of Wnt5a in SCI, we found that, besides its previously reported functions, Wnt5a overexpression elicits a reduction on neuronal cell density, the accumulation of NG2+ glial precursors and the descending serotonergic innervation in the affected areas, along with impairment of motor and bladder function recovery after SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号