首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulting astrocytes differed in expression of multiple proteins thought to either promote or inhibit central nervous system homeostasis and regeneration. When transplanted into acute transection injuries of the adult rat spinal cord, astrocytes generated by exposing human glial precursor cells to bone morphogenetic protein promoted significant recovery of volitional foot placement, axonal growth and notably robust increases in neuronal survival in multiple spinal cord laminae. In marked contrast, human glial precursor cells and astrocytes generated from these cells by exposure to ciliary neurotrophic factor both failed to promote significant behavioral recovery or similarly robust neuronal survival and support of axon growth at sites of injury. Our studies thus demonstrate functional differences between human astrocyte populations and suggest that pre-differentiation of precursor cells into a specific astrocyte subtype is required to optimize astrocyte replacement therapies. To our knowledge, this study is the first to show functional differences in ability to promote repair of the injured adult central nervous system between two distinct subtypes of human astrocytes derived from a common fetal glial precursor population. These findings are consistent with our previous studies of transplanting specific subtypes of rodent glial precursor derived astrocytes into sites of spinal cord injury, and indicate a remarkable conservation from rat to human of functional differences between astrocyte subtypes. In addition, our studies provide a specific population of human astrocytes that appears to be particularly suitable for further development towards clinical application in treating the traumatically injured or diseased human central nervous system.  相似文献   

2.
Both embryonic and adult central nervous system have been shown to contain multipotent neural stem cells, but it is not yet clear whether they consist of a single or distinct populations of neural precursors. Since embryonic human neural precursors, particularly in the spinal cord, have not been extensively characterized, we have studied their behaviour at different days of gestation and in different culture conditions. Depending on dissociation and culture conditions, neurospheres which contain nestin- and vimentin-positive or only vimentin-positive neural precursors can be isolated. Whereas the former can be isolated only at early developmental stages, the latter appear to be present at all the stages examined, between 45 and 89 days of gestation. Furthermore, comparison of the effect of FGF, EGF and the two factors in combination on colony formation shows an additive effect of the two growth factors, indicating the existence of more than one type of neural precursor. Overall our results suggest that the human spinal cord contains distinct and dynamic populations of neural precursors which are developmentally regulated.  相似文献   

3.
Murine embryonic stem cells were induced to differentiate into neural lineage cells by exposure to retinoic acid. Approximately one million cells were transplanted into the lesion site in the spinal cords of adult rats which had received moderate contusion injuries 9 days previously. One group received transplants of cells genetically modified to over-express bcl-2, which codes for an anti-apoptotic protein. A second group received transplants of the wild-type ES cells from which the bcl-2 line was developed. In the untransplanted control group, only medium was injected. Locomotor abilities were assessed using the Basso, Beattie and Bresnahan (BBB) rating scale for 6 weeks. There was no incremental locomotor improvement in either transplant group when compared to control over the survival period. Morbidity and mortality were significantly more prevalent in the transplant groups than in controls. At the conclusion of the 6-week survival period, the spinal cords were examined. Two of six cords from the bcl-2 group and one of 12 cords from the wild-type group showed gross evidence of abnormal growths at the site of transplantation. No similar growth was seen in the control. Pathological examination of the abnormal cords showed very large numbers of undifferentiated cells proliferating at the injection site and extending up to 1.5?cm rostrally and caudally. These results suggest that transplanting KD3 ES cells, or apoptosis-resistant cells derived from the KD3 line, into the injured spinal cord does not improve locomotor recovery and can lead to tumor-like growth of cells, accompanied by increased debilitation, morbidity and mortality.  相似文献   

4.
Murine embryonic stem cells were induced to differentiate into neural lineage cells by exposure to retinoic acid. Approximately one million cells were transplanted into the lesion site in the spinal cords of adult rats which had received moderate contusion injuries 9 days previously. One group received transplants of cells genetically modified to over-express bcl-2, which codes for an anti-apoptotic protein. A second group received transplants of the wild-type ES cells from which the bcl-2 line was developed. In the untransplanted control group, only medium was injected. Locomotor abilities were assessed using the Basso, Beattie and Bresnahan (BBB) rating scale for 6 weeks. There was no incremental locomotor improvement in either transplant group when compared to control over the survival period. Morbidity and mortality were significantly more prevalent in the transplant groups than in controls. At the conclusion of the 6-week survival period, the spinal cords were examined. Two of six cords from the bcl-2 group and one of 12 cords from the wild-type group showed gross evidence of abnormal growths at the site of transplantation. No similar growth was seen in the control. Pathological examination of the abnormal cords showed very large numbers of undifferentiated cells proliferating at the injection site and extending up to 1.5 cm rostrally and caudally. These results suggest that transplanting KD3 ES cells, or apoptosis-resistant cells derived from the KD3 line, into the injured spinal cord does not improve locomotor recovery and can lead to tumor-like growth of cells, accompanied by increased debilitation, morbidity and mortality.  相似文献   

5.
6.
Transplantation of neural stem cells into the spinal cord after injury   总被引:32,自引:0,他引:32  
Thanks to advances in the stem cell biology of the central nervous system (CNS), the previously inconceivable regeneration of the damaged CNS is approaching reality. The availability of signals to induce the appropriate differentiation of the transplanted and/or endogenous neural stem cells (NSCs) as well as the timing of the transplantation are important for successful functional recovery of the damaged CNS. Because the immediately post-traumatic microenvironment of the spinal cord is in an acute inflammatory stage, it is not favorable for the survival and differentiation of NSC transplants. On the other hand, in the chronic stage after injury, glial scars form in the injured site that inhibit the regeneration of neuronal axons. Thus, we believe that the optimal timing of transplantation is 1-2 weeks after injury.  相似文献   

7.
In recent years, a large number of studies have reported that neuroinflammation aggravates the occurrence of secondary injury after spinal cord injury. Gramine (GM), a natural indole alkaloid, possesses various pharmacological properties; however, the anti-inflammation property remains unclear. In our study, Gramine was investigated in vitro and in vivo to explore the neuroprotection effects. In vitro experiment, our results suggest that Gramine treatment can inhibit release of pro-inflammatory mediators. Moreover, Gramine prevented apoptosis of PC12 cells which was caused by activated HAPI microglia, and the inflammatory secretion ability of microglia was inhibited by Gramine through NF-κB pathway. The in vivo experiment is that 80 mg/kg Gramine was injected orthotopically to rats after spinal cord injury (SCI). Behavioural and histological analyses demonstrated that Gramine treatment may alleviate microglia activation and then boost recovery of motor function after SCI. Overall, our research has demonstrated that Gramine exerts suppressed microglia activation and promotes motor functional recovery after SCI through NF-κB pathway, which may put forward the prospect of clinical treatment of inflammation-related central nervous diseases.  相似文献   

8.
The clinical outcome of spinal cord injury (SCI) depends in part on the extent of secondary damage, to which apoptosis contributes. The CD95 and tumor necrosis factor (TNF) ligand/receptor systems play an essential role in various apoptotic mechanisms. To determine the involvement of these ligands in SCI-induced damage, we neutralized the activity of CD95 ligand (CD95L) and/or TNF in spinal cord-injured mice. Therapeutic neutralization of CD95L, but not of TNF, significantly decreased apoptotic cell death after SCI. Mice treated with CD95L-specific antibodies were capable of initiating active hind-limb movements several weeks after injury. The improvement in locomotor performance was mirrored by an increase in regenerating fibers and upregulation of growth-associated protein-43 (GAP-43). Thus, neutralization of CD95L promoted axonal regeneration and functional improvement in injured adult animals. This therapeutic strategy may constitute a potent future treatment for human spinal injury.  相似文献   

9.
Many therapeutic interventions for spinal cord injury (SCI) using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF), which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF) intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.  相似文献   

10.
11.
Mature adipocyte-derived dedifferentiated fat cells (DFAT) have a potential to be useful as new cell-source for cell-based therapy for spinal cord injury (SCI), but the mechanisms remain unclear. The objective of this study was to examine whether DFAT-induced functional recovery is achieved through remyelination and/or glial scar reduction in a mice model of SCI. To accomplish this we subjected adult female mice (n = 22) to SCI. On the 8th day post-injury locomotor tests were performed, and the mice were randomly divided into two groups (control and DFAT). The DFAT group received stereotaxic injection of DFAT, while the controls received DMEM medium. Functional tests were conducted at repeated intervals, until the 36th day, and immunohistochemistry or staining was performed on the spinal cord sections. DFAT transplantation significantly improved locomotor function of their hindlimbs, and promoted remyelination and glial scar reduction, when compared to the controls. There were significant and positive correlations between promotion of remyelination or/and reduction of glial scar, and recovery of locomotor function. Furthermore, transplanted DFAT expressed markers for neuron, astrocyte, and oligodendrocyte, along with neurotrophic factors, within the injured spinal cord. In conclusion, DFAT-induced functional recovery in mice after SCI is probably mediated by both cell-autonomous and cell-non-autonomous effects on remyelination of the injured spinal cord.  相似文献   

12.
Axons in the adult mammalian central nervous system (CNS) exhibit little regeneration after injury. It has been suggested that several axonal growth inhibitors prevent CNS axonal regeneration. Recent research has demonstrated that semaphorin3A (Sema3A) is one of the major inhibitors of axonal regeneration. We identified a strong and selective inhibitor of Sema3A, SM-216289, from the fermentation broth of a fungal strain. To examine the effect of SM-216289 in vivo, we transected the spinal cord of adult rats and administered SM-216289 into the lesion site for 4 weeks. Rats treated with SM-216289 showed substantially enhanced regeneration and/or preservation of injured axons, robust Schwann cell-mediated myelination and axonal regeneration in the lesion site, appreciable decreases in apoptotic cell number and marked enhancement of angiogenesis, resulting in considerably better functional recovery. Thus, Sema3A is essential for the inhibition of axonal regeneration and other regenerative responses after spinal cord injury (SCI). These results support the possibility of using Sema3A inhibitors in the treatment of human SCI.  相似文献   

13.
Background aimsSeveral studies have reported functional improvement after transplantation of in vivo-derived neural progenitor cells (NPC) into injured spinal cord. However, the potential of human embryonic stem cell-derived NPC (hESC-NPC) as a tool for cell replacement of spinal cord injury (SCI) should be considered.MethodsWe report on the generation of NPC as neural-like tubes in adherent and feeder-free hESC using a defined media supplemented with growth factors, and their transplantation in collagen scaffolds in adult rats subjected to midline lateral hemisection SCI.ResultshESC-NPC were highly expressed molecular features of NPC such as Nestin, Sox1 and Pax6. Furthermore, these cells exhibited the multipotential characteristic of differentiating into neurons and glials in vitro. Implantation of xenografted hESC-NPC into the spinal cord with collagen scaffold improved the recovery of hindlimb locomotor function and sensory responses in an adult rat model of SCI. Analysis of transplanted cells showed migration toward the spinal cord and both neural and glial differentiation in vivo.ConclusionsThese findings show that transplantation of hESC-NPC in collagen scaffolds into an injured spinal cord may provide a new approach to SCI.  相似文献   

14.
Cellular abnormalities are not limited to motor neurons in amyotrophic lateral sclerosis (ALS). There are numerous observations of astrocyte dysfunction in both humans with ALS and in SOD1(G93A) rodents, a widely studied ALS model. The present study therapeutically targeted astrocyte replacement in this model via transplantation of human Glial-Restricted Progenitors (hGRPs), lineage-restricted progenitors derived from human fetal neural tissue. Our previous findings demonstrated that transplantation of rodent-derived GRPs into cervical spinal cord ventral gray matter (in order to target therapy to diaphragmatic function) resulted in therapeutic efficacy in the SOD1(G93A) rat. Those findings demonstrated the feasibility and efficacy of transplantation-based astrocyte replacement for ALS, and also show that targeted multi-segmental cell delivery to cervical spinal cord is a promising therapeutic strategy, particularly because of its relevance to addressing respiratory compromise associated with ALS. The present study investigated the safety and in vivo survival, distribution, differentiation, and potential efficacy of hGRPs in the SOD1(G93A) mouse. hGRP transplants robustly survived and migrated in both gray and white matter and differentiated into astrocytes in SOD1(G93A) mice spinal cord, despite ongoing disease progression. However, cervical spinal cord transplants did not result in motor neuron protection or any therapeutic benefits on functional outcome measures. This study provides an in vivo characterization of this glial progenitor cell and provides a foundation for understanding their capacity for survival, integration within host tissues, differentiation into glial subtypes, migration, and lack of toxicity or tumor formation.  相似文献   

15.
The role of T lymphocytes in central nervous system (CNS) injuries is controversial, with inconsistent results reported concerning the effects of T-lymphocyte transfer on spinal cord injury (SCI). Here, we demonstrate that a specific T-lymphocyte subset enhances functional recovery after contusion SCI in mice. Intraperitoneal adoptive transfer of type 1 helper T (Th1)-conditioned cells 4 days after SCI promoted recovery of locomotor activity and tactile sensation and concomitantly induced regrowth of corticospinal tract and serotonergic fibers. However, neither type 2 helper T (Th2)- nor IL-17-producing helper T (Th17)-conditioned cells had such effects. Activation of microglia and macrophages were observed in the spinal cords of Th1-transfered mice after SCI. Specifically, M2 subtype of microglia/macrophages was upregulated after Th1 cell transfer. Neutralization of interleukin 10 secreted by Th1-conditioned cells significantly attenuated the beneficial effects by Th1-conditioned lymphocytes after SCI. We also found that Th1-conditioned lymphocytes secreted significantly higher levels of neurotrophic factor, neurotrophin 3 (NT-3), than Th2- or Th17-conditioned cells. Thus, adoptive transfer of pro-inflammatory Th1-conditioned cells has neuroprotective effects after SCI, with prospective implications in immunomodulatory treatment of CNS injury.  相似文献   

16.
Spinal cord injury (SCI), as a severe disease with no effective therapeutic measures, has always been a hot topic for scientists. Bone morphogenetic protein 7 (BMP7), as a multifunctional cytokine, has been reported to exert protective effects on the nervous system. The present study aimed to investigate the neuroprotective effect and the potential mechanisms of BMP7 on rats that suffered SCI. Rat models of SCI were established by the modified Allen's method. Adeno-associated virus (AAV) was injected at T9 immediately before SCI to overexpress BMP7. Results showed that the expression of BMP7 decreased in the injured spinal cords that were at the same time demyelinated. AAV-BMP7 partly reversed oligodendrocyte (OL) loss, and it was beneficial to maintain the normal structure of myelin. The intervention group showed an increase in the number of axons and Basso-Beattie-Bresnahan scores. Moreover, double-labelled immunofluorescence images indicated p-Smad1/5/9 and p-STAT3 in OLs induced by BMP7 might be involved in the protective effects of BMP7. These findings suggest that BMP7 may be a feasible therapy for SCI to reduce demyelination and promote functional recovery.  相似文献   

17.
Meng XT  Li C  Dong ZY  Liu JM  Li W  Liu Y  Xue H  Chen D 《Cell biology international》2008,32(12):1546-1558
We have previously demonstrated that amniotic epithelial cells (AECs) can enhance survival and neural differentiation of neural stem cells (NSCs) when co-cultured in basal media. In addition, the presence of basic fibroblast growth factor (bFGF) enhances this AEC function. The aim of the present study was to extend those findings and investigate whether AECs modified with the bFGF gene will also enhance NSCs survival and neural differentiation in vivo and promote repair of the injured spinal cord. Female Wistar rats were used for a contusive spinal cord injury (SCI) model. Contusive SCIs were induced using a weight-drop device at levels T9-T11. Seven days following contusion, rats received grafts of NSCs only, NSCs with AECs/pLEGFP-hbFGF, or NSCs with AECs/pLEGFP-C1 into the injured region. Significant locomotor improvement was observed in the NSCs/AECs co-graft group beginning at 3 weeks compared with the NSCs or NaCl only groups. These results were confirmed and extended in an electrophysiological analysis. An immunohistological analysis revealed that AECs/pLEGFP-hbFGF promoted the survival (vs NaCl group: 194+/-9.17 vs 103.6+/-13.05) and neural differentiation (vs NaCl group: 14.24+/-1.11 vs 7+/-0.63) of co-transplanted NSCs. We also confirmed that AECs could promote the survival of host neurons. These results suggest that AECs/pLEGFP-hbFGF improve the NSCs survival and differentiation microenvironment and may be useful as a source of sustained trophic supported to improve NSCs differentiation into neurons in vivo. These findings suggest that a cograft of AECs/pLEGFP-hbFGF and NSCs may have benefits for SCI.  相似文献   

18.
The aim of the study was the assessment of the effects of adult neural stem cell (NSC) transplantation in a mouse model of spinal cord injury (SCI). The contusion injury was performed by means of the Infinite Horizon Device to allow the generation of reproducible traumatic lesion to the cord. We administered green fluorescent-labeled (GFP-)NSCs either by intravenous (i.v.) injection or by direct transplantation into the spinal cord (intraspinal route). We report that NSCs significantly improved recovery of hind limb function and greatly attenuated secondary degeneration. The i.v. route of NSC administration yielded better recovery than the intraspinal route of administration. About 2% of total i.v.-administered NSCs homed to the spinal cord injury site, and survived almost undifferentiated; thus the positive effect of NSC treatment cannot be ascribed to damaged tissue substitution. The NSCs homing to the injury site triggered, within 48 h, a large increase of the expression of neurotrophic factors and chemokines. One wk after transplantation, exogenous GFP-NSCs still retained their proliferation potential and produced neurospheres when recovered from the lesion site and cultured in vitro. At a later time, GFP-NSC were phagocytated by macrophages. We suggest that the process of triggering the recovery of function might be strongly related to the viability of GFP-NSC, still capable ex vivo of producing neurospheres, and their ability to modify the lesion environment in a positive fashion.  相似文献   

19.
《Developmental cell》2022,57(4):440-450.e7
  1. Download : Download high-res image (188KB)
  2. Download : Download full-size image
  相似文献   

20.
Repulsive guidance molecule (RGM) is a protein implicated in both axonal guidance and neural tube closure. We report RGMa as a potent inhibitor of axon regeneration in the adult central nervous system (CNS). RGMa inhibits mammalian CNS neurite outgrowth by a mechanism dependent on the activation of the RhoA-Rho kinase pathway. RGMa expression is observed in oligodendrocytes, myelinated fibers, and neurons of the adult rat spinal cord and is induced around the injury site after spinal cord injury. We developed an antibody to RGMa that efficiently blocks the effect of RGMa in vitro. Intrathecal administration of the antibody to rats with thoracic spinal cord hemisection results in significant axonal growth of the corticospinal tract and improves functional recovery. Thus, RGMa plays an important role in limiting axonal regeneration after CNS injury and the RGMa antibody offers a possible therapeutic agent in clinical conditions characterized by a failure of CNS regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号