首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Arbuscular mycorrhizal (AM) fungi are mainly thought to facilitate phosphorus uptake in plants, but they can also perform several other functions that are equally beneficial. Our recent study sheds light on the factors determining one such function, enhanced plant protection from root pathogens. Root infection by the fungal pathogen Fusarium oxysporum was determined by both plant susceptibility and the ability of an AM fungal partner to suppress the pathogen. The non-susceptible plant species (Allium cepa) had limited F. oxysporum infection even without AM fungi. In contrast, the susceptible plant species (Setaria glauca) was heavily infected and only AM fungi in the family Glomeraceae limited pathogen abundance. Plant susceptibility to pathogens was likely determined by contrasting root architectures between plants, with the simple rooted plant (A. cepa) presenting fewer sites for infection. AM fungal colonization, however, was not limited in the same way in part because plants with fewer, simple roots are more mycorrhizal dependent. Protection only by Glomus species also indicates that whatever the mechanism(s) of this function, it responds to AM fungal families differently. While poor at pathogen protection, AM fungal species in the family Gigasporaceae most benefited the growth of the simple rooted plant species. Our research indicates that plant trait differences, such as root architecture can determine how important each mycorrhizal function is to plant growth but the ability to provide these functions differs among AM fungi.Key words: arbuscular mycorrhizal fungi, Fusarium oxysporum, root architecture, pathogen protection, multi-functionalityArbuscular mycorrhizas (AM) represent the oldest and most widespread symbiosis with land plants.1 Most mycorrhizal research has focused on the ability of AM fungi to facilitate nutrient uptake, particularly phosphorus.2 Although researchers recognize that AM fungi are multi-functional,3 it is not clear what factors determine which function an AM fungus performs or its relative importance to the plant.4 Newsham et al. (1995)3 hypothesized that AM function is based on root architecture: plants with simple rooting systems are dependent on mycorrhizas for nutrient uptake, while those with complex root systems are less dependent on mycorrhizas for nutrient uptake, but are more susceptible to root pathogens because of increased numbers of infections sites.3 These two functions, phosphorus uptake and enhanced pathogen protection from mycorrhizas also depend on the identity of the fungus. Arbuscular mycorrhizal fungi in the family Gigasporaceae are more effective at enhancing plant phosphorus, while AM fungi in the Glomeraceae better protect plants from root pathogens.5Our results support both plant and fungal control of a common pathogen, Fusarium oxysporum, and the interaction between these two factors ultimately determined the level of pathogen infection and plant mycorrhizal benefit. We inoculated two plant species that have contrasting root architectures with one of six AM fungal species from two families (or no AM fungi). After five months of growth, plants were inoculated with F. oxysporum, grown for another month and then harvested. All plant seeds and fungi were collected in a local old field community.6 Allium cepa (garden onion) was not susceptible to F. oxysporum likely because it has only a few adventitious roots below the main bulb that do not present many sites for infection. In contrast, Setaria glauca (yellow foxtail) was heavily infected by F. oxysporum and has fine roots with increased numbers of branching points and lateral meristems where fungi can colonize.7 For the susceptible plant (S. glauca), AM fungal species from the family Glomeraceae were effective at reducing pathogen abundance while species from the Gigasporaceae were not. Forming a symbiosis with a Glomus species resulted in S. glauca plants that were as large as control plants. AM fungal species from the family Gigaspoaceae were more beneficial to growth of the simple rooted A. cepa, which had fewer roots to take up soil nutrients.Reduced rooting structures may limit pathogen infection sites, but AM fungal colonization was not limited in the same way and may actually alter plant root architecture. While the simple rooted A. cepa had limited pathogen susceptibility, it had twice the AM fungal colonization of the complex rooted S. glauca. Because the simple rooted plant has a greater dependence on mycorrhizas,8 it likely transmits chemical signals to rapidly initiate mycorrhizal formation,9 but then may have less control on the spread of AM fungi within the root. In contrast, S. glauca is more susceptible to fungal pathogens and may be less mycorrhizal dependent in nature.10 As a result, S. glauca may treat all colonizing root fungi as potential parasites. Colonization by AM fungi from the Glomeraceae was also much greater than those in the Gigasporaceae due to differences in fungal life history strategy between these families.11,12 AM fungal colonization can reduce root branching in plants and alter plant allocation to roots, thereby increasing mycorrhizal dependence for nutrients10,13 and potentially reducing pathogen infection sites. Mycorrhizal induced changes to plant root architecture may therefore reinforce current mycorrhizal associations and alter future fungal colonization attempts.14 An important next step is to test if AM fungal families (or species) alter plant root architecture in different ways and the degree to which these effects depend on colonization timing and the plant host.Our study did not isolate the particular mechanism by which AM fungi control pathogens, but this mechanism clearly differentiates between AM fungal families. AM fungi can control pathogens through several mechanisms including direct competition for colonization sites, indirect initiation of plant defensive responses or altering other rhizosphere biota.15 Although these AM fungal families differ in the intensity of root colonization,11 percentage of root length colonized by an AM fungus is a poor predictor of pathogen limitation compared to family identity,12,16 suggesting that direct competition for space is unlikely. AM fungi share many cell surface molecules with pathogenic fungi like Fusarium.17 These molecules can act as signals that initiate plant production of defensive compounds such as phytoalexins, phenolics and other compounds.18 While AM fungi appear to evade these defenses, only AM fungal species in the family Glomeraceae would have elicited plant responses which altered future infection by F. oxysporum. AM fungi in the Gigasporaceae may differ more from F. oxysporum in their chemical signals or not colonize roots sufficiently to induce a sustained, system-wide plant response. In addition, many rhizosphere related microbes are antagonistic to pathogenic fungi15 and may differ in their response to the different AM fungal families.19 Because rhizosphere microbes also differ among plant species, plant pathogen protection may be influenced by multiple ecological interactions that determine the specific cases when mycorrhizal pathogen protection occurs. To distinguish between these mechanisms, future experiments could test whether biochemical similarity or ecological similarity (especially with other soil biota) between an AM fungus and fungal pathogen can predict mycorrhizal induced pathogen protection.Plant and fungal identity clearly affect AM fungal function and benefit, but to accurately use AM fungi in agriculture and restoration20,21 we must clearly understand how functional mechanisms differ. Different mycorrhizal functions may be based on common plant traits like root architecture, but ecology, colonization timing and environment may alter the specific function AM fungi provide and its importance to plants. While it may be useful to establish greenhouse rules about which fungal species perform specific mycorrhizal functions, predicting their role in more complex systems relies on understanding if other factors will enhance or negate these effects. Most AM fungal species vary in their ability to perform each function and these can be locally adapted to limiting soil nutrients.22 In plants, there is also a range to which specific mycorrhizal functions may benefit plant fitness, and these responses are based on both plant traits (which change throughout a plant''s life cycle) and the local environment.23,24 Given this variation, it is critical to understand if AM fungi can respond to cues from the plant or the environment to identify what factors limit plant growth and whether a the most effective AM fungus shows a greater response.  相似文献   

5.
6.
7.
8.
9.
The significance of cell wall invertase (cwINV) for plant defense was investigated by comparing wild type (wt) tobacco Nicotiana tabacum L. Samsun NN (SNN) with plants with RNA interference-mediated repression of cwINV (SNN::cwINV) during the interaction with the oomycetic phytopathogen Phytophthora nicotianae. We have previously shown that the transgenic plants developed normally under standard growth conditions, but exhibited weaker defense reactions in infected source leaves and were less tolerant to the pathogen. Here, we show that repression of cwINV was not accompanied by any compensatory activities of intracellular sucrose-cleaving enzymes such as vacuolar and alkaline/neutral invertases or sucrose synthase (SUSY), neither in uninfected controls nor during infection. In wt source leaves vacuolar invertase did not respond to infection, and the activity of alkaline/neutral invertases increased only slightly. SUSY however, was distinctly stimulated, in parallel to enhanced cwINV. In SNN::cwINV SUSY-activation was largely repressed upon infection. SUSY may serve to allocate sucrose into callose deposition and other carbohydrate-consuming defense reactions. Its activity, however, seems to be directly affected by cwINV and the related reflux of carbohydrates from the apoplast into the mesophyll cells.Key words: cell wall invertase, apoplastic invertase, alkaline invertase, neutral invertase, sucrose synthase, plant defense, Nicotiana tabacum, Phytophthora nicotianaePlant defense against pathogens is costly in terms of energy and carbohydrates.1,2 Sucrose (Suc) and its cleavage products glucose and fructose are central molecules for metabolism and sensing in higher plants (reviewed in refs. 3 and 4). Rapid mobilization of these carbohydrates seems to be an important factor determining the outcome of plant-pathogen interactions. In particular in source cells reprogramming of the carbon flow from Suc to hexoses may be a crucial process during defense.1,2There are two alternative routes of sucrolytic carbohydrate mobilization. One route is reversible and involves an uridine 5′-diphosphate (UDP)-dependent cleavage catalyzed by sucrose synthase (SUSY). Its activity is limited by the concentrations of Suc and UDP in the cytosol, as the affinity of the enzyme to its substrate is relatively low (Km for Suc 40–200 mM). The other route is the irreversible, hydrolytic cleavage by invertases (INVs), which exhibit high affinity to Suc (Km 7–15 mM).5Plants possess three different types of INV isoenzymes, which can be distinguished by their solubility, subcellular localization, pH-optima and isoelectric point. Usually, they are subdivided into cell wall (cwINV), vacuolar (vacINV), and alkaline/neutral (a/nINVs) INVs.cwINV, also referred to as extracellular or apoplastic INV, is characterized by a low pH-optimum (pH 3.5–5.0) and usually ionically bound to the cell wall. It is the key enzyme of the apoplastic phloem unloading pathway and plays a crucial role in the regulation of source/sink relations (reviewed in refs. 3, 68). A specific role during plant defense has been suggested, based on observations that cwINV is often induced during various plant-pathogen interactions, and the finding that overexpression of a yeast INV in the apoplast increases plant resistance.6,810 It was shown, that a rapid induction of cwINV is, indeed, one of the early defense-related reactions in resistant tobacco source leaves after infection with Phytophthora nicotianae (P. nicotianae).11 Finally, the whole infection area in wt leaves was covered with hypersensitive lesions, indicating that all cells had undergone hypersensitive cell death (Fig. 1A).1,11 When the activity of cwINV was repressed by an RNAi construct, defense-related processes were impaired, and the infection site exhibited only small spots of hypersensitive lesions. Finally, the pathogen was able to sporulate, indicating a reduced resistance of these transgenic plants (Fig. 1A).1Open in a separate windowFigure 1Defense-induced changes in the activity of intracellular sucrose-cleaving enzymes and their contribution to defense. (A) The repression of cwINV in source leaves of tobacco leads to impaired pathogen resistance and can not be compensated by other sucrose-cleaving enzymes. The intensity of defense reactions is amongst others indicated by the extent of hypersensitive lesions. (B and C) Absolute activity of vacuolar (B) and alkaline/neutral (C) INVs at the infection site (white symbols, control; black symbols, infection site). (D) Increase in SUSY activity at the infection site. All data points taken from noninfected control parts of the plants in each individual experiment and each point along the time scale of an experiment are set as 0%. At least three independent infections are averaged and their means are presented as percentage changes ± SE (circles, SNN; triangles, SNN::cwINV). Insets show the means of the absolute amount of activities (white symbols, control; black symbols, infection site). Material and methods according to Essmann, et al.1vacINV, also labeled as soluble acidic INV, is characterized by a pH optimum between pH 5.0–5.5. Among others it determines the level of Suc stored in the vacuole and generates hexose-based sugar signals (reviewed in refs. 3 and 12). Yet, no specific role of vacINV during pathogen response has been reported. Although vacINV and cwINV are glycoproteins with similar enzymatic and biochemical properties and share a high degree of overall sequence homology and two conserved amino acid motifs,4 the activity of vacINV in tobacco source leaves was not changed due to the repression of the cwINV (Fig. 1B).1 After infection with P. nicotianae the activity of vacINV in wt SNN did not respond under conditions where cwINV was stimulated.1 There was also no significant change in the transgenic SNN::cwINV (Fig. 1B). This suggests that during biotic stress, there is no crosstalk between the regulation of cwINV and vacINV.a/nINVs exhibit activity maxima between pH 6.5 and 8.0, are not glycosylated and thought to be exclusively localized in the cytosol. But recent reports also point to a subcellular location in mitochondria and chloroplasts.13,14 Only a few a/nINVs have been cloned and characterized, and not much is known about their physiological functions (reviewed in refs. 4, 14 and 15). Among other things they seem to be involved in osmotic or low-temperature stress response.14,15 During the interaction between tobacco and P. nicotianae the activity of a/nINVs rose on average 17% in the resistant wt SNN between 1 to 9 hours post infection (Fig. 1C). By contrast, in SNN::cwINV the a/nINVs activities remained unchanged in control leaves and even after infection (Fig. 1C). This suggests that the defense related stimulation in a/nINVs activities is rather a secondary phenomenon, possibly in response to the enhanced cwINV activity and the related carbohydrate availability in the cytosol.SUSY can be found as a soluble enzyme in the cytosol, bound to the inner side of the plasma membrane or the outer membrane of mitochondria, depending on the phosphorylation status. It channels hexoses into polysaccharide biosynthesis (i.e., starch, cellulose and callose) and respiration.12,16 There is also evidence that SUSY improves the metabolic performance at low internal oxygen levels17 but little is known about its role during plant defense. Callose formation is presumably one of the strongest sink reactions in plant cells.1,18 Defense-related SUSY activity may serve to allocate Suc into callose deposition and other carbohydrate-consuming defense reactions. In fact, in the resistant wt the activity of SUSY increased upon interaction with P. nicotianae in a biphasic manner (Fig. 1D). The time course is comparable to that of cwINV activity and correlates with callose deposition and enhanced respiration.1,11 However, repression of cwINV leads in general to a reduction of SUSY activity in source leaves of tobacco.1 After infection the activation of SUSY was also significantly impaired (Fig. 1D). At the same time, the early defense-related callose deposition in infected mesophyll cells of SNN::cwINV plants is substantially delayed.1 It is known that expression of SUSY isoforms is differentially controlled by sugars,12 and there is evidence that hexoses generated by the defense-induced cwINV activity deliver sugar signals to the infected cells.1 In this sense, the reduction of defense-related, cwINV-generated sugar signals could be responsible for the repression of SUSY activity in SNN::cwINV plants after infection with P. nicotianae.Only limited hexoses or hexose-based sugar signals could be generated by cytoplasmic Suc cleavage.12 The reduction of soluble carbohydrates for sugar signaling and also as fuel for metabolic pathways that support defense reactions could be responsible for the impaired resistance in SNN::cwINV plants (Fig. 1A).Obviously, neither intracellular INV isoforms, nor SUSY can compensate for the reduced carbohydrate availability due to cwINV repression during plant defense. The data also suggest that the activity of SUSY is affected by cwINV and related reflux of carbohydrates. It is known that SUSY activity can be controlled, e.g., by sugar-mediated phosphorylation12 and one may speculate that posttranslational modulation of the protein is affected by the defense-related carbohydrate status of the cell.  相似文献   

10.
The newly defined phytohormones strigolactones (SLs) were recently shown to act as regulators of root development. Their positive effect on root-hair (RH) elongation enabled examination of their cross talk with auxin and ethylene. Analysis of wild-type plants and hormone-signaling mutants combined with hormonal treatments suggested that SLs and ethylene regulate RH elongation via a common regulatory pathway, in which ethylene is epistatic to SLs. The SL and auxin hormonal pathways were suggested to converge for regulation of RH elongation; this convergence was suggested to be mediated via the ethylene pathway, and to include regulation of auxin transport.Key words: strigolactone, auxin, ethylene, root, root hair, lateral rootStrigolactones (SLs) are newly identified phytohormones that act as long-distance shoot-branching inhibitors (reviewed in ref. 1). In Arabidopsis, SLs have been shown to be regulators of root development and architecture, by modulating primary root elongation and lateral root formation.2,3 In addition, they were shown to have a positive effect on root-hair (RH) elongation.2 All of these effects are mediated via the MAX2 F-box.2,3In addition to SLs, two other plant hormones, auxin and ethylene, have been shown to affect root development, including lateral root formation and RH elongation.46 Since all three phytohormones (SLs, auxin and ethylene) were shown to have a positive effect on RH elongation, we examined the epistatic relations between them by examining RH length.7 Our results led to the conclusion that SLs and ethylene are in the same pathway regulating RH elongation, where ethylene may be epistatic to SLs.7 Moreover, auxin signaling was shown to be needed to some extent for the RH response to SLs: the auxin-insensitive mutant tir1-1,8 was less sensitive to SLs than the wild type under low SL concentrations.7On the one hand, ethylene has been shown to induce the auxin response,912 auxin synthesis in the root apex,11,12 and acropetal and basipetal auxin transport in the root.4,13 On the other, ethylene has been shown to be epistatic to SLs in the SL-induced RH-elongation response.7 Therefore, it might be that at least for RH elongation, SLs are in direct cross talk with ethylene, whereas the cross talk between SL and auxin pathways may converge through that of ethylene.7 The reduced response to SLs in tir1-1 may be derived from its reduced ethylene sensitivity;7,14 this is in line with the notion of the ethylene pathway being a mediator in the cross talk between the SL and auxin pathways.The suggested ethylene-mediated convergence of auxin and SLs may be extended also to lateral root formation, and may involve regulation of auxin transport. In the root, SLs have been suggested to affect auxin efflux,3,15 whereas ethylene has been shown to have a positive effect on auxin transport.4,13 Hence, it might be that in the root, the SLs'' effect on auxin flux is mediated, at least in part, via the ethylene pathway. Ethylene''s ability to increase auxin transport in roots was associated with its negative effect on lateral root formation: ethylene was suggested to enhance polar IAA transport, leading to alterations in the quantity of auxin that unloads into the tissues to drive lateral root formation.4 Under conditions of sufficient phosphate, SL''s effect was similar to that of ethylene: SLs reduced the appearance of lateral roots; this was explained by their ability to change auxin flux.3 Taken together, one possibility is that the SLs'' ability to affect auxin flux and thereby lateral root formation in the roots is mediated by induction of ethylene synthesis.To conclude, root development may be regulated by a network of auxin, SL and ethylene cross talk.7 The possibility that similar networks exist elsewhere in the SLs'' regulation of plant development, including shoot architecture, cannot be excluded.  相似文献   

11.
Flowering is a developmental process, which is influenced by chemical and environmental stimuli. Recently, our research established that the Arabidopsis SUMO E3 ligase, AtSIZ1, is a negative regulator of transition to flowering through mechanisms that reduce salicylic acid (SA) accumulation and involve SUMO modification of FLOWERING LOCUS D (FLD). FLD is an autonomous pathway determinant that represses the expression of FLOWERING LOCUS C (FLC), a floral repressor. This addendum postulates mechanisms by which SIZ1-mediated SUMO conjugation regulates SA accumulation and FLD activity.Key words: SIZ1, SA, flowering, SUMO, FLD, FLCSUMO conjugation and deconjugation are post-translational processes implicated in plant defense against pathogens, abscisic acid (ABA) and phosphate (Pi) starvation signaling, development, and drought and temperature stress tolerance, albeit only a few of the modified proteins have been identified.18 The Arabidopsis AtSIZ1 locus encodes a SUMO E3 ligase that regulates floral transition and leaf development.8,9 siz1 plants accumulate substantial levels of SA, which is the primary cause for dwarfism and early short-day flowering exhibited by these plants.1,9 How SA promotes transition to flowering is not yet known but apparently, it is through a mechanism that is independent of the known floral signaling pathways.9,10 Exogenous SA reduces expression of AGAMOUS-like 15 (AGL15), a floral repressor that functions redundantly with AGL18.11,12 A possible mechanism by which SA promotes transition to flowering may be by repressing expression of AGL15 and AGL18 (Fig. 1).Open in a separate windowFigure 1Model of how SUMO conjugation and deconjugation regulate plant development in Arabidopsis. SIZ1 and Avr proteins regulate biosynthesis and accumulation of SA, a plant stress hormone that is involved in plant innate immunity, leaf development and regulation of flowering time. SA promotes transition to flowering may through AGL15/AGL18 dependent and independent pathways. FLC expression is activated by FRIGIDA but repressed by the autonomous pathway gene FLD, and SIZ1-mediated sumoylation of FLD represses its activity. Lines with arrows indicate upregulation (activation), and those with bars identify downregulation (repression).siz1 mutations also cause constitutive induction of pathogenesis-related protein genes leading to enhanced resistance against biotrophic pathogens.1 Several bacterial type III effector proteins, such as YopJ, XopD and AvrXv4, have SUMO isopeptidase activity.1315 PopP2, a member of YopJ/AvrRxv bacterial type III effector protein family, physically interacts with the TIR-NBS-LRR type R protein RRS1, and possibly stabilizes the RRS1 protein.16 Phytopathogen effector and plant R protein interactions lead to increased SA biosynthesis and accumulation, which in turn activates expression of pathogenesis-related proteins that facilitate plant defense.17 SIZ1 may participate in SUMO conjugation of plant R proteins to regulate Avr and R protein interactions leading to SA accumulation, which, in turn, affects phenotypes such as diseases resistance, dwarfism and flowering time (Fig. 1).Our recent work revealed also that AtSIZ1 facilitates FLC expression, negatively regulating flowering.9 AtSIZ1 promotes FLC expression by repressing FLD activity.9 Site-specific mutations that prevent SUMO1/2 conjugation to FLD result in enhanced activity of the protein to represses FLC expression, which is associated with reduced acetylation of histone 4 (H4) in FLC chromatin.9 FLD, an Arabidopsis ortholog of Lysine-Specific Demethylase 1 (LSD1), is a floral activator that downregulates methylation of H3K4 in FLC chromatin and represses FLC expression.18,19 Interestingly, bacteria expressing recombinant FLD protein did not demethylate H3K4me2, inferring that the demethylase activity requires additional co-factors as are necessary for LSD1.18,20 Together, these results suggest that SIZ1-mediated SUMO modification of FLD may affect interactions between FLD and co-factors, which is necessary for FLC chromatin modification.Despite our results that implicate SA in flowering time control, how SIZ1 regulates SA accumulation and the identity of the effectors involved remain to be discovered. In addition, it remains to be determined if SIZ1 is involved in other mechanisms that modulate FLD activity and FLC expression, or the function of other autonomous pathway determinants.  相似文献   

12.
13.
Plants have evolved general and specific defense mechanisms to protect themselves from diverse enemies, including herbivores and pathogens. To maintain fitness in the presence of enemies, plant defense mechanisms are aimed at inducing systemic resistance: in response to the attack of pathogens or herbivores, plants initiate extensive changes in gene expression to activate “systemic acquired resistance” against pathogens and “indirect defense” against herbivores. Recent work revealed that leaf infestation by whiteflies, stimulated systemic defenses against both an airborne pathogen and a soil-borne pathogen, which was confirmed by the detection of the systemic expression of pathogenesis-related genes in response to salicylic acid and jasmonic acid-signaling pathway activation. Further investigation revealed that plants use self protection mechanisms against subsequent herbivore attacks by recruiting beneficial microorganisms called plant growth-promoting rhizobacteria/fungi, which are capable of reducing whitefly populations. Our results provide new evidence that plant-mediated aboveground to belowground communication and vice versa are more common than expected.Key words: aboveground, induced systemic resistance, pepper, plant growth-promoting rhizobacteria, underground, whiteflyAs sessile organisms, plants are unable to actively avoid the attack of predators. To overcome this, plants have evolved a multilayer immune system against herbivores and pathogens.1 Plants, unlike animals, lack adaptive immunity. Instead, plants are dependent on a heritable, innate immunity based on the recognition by receptors of the presence of microbial triggers (cues) including effector proteins and microbe-associated molecular patterns.1 The perception of microbial cues leads to the induction of a broad spectrum of plant defenses called systemic acquired resistance (SAR).2 Until recently, SAR was thought to be limited to the induction of plant defenses against foliar microbial pathogens. However, recent results suggested that plants can activate signal exchanges between aboveground (AG) and belowground (BG) responses.3 Three phenomena indicate that plants can make use of cues that are systemically indicative of future enemy attack: (1) induced resistance against AG pathogens by BG microbes and vice versa, (2) indirect defenses against AG insects by AG herbivore infestation and (3) BG pathogen infection leading to root exudate-mediated recruitment of BG bacteria. First, many strains of rhizosphere microbes referred to as plant growth-promoting rhizobacteria/fungi (PGPR/PGPF) have beneficial effects by positively affecting plant growth and resistance against foliar plant pathogens—a process known as induced systemic resistance (ISR).4 Inducible defense responses triggered by the foliar pathogen Pseudomonas syringae pv. tomato DC3000 included the induction of root secretions such as L-malic acid that effectively recruited a PGPR strain, Bacillus subtilis FB17, in Arabidopsis roots.5 Second, herbivore attacks on plants trigger the induction of distinct resistance responses referred to as “indirect defenses.”6 In addition to the “direct defense” reaction mediated by the de novo production of toxic secondary compounds against enemies, plants also defend themselves by releasing volatile organic compounds (VOCs) or extrafloral nectar (EFN) to attract natural enemies (carnivores) of the herbivores AG.7 Third, as plant root exudates function as BG signaling molecules that affect the composition of rhizosphere microbial populations,8 certain rhizobacteria express antifungal-associated genes such as the 2,4-diacetylphloroglucinol biosynthesis gene phlA. The expression of these genes is in turn influenced by root exudates, which are modulated by soilborne fungal infections.9In prior studies, only one-way signal transduction was considered, such as AG to BG, AG to AG or BG to BG (Fig. 1).1013 The above three examples provide evidence of induced resistance against the same or a similar group of organisms, such as resistance against insects by insects, or against microbes by microbes. However, there are few studies addressing insect-microbe combinations during the elicitation of induced resistance. More specifically, indirect defenses by symbiotic root interactions AG were found, such as the volatile blends released by plants with arbuscular mycorrhizal fungi, which were more attractive to aphid parasitoids than the blends from plants without mycorrhiza.14 The BG to AG defense responses of plants are not limited to arbuscular mycorrhizal fungi against herbivores. In addition to mycorrhiza-altered insect feeding preferences, a combination of Pseudomonas spp. strains affected the development of leaffolder pest and actively enhanced resistance against leaffolder attack by triggering the synthesis of systemic defense enzymes such as chitinase and proteinase inhibitors in rice plants.15 Bacillus sp. PGPR strain treatment of tomato triggered ISR to Tomato mottle virus under natural conditions by reducing the population of the silverleaf whitefly vector.16Open in a separate windowFigure 1Putative model of plant-mediated aboveground to belowground communication and vice versa during the induction of systemic resistance via tritrophic (insect-plant-rhizobacteria) interactions. (A) A plant under normal condition. (B) Whitefly infestation elicits plant systemic defenses against leaf and root pathogens. Chemical cues from root exudates secreted from AG whitefly infestation trigger the recruitment of beneficial microbes including saprophytic fungi, Gram-positive bacteria and actinomycetes. (C) The induction of systemic resistance by colonization by beneficial microbes confers plant self-protection against subsequent herbivore attacks.Recently, we found another type of induced resistance response: bidirectional signal exchanges between AG and BG (Fig. 1).17 Our study demonstrated that the phloem feeding whiteflies can induce systemic resistance against both a leaf bacterial pathogen and a soil-borne bacterial pathogen. A similar study using the whitefly as an AG feeding insect to test the induction of plant defenses only observed its effects against conspecific insect herbivore competitors AG.18 However, in our study, foliar attack by the whitefly not only elicited AG resistance against a leaf pathogenic bacterium, Xanthomonas axonopodis pv. vesicatoria, but also enhanced resistance against the soil-borne pathogenic bacterium, Ralstonia solanacearum. The induction of systemic resistance was confirmed by significant upregulation of the SA and JA defense signaling pathway marker genes, Capsicum annuum pathogenesis-related protein (CaPR)1, CaPR4, CaPR10 and Ca protease inhibitor (CaPIN) in both leaves (AG) and roots (BG) after whitefly feeding. Interestingly, AG white-fly feeding significantly increased the population density of beneficial BG microflora including Gram-positive bacteria, actinomycetes and saprophytic fungi that may induce systemic resistance (Fig 1).4 Among BG microbial groups, several Grampositive Bacillus sp. strains significantly elicited plant systemic defenses against the whitefly population in the tomato field.16 Our studies provide a new understanding of tritrophic (insect-plant-PGPR) interactions and their role in the induction of defense mechanisms. In the near future, it will be important to define plant defense signaling molecules from AG to BG and to dissect the signaling transduction pathways using “omics” technology to reveal the mechanisms by which plants protect themselves against enemy attacks.  相似文献   

14.
15.
16.
The phytohormone ethylene is perceived in Arabidopsis by a five-member receptor family. Earlier work has demonstrated that the basic functional unit for an ethylene receptor is a disulfide-linked homodimer. We recently reported in The Journal of Biological Chemistry that the ethylene-receptor ETR1 physically associates with other ethylene receptors through higher order interactions, suggesting the existence of receptor clusters. Here we consider the implications of such clusters upon the mechanism of ethylene signal transduction. In particular, we consider how such clustering provides a cooperative mechanism, akin to what has been found for the prokaryotic chemoreceptors, by which plant sensitivity to ethylene may be increased. In addition, we consider how the dominant ethylene insensitivity conferred by some receptor mutations, such as etr1-1, may also be propagated by interactions among members of the ethylene receptor family.Key words: ethylene, receptor, ETR1, cooperativity, ArabidopsisThe plant hormone ethylene regulates growth and development, and is perceived by a five-member family of receptors (ETR1, ERS1, ETR2, ERS2 and EIN4) in Arabidopsis.1 Genetic analysis indicates that ethylene receptors are functionally redundant and negatively regulate ethylene responses through interactions with the Raf-like kinase CTR1.25 The functional unit of an ethylene receptor in a disulfide-linked homodimer, with each homodimer capable of binding one ethylene molecule.6,7 However, several observations suggest that propagation of the ethylene signal through the receptors is likely to involve more than just ethylene-induced changes within individual receptor homodimers. First, Arabidopsis is amazingly sensitive to ethylene and can respond to ethylene concentrations as low as 0.2 nl/L,8 300-fold lower than the Kd of the receptors for ethylene, which suggests that some mechanism exists for amplifying the input signal.7,9 Second, ethylene-insensitive mutations in the binding sites of the receptors exhibit greater dominance than would be predicted solely from a lesion within one member of the receptor family.10In our paper published in The Journal of Biological Chemistry,11 we demonstrate that the Arabidopsis ethylene receptor ETR1 physically associates with other ethylene receptors through higher order interactions. Such physical interactions suggest that the receptors exist in plants as clusters, and that models for cooperative signaling previously applied to the histidine-kinaselinked chemoreceptors of bacteria may also be applicable to the evolutionarily related ethylene receptors of plants. In bacteria, the highly packed chemoreceptors are found in clusters at one or both poles of the cell.12,13 Structural studies indicate that chemoreceptors can associate to form a ‘trimer of dimers’14,15 and also support the possibility that domain swapping may occur to produce a large interconnected array of receptors. 16 Our studies indicate that ethylene receptors can interact through their cytosolic GAF domains, identifying one possible interface through which conformational changes could be propagated in an ethylene receptor cluster.A higher-order cooperative mechanism among the ethylene receptors may explain the high sensitivity of plants to ethylene. In this model, the ethylene receptors amplify ethylene signaling by lateral signal output. Binding of ethylene to one receptor induces the conformation change of the receptor from a tense state (T) to a relaxed state (R). This conformational change is then propagated to other empty receptors in the cluster due to their physical associations with the receptor in the R state. As a result empty receptors also adopt the relaxed state (R′), resulting in amplification of the initial signal. It should be noted here that mutational evidence supports the unbound state of the receptors (T state) as being the lower energy conformation of the receptors.17 Thus, according to this model, part of the energy from ligand binding would be used to transmit conformational changes to the neighboring receptors.An alternative model that may also explain the high sensitivity of ethylene responsiveness in plants, and one that is not necessarily incompatible with the previous model, is a conjugation model.18 Here it is hypothesized that, due to the physical proximity of the ethylene receptors, that ethylene released from one receptor then binds to another receptor rather than diffusing away. Through this conjugation mechanism, one ethylene molecule could amplify its signal by converting the conformations of multiple ethylene receptors from the ethylene-unbound state (T) to the ethylene-bound state (R). This model is based on several assumptions. One assumption is that a single ethylene molecule can bind ethylene receptors in the same cluster multiple times due to the dynamic binding of ethylene and ethylene receptor. A second assumption is that, after ethylene is released from one ethylene receptor, the recovery time for that receptor to resume the T state is longer than the time required for the released ethylene to bind to and convert another receptor from the T to the R state.Models for cooperativity need to also explain the dominant ethylene insensitivity of various mutant receptors such as etr1-1, in which a missense mutation results in a receptor incapable of binding ethylene. Several studies indicate that the etr1-1 mutant receptor acts cooperatively to affect the signal output from other wild-type receptors (i.e., the presence of the etr1-1 receptor in its T state increases the likelihood of other receptors adopting the T state).10,11 This observation can be most readily explained if the dominant ethylene-insensitive mutations result in a receptor that requires more energy to undergo the T to R transition than do the wild-type receptors. For example, the etr1-1 mutation may increase the stability of the T form (a T′ state). There is evidence to support this possibility. The etr1-1 missense mutation results in a receptor unable to chelate a copper cofactor necessary for ethylene binding,19 but the effects of this mutation on signaling are different from wild-type receptors that lack their copper cofactor. The etr1-1 mutant receptor appears locked in its T state, whereas wild-type receptors lacking the copper cofactor appear to be in the R state.20 Thus etr1-1 is truly a gain-of-function mutation that alters the conformation of the receptor in ways not necessarily predicted from just the loss of the copper cofactor.In conclusion, we have attempted here to provide models that can resolve an apparent contradiction in the cooperative signaling behavior exhibited by ethylene receptors. The high sensitivity of plants to ethylene suggest cooperative changes in which an R state can be propagated within a receptor cluster, but the dominance of the ethylene ethylene-insensitive mutant etr1-1 suggests that the T state can also be propagated within a receptor cluster. It should be born in mind, however, that ethylene signaling is mediated by multiple signaling components. The ethylene receptors regulate ethylene responses through interaction with and modulation of CTR1 kinase activity. Thus, the total kinase activity of CTR1 represents the signal output from the receptors. This situation is very similar to that of the bacterial chemoreceptors, which regulate the activity of an associated histidine kinase, and, as with the chemoreceptors, the stoichiometry of CTR1 interactions with the ethylene receptors and the means by which its kinase activity is regulated are important for the elucidation of the mechanism of ethylene signal transduction.  相似文献   

17.
Glycerol-3-phosphate (G3P), a conserved three-carbon sugar, is an obligatory component of energy-producing reactions including glycolysis and glycerolipid biosynthesis. G3P can be derived via the glycerol kinase-mediated phosphorylation of glycerol or G3P dehydrogenase (G3Pdh)-mediated reduction of dihydroxyacetone phosphate. Previously, we showed G3P levels contribute to basal resistance against the hemibiotrophic pathogen, Colletotrichum higginsianum. Inoculation of Arabidopsis with C. higginsianum correlated with an increase in G3P levels and a concomitant decrease in glycerol levels in the host. Plants impaired in GLY1 encoded G3Pdh accumulated reduced levels of G3P after pathogen inoculation and showed enhanced susceptibility to C. higginsianum. Recently, we showed that G3P is also a potent inducer of systemic acquired resistance (SAR) in plants. SAR is initiated after a localized infection and confers whole-plant immunity to secondary infections. SAR involves generation of a signal at the site of primary infection, which travels throughout the plants and alerts the un-infected distal portions of the plant against secondary infections. Plants unable to synthesize G3P are defective in SAR and exogenous G3P complements this defect. Exogenous G3P also induces SAR in the absence of a primary pathogen. Radioactive tracer experiments show that a G3P derivative is translocated to distal tissues and this requires the lipid transfer protein, DIR1. Conversely, G3P is required for the translocation of DIR1 to distal tissues. Together, these observations suggest that the cooperative interaction of DIR1 and G3P mediates the induction of SAR in plants.Glycerol-3-phosphate (G3P) is an obligatory component of energy-producing reactions including glycolysis and glycerolipid biosynthesis.1,2 G3P levels in the plant are regulated by enzymes directly/indirectly involved in G3P biosynthesis, as well as those involved in G3P catabolism. G3P is synthesized via the glycerol kinase (GK)-mediated phosphorylation of glycerol,3 or the G3P dehydrogenase (G3Pdh)-mediated reduction of dihydroxyacetone phosphate (DHAP)4 (Fig. 1). DHAP is derived from glycolysis via triosephosphate isomerase activity on glyceraldehyde-3-phosphate, or from the conversion of glycerol to dihydroxacetone (DHA) by glycerol dehydrogenase (Glydh) followed by phosphorylation of DHA to DHAP by DHA kinase (DHAK). G3P is catabolized either upon its conversion to glycerol by glycerol-3-phoshatase (GPP) or its utilization in glycerolipid/triacylglycerol biosynthesis. In Arabidopsis, the total G3P pool is derived from the activities of five G3Pdh isoforms and one GK isoform present in three cellular locations5-9; GK and two of the G3Pdh isoforms are present in the cytoplasm, two other G3Pdh isoforms localize to plastids, and one to the mitochondria. One of the plastid localized G3Pdh isoforms, designated GLY1, was previously shown to be required for glycerolipid biosynthesis; a mutation in GLY1 compromised lipids synthesized via the plastidal pathway of lipid biosynthesis. The fact that exogenous application of glycerol to gly1 plants normalizes plastidal lipid levels10 and that GLY1 encodes a G3Pdh4 suggests that the G3P pool generated via the GLY1 catalyzed reaction is required for the biosynthesis of plastidal lipids. Intriguingly, unlike GLY1, neither the chloroplastic, nor the two cytosolic isoforms of G3Pdh, contribute to plastidal and/or extraplastidal lipid biosynthesis.9Open in a separate windowFigure 1.A condensed scheme of glycerol-3-phosphate metabolism in plants. Glycerol is phosphorylated to glycerol-3-phosphate (G3P) by glycerol kinase (GK; GLI1). G3P can also be generated by G3P dehydrogenase (G3Pdh) via the reduction of dihydroxyacetone phosphate (DHAP). DHAP is derived from glycolysis via triosephosphate isomerase (TPI) activity on glyceraldehyde-3-phosphate (Gld-3-P), or from the conversion of glycerol to dihydroxacetone (DHA) by glycerol dehydrogenase (Glydh) followed by phosphorylation of DHA to DHAP by DHA kinase (DHAK). G3Pdh isoforms are present in both the cytosol and the plastids (represented by the oval). GLY1 is one of the two plastidial G3Pdh isoforms that plays an important role in plastidial glycerolipid biosynthesis. In the plastids, G3P is acylated with oleic acid (18:1) by the ACT1-encoded G3P acyltransferase. This ACT1-utilized 18:1 is derived from the stearoyl-acyl carrier protein (ACP)-desaturase (SACPD)-catalyzed desaturation of stearic acid (18:0). The 18:1-ACP generated by SACPD either enters the prokaryotic lipid biosynthetic pathway through acylation of G3P or is exported out (dotted line) of the plastids as a coenzyme A (CoA)-thioester to enter the eukaryotic lipid biosynthetic pathway. Membranous fatty acid desaturases (FAD) catalyze desaturation of FAs present on membranous glycerolipids. Other abbreviations used are: GL, glycerolipid; FAS, fatty acid synthase; ACC, acetyl-CoA carboxylase; Lyso-PA, acyl-G3P; PA, phosphatidic acid; PG, phosphatidylglycerol; MGDG, monogalactosyldiacylglycerol; DGDG, digalactosyldiacylglycerol; SL, sulfolipid; DAG, diacylglycerol.For glycerolipid biosynthesis, G3P is first acylated with the fatty acid (FA) oleic acid (18:1), to form lyso-phosphatidic acid (lyso-PA) via the activity of the soluble G3P acyltransferase (GPAT) encoded by the ACT1 gene in Arabidopsis11 (Fig. 1). 18:1 in turn is derived from the saturated FA, stearic acid (18:0), via the activity of soluble stearoyl-acyl carrier protein desaturases (SACPD),12 which introduce a single cis double bond in 18:0. The 18:1 generated via this reaction is either exported out of the plastids or acylated at the sn-1 position of G3P. Previously, we have shown that 18:1 levels are important regulators of plant defense signaling. In Arabidopsis, 18:1 is synthesized via the SSI2/FAB2-encoded SACPD,12 which uses 18:0 as a substrate. A mutation in SSI2 results in the accumulation of 18:0 and a reduction in 18:1 levels. The mutant plants show stunting, spontaneous lesion formation, constitutive PR gene expression, and enhanced resistance to bacterial and oomycete pathogens.4,12-17 Characterization of ssi2 suppressor mutants has shown that the altered defense-related phenotypes are the result of the reduction in the levels of the unsaturated FA, 18:1, which causes induction of several resistance (R) genes.4,14,18,19 Restoration of 18:1 levels, via mutations in ACT1,14 GLY14 or ACP4,18 normalizes R gene expression in ssi2 plants. The low 18:1-mediated induction of R gene expression and the associated defense signaling can also be suppressed by simultaneous mutations in EDS1 and the genes governing salicylic acid (SA) biosynthesis (SID2, EDS5).19 Furthermore, the functional redundancy between EDS1 and SA likely masks the requirement for EDS1 by several coiled coil (CC)- nucleotide binding site (NBS)- leucine rich repeat (LRR) proteins,19 previously thought to function independent of EDS1.20 Thus, the reliance on EDS1 for signaling mediated by CC-NBS-LRR proteins becomes evident only in the absence of SA.The plastidal 18:1 levels are also regulated via the chloroplastic G3P pool and vice-versa. However, 18:1 and G3P appear to function distinctly in defense signaling. For example, G3P levels are important for basal defense against the hemibiotrophic fungus, Colletotrichum higginsianum.21,22 Genetic mutations affecting G3P synthesis in Arabidopsis enhance susceptibility to C. higginsianum. Conversely, plants accumulating increased G3P show enhanced resistance. More recently, we demonstrated roles for G3P in R-mediated defense leading to systemic acquired resistance (SAR).9 R-mediated defense against the avirulent bacterial pathogen P. syringae is associated with a rapid increase in G3P levels; G3P levels peak within 6 h of inoculation with avirulent bacteria (avrRpt2), in resistant plants expressing the R gene RPS2. Strikingly, accumulation of G3P, in the infected and systemic tissues, precedes the accumulation of other metabolites known to be essential for SAR; SA,23,24 jasmonic acid (JA)25 and azelaic acid (AA)26 accumulated at least 24 h post pathogen inoculation. Furthermore, mutants defective in G3P synthesis are compromised in SAR but accumulated normal levels of SA, AA, and JA. Compromised SAR in G3P deficient mutants was restored by exogenous application of G3P, thus arguing a role for G3P in SAR. This was further supported by the fact that exogenous G3P induced SAR in the absence of the primary pathogen in both Arabidopsis and soybean.9 That fact that G3P is a conserved metabolite common to prokaryotes, plants, and humans further corroborates the conserved nature of SAR signaling. Interestingly, although exogenous G3P did not induce SA biosynthesis, SAR conferred by exogenous G3P was dependent on SA. These results suggest that the onset and/or establishment of SAR likely requires basal, but not induced levels of SA, in the distal tissues. It is possible that the relatively small increase in SA observed in the systemic tissues during SAR is an indirect response that contributes to generalized resistance, rather than SAR itself. Interestingly, both G3P conferred SAR, and the systemic movement of G3P were dependent on the lipid transfer protein, DIR1, a well-known positive regulator of SAR.27 Conversely, systemic movement of DIR1 required G3P. These findings did not correlate with the fact that G3P is cytosolic while DIR1 was a predicted apoplastic protein. To resolve this issue, we studied the localization of DIR1, and found that it is in fact a symplastic protein. The symplastic location of DIR1 was further corroborated when GFP fused to the signal peptide from DIR1 localized to the endoplasmic reticulum, rather than the typical cytoplasmic and nuclear location of GFP (Fig. 2). These results suggested that the symplastic movement of DIR1 is likely critical for SAR, and supported the facts that G3P and DIR1 are interdependent for translocation to systemic tissues. However, these findings could not explain how a lipid transfer-like protein might associate with the phosphorylated sugar G3P, to move systemically. Analysis of G3P in the leaf extracts showed that it was derivatized into an unknown compound before/during translocation. It is likely that the G3P derivative has a lipid moiety via which it associates with DIR1 for transfer. In summary, we showed that DIR1 together with a G3P-derived compound are sufficient for the induction of SAR in wild type plants. Our findings provide strong evidence in support of a direct defense-signaling role for G3P and warranty further analysis of its metabolic pathway(s) for their role(s) in various modes of plant defense.Open in a separate windowFigure 2.Confocal micrograph showing localization of GFP fused to DIR1 transit peptide (TP) or GFP alone in Nicotiana benthamiana plants expressing RFP-tagged nuclear histone protein H2B. Arrow indicates nucleus, arrowhead indicates endoplasmic reticulum.  相似文献   

18.
19.
Auxin is a phytohormone essential for plant development. Due to the high redundancy in auxin biosynthesis, the role of auxin biosynthesis in embryogenesis and seedling development, vascular and flower development, shade avoidance and ethylene response were revealed only recently. We previously reported that a vitamin B6 biosynthesis mutant pdx1 exhibits a short-root phenotype with reduced meristematic zone and short mature cells. By reciprocal grafting, we now have found that the pdx1 short root is caused by a root locally generated signal. The mutant root tips are defective in callus induction and have reduced DR5::GUS activity, but maintain relatively normal auxin response. Genetic analysis indicates that pdx1 mutant could suppress the root hair and root growth phenotypes of the auxin overproduction mutant yucca on medium supplemented with tryptophan (Trp), suggesting that the conversion from Trp to auxin is impaired in pdx1 roots. Here we present data showing that pdx1 mutant is more tolerant to 5-methyl anthranilate, an analogue of the Trp biosynthetic intermediate anthranilate, demonstrating that pdx1 is also defective in the conversion from anthranilate to auxin precursor tryptophan. Our data suggest that locally synthesized auxin may play an important role in the postembryonic root growth.Key words: auxin synthesis, root, PLP, PDX1The plant hormone auxin modulates many aspects of growth and development including cell division and cell expansion, leaf initiation, root development, embryo and fruit development, pattern formation, tropism, apical dominance and vascular tissue differentiation.13 Indole-3-acetic acid (IAA) is the major naturally occurring auxin. IAA can be synthesized in cotyledons, leaves and roots, with young developing leaves having the highest capacity.4,5Auxin most often acts in tissues or cells remote from its synthetic sites, and thus depends on non-polar phloem transport as well as a highly regulated intercellular polar transport system for its distribution.2The importance of local auxin biosynthesis in plant growth and development has been masked by observations that impaired long-distance auxin transport can result in severe growth or developmental defects.3,6 Furthermore, a few mutants with reduced free IAA contents display phenotypes similar to those caused by impaired long-distance auxin transport. These phenotypes include defective vascular tissues and flower development, short primary roots and reduced apical dominance, or impaired shade avoidance and ethylene response.715 Since these phenotypes most often could not be rescued by exogenous auxin application, it is difficult to attribute such defects to altered local auxin biosynthesis. By complementing double, triple or quadruple mutants of four Arabidopsis shoot-abundant auxin biosynthesis YUCCA genes with specific YUCCA promoters driven bacterial auxin biosynthesis iaaM gene, Cheng et al. provided unambiguous evidence that auxin biosynthesis is indispensable for embryo, flower and vascular tissue development.8,13 Importantly, it is clear that auxin synthesized by YUCCAs is not functionally interchangeable among different organs, supporting the notion that auxin synthesized by YUCCAs mainly functions locally or in a short range.6,8,13The central role of auxin in root meristem patterning and maintenance is well documented,1,2,16 but the source of such IAA is still unclear. When 14C-labeled IAA was applied to the five-day-old pea apical bud, the radioactivity could be detected in lateral root primordia but not the apical region of primary roots.17 Moreover, removal of the shoot only slightly affected elongation of the primary root, and localized application of auxin polar transport inhibitor naphthylphthalamic acid (NPA) at the primary root tip exerted more profound inhibitory effect on root elongation than at any other site.18 These results suggest that auxin generated near the root tip may play a more important role in primary root growth than that transported from the shoot. In line with this notion, Arabidopsis roots have been shown to harbor multiple auxin biosynthesis sites including root tips and the region upward from the tip.4Many steps of tryptophan synthesis and its conversion to auxin involve transamination reactions, which require the vitamin B6 pyridoxal 5-phosphate (PLP) as a cofactor. We previously reported that the Arabidopsis mutant pdx1 that is defective in vitamin B6 biosynthesis displays dramatically reduced primary root growth with smaller meristematic zone and shorter mature cortical cells.19 In the current investigation, we found that the root tips of pdx1 have reduced cell division capability and reduced DR5::GUS activity, although the induction of this reporter gene by exogenous auxin was not changed. Reciprocal grafting indicates that the short-root phenotype of pdx1 is caused by a root local rather than shoot generated factor(s). Importantly, pdx1 suppresses yucca mutant, an auxin overproducer, in root hair proliferation although it fails to suppress the hypocotyl elongation phenotype.20 Our work thus demonstrated that pdx1 has impaired root local auxin biosynthesis from tryptophan. To test whether the synthesis of tryptophan is also affected in pdx1 mutant, we planted pdx1 together with wild-type seeds on Murashige and Skoog (MS) medium supplemented with 5-mehtyl-anthranilate (5-MA), an analogue of the Trp biosynthetic intermediate anthranilate.21 Although pdx1 seedlings grew poorly under the control conditions, the growth of wild-type seedlings was more inhibited than that of the pdx1 seedlings on 10 µM 5-MA media (Fig. 1A–D). Compared with the elongated primary root on MS, wild-type seedlings showed very limited root growth on 5-MA (Fig. 1E). The relatively increased tolerance to 5-MA of pdx1 thus indicates that the pdx1 mutant may be defective in Trp biosynthesis, although amino acid analysis of the bulked seedlings did not find clear changes in Trp levels in the mutants (our unpublished data).Open in a separate windowFigure 1The pdx1 mutant seedlings are relatively less sensitive to toxic 5-methyl anthranilate (5-MA). (A and C) Five-day-old seedlings of the wild type (Col-0) (A) or pdx1 (C) on MS medium. (B and D) Five-day-old seedlings of the wild type (B) or pdx1 (D) on MS medium supplemented with 10 µM 5-MA. (E) Eight-day-old seedlings of the wild type or pdx1 on MS medium without or with 10 µM 5-MA supplement. Sterilized seeds were planted directly on the indicated medium and after two days of cold treatment, the plates were incubated under continuous light at 22–24°C before taking pictures.We reported that PDX1 is required for tolerance to oxidative stresses in Arabidopsis.19 Interestingly, redox homeostasis appears to play a critical role in Arabidopsis root development. The glutathione-deficient mutant root meristemless1 (rml1) and the vitamin C-deficient mutant vitamin C1 (vtc1) both have similar stunted roots.22,23 Nonetheless, pdx1 is not rescued by either glutathione or vitamin C19 suggesting that the pdx1 short-root phenotype may not be resulted from a general reduction of antioxidative capacity. Interestingly, ascorbate oxidase is found to be highly expressed in the maize root quiescent center.24 This enzyme can oxidatively decarboxylate auxin in vitro, suggesting that the quiescent center may be a site for metabolizing auxin to control its homeostasis.25 It is therefore likely that the reduced auxin level in pdx1 root tips could be partially caused by increased auxin catabolism resulted from reduced vitamin B6 level. We thus conducted experiments to test this possibility. A quiescent center-specific promoter WOX5 driven bacterial auxin biosynthetic gene iaaH26 was introduced into pdx1 mutant. The transgenic seeds were planted on media supplemented with different concentrations of indoleacetamide (IAM), the substrate of iaaH protein. Although promotion of lateral root growth was observed at higher IAM concentrations, which indicates increased tryptophan-independent auxin production from the transgene, no change in root elongation was observed between pdx1 with or without the WOX5::iaaH transgene at any concentration of IAM tested (data not shown), suggesting that the pdx1 short-root phenotype may not be due to increased auxin catabolism.Taken together, in addition to auxin transport; temporally, spatially or developmentally coordinated local auxin biosynthesis defines the plant growth and its response to environmental changes.8,14,15  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号