首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background aimsAmniotic fluid (AF) contains stem cells with high proliferative and differentiative potential that might be an attractive source of multipotent stem cells. We investigated whether human AF contains mesenchymal stem cells (MSC) and evaluated their phenotypic characteristics and differentiation potential in vitro.MethodsAF was harvested during routine pre-natal amniocentesis at 14–16 weeks of pregnancy. AF sample pellets were plated in α-minimum essential medium (MEM) with 10% fetal bovine serum (FBS). We evaluated cellular growth, immunophenotype, stemness markers and differentiative potential during in vitro expansion. Neural progenitor maintenance medium (NPMM), a medium normally used for the growth and maintenance of neural stem cells, containing hFGF, hEGF and NSF-1, was used for neural induction.ResultsTwenty-seven AF samples were collected and primary cells, obtained from samples containing more than 6 mL AF, had MSC characteristics. AF MSC showed high proliferative potential, were positive for CD90, CD105, CD29, CD44, CD73 and CD166, showed Oct-4 and Nanog molecular and protein expression, and differentiated into osteoblasts, adypocytes and chondrocytes. The NPMM-cultured cells expressed neural markers and increased Na+ channel density and channel inactivation rate, making the tetrodotoxin (TTX)-sensitive channels more kinetically similar to native neuronal voltage-gated Na+ channels.ConclusionsThese data suggest that AF is an important multipotent stem cell source with a high proliferative potential able to originate potential precursors of functional neurons.  相似文献   

2.
3.
Recent studies have shown that amniotic membrane tissue is a rich source of stem cells in humans. In clinical applications, the amniotic membrane tissue had therapeutic effects on wound healing and corneal surface reconstruction. Here, we successfully isolated and identified multipotent stem cells (MSCs) from canine amniotic membrane tissue. We cultured the canine amniotic membrane-derived multipotent stem cells (cAM-MSCs) in low glucose DMEM medium. cAM-MSCs have a fibroblast-like shape and adhere to tissue culture plastic. We characterized the immunophenotype of cAM-MSCs by flow cytometry and measured cell proliferation by the cumulative population doubling level (CPDL). We performed differentiation studies for the detection of trilineage multipotent ability, under the appropriate culture conditions. Taken together, our results show that cAM-MSCs could be a rich source of stem cells in dogs. Furthermore, cAM-MSCs may be useful as a cell therapy application for veterinary regenerative medicine.  相似文献   

4.
Background aimsThe ability to expand and maintain bone marrow (BM)-derived mesenchymal stem cells (MSC) in vitro is an important aspect of their therapeutic potential. Despite this, the exact composition of stromal cell types within these cultures and the potential effects of non-stem cells on the maintenance of MSC are poorly understood.MethodsC57BL/6J BM stroma was investigated as a model to determine the relationship between MSC and non-multipotent cells in vitro. Whole BM and single-cell derived cultures were characterized using flow cytometry and cell sorting combined with multipotent differentiation. Proliferation of individual stromal populations was evaluated using BrdU.ResultsAt a single-cell level, MSC were distinguished from committed progenitors, and cells lacking differentiation ability, by the expression of CD105 (CD105+). A 3-fold reduction in the percentage of CD105+ cells was detected after prolonged culture and correlated with loss of MSC. Depletion of CD105+ cells coincided with a 10–20% increase in the frequency of proliferating CD105? cells. Removal of CD105? stroma caused increased proliferation in CD105+ cells, which could be diminished by conditioned media from parent cultures. Comparison of the multipotent differentiation potential in purified and non-purified CD105+ cells determined that MSC were detectable for at least 3 weeks longer when cultured in the absence of CD105? cells.ConclusionsThis work identifies a simple model for characterizing the different cellular components present in BM stromal cultures and demonstrates that stromal cells lacking multipotent differentiating capacity greatly reduce the longevity of MSC.  相似文献   

5.
Background aimsMesenchymal stromal cells (MSC) may be useful in a range of clinical applications. The placenta has been suggested as an abundant, ethically acceptable, less immunogenic and easily accessible source of MSC. The aim of this study was to evaluate the capacity of induced placental MSC to differentiate into neurotrophic factor-producing cells (NTF) and their protective effect on neuronal cells.MethodsMSC were isolated from placentas and characterized by fluorescence-activated cell sorting (FACS). The cells underwent an induction protocol to differentiate them into NTF. Analysis of the cellular differentiation was done using polymerase chain reactions (PCR), immunocytochemical staining and enzyme-linked immunosorbent assays (ELISA). Conditioned media from placental MSC (PL-MSC) and differentiated MSC (PL-DIFF) were collected and examined for their ability to protect neural cells.ResultsThe immunocytochemical studies showed that the cells displayed typical MSC membrane markers. The cells differentiated into osteoblasts and adipocytes. PCR and immunohistology staining demonstrated that the induced cells expressed typical astrocytes markers and neurotrophic factors. Vascular endothelial growth factor (VEGF) levels were higher in the conditioned media from PL-DIFF compared with PL-MSC, as indicated by ELISA. Both PL-DIFF and PL-MSC conditioned media markedly protected neural cells from oxidative stress induced by H2O2 and 6-hydroxydopamine. PL-DIFF conditioned medium had a superior effect on neuronal cell survival. Anti-VEGF antibodies (Bevacizumab) reduced the protective effect of the conditioned media from differentiated and undifferentiated MSC.ConclusionsThis study has demonstrated a neuroprotective effect of MSC of placental origin subjected to an induction differentiation protocol. These data offer the prospect of using placenta as a source for stem cell-based therapies.  相似文献   

6.
Background aimsBone marrow (BM) mesenchymal stromal cells (MSC) have been identified as a source of pluripotent stem cells used in clinical practice to regenerate damaged tissues. BM MSC are commonly isolated from BM by density-gradient centrifugation. This process is an open system that increases the risk of sample contamination. It is also time consuming and requires technical expertise that may result in variability regarding cellular recovery. The BD Vacutainer® Cell Preparation Tube? (CPT) was conceived to separate mononuclear cells from peripheral blood. The main goal of this study was to verify whether MSC could be isolated from BM using the CPT.MethodsBM was harvested, divided into two equal aliquots and processed using either CPT or a Ficoll-Paque? PREMIUM density gradient. Both methods were compared regarding cell recovery, viability, proliferation, differentiation capacities and the presence of MSC progenitors.ResultsSimilar numbers of mononuclear cells were isolated from BM when comparing the two methods under study. No differences were found in terms of phenotypic characterization, viability, kinetics and lineage differentiation potential of MSC derived by CPT or Ficoll. Surprisingly, a fibroblast–colony-forming unit (CFU-F) assay indicated that, with CPT, the number of MSC progenitors was 1.8 times higher compared with the Ficoll gradient separation.ConclusionsThe CPT method is able to isolate MSC efficiently from BM, allowing the enrichment of MSC precursors.  相似文献   

7.
During recent years, cell-based therapies using mesenchymal stem cells (MSC) are reported in equine veterinary medicine with increasing frequency. In most cases, the isolation and in vitro differentiation of equine MSC are described, but their proper immunophenotypic characterization is rarely performed. The lack of a single marker specific for MSC and the limited availability of monoclonal antibodies (mAbs) for equine MSC in particular, strongly hamper this research. In this study, 30 commercial mAbs were screened with flow cytometry for recognizing equine epitopes using the appropriate positive controls to confirm their specificity. Cross-reactivity was found and confirmed by confocal microscopy for CD45, CD73, CD79α, CD90, CD105, MHC-II, a monocyte marker, and two clones tested for CD29 and CD44. Unfortunately, none of the evaluated CD34 clones recognized the equine epitopes on positive control endothelial cells. Subsequently, umbilical cord blood-derived undifferentiated equine MSC of the fourth passage of six horses were characterized using multicolor flow cytometry based on the selected nine-marker panel of both cell surface antigens and intracytoplasmatic proteins. In addition, appropriate positive and negative controls were included, and the viable single cell population was analyzed by excluding dead cells using 7-aminoactinomycin D. Isolated equine MSC of the fourth passage were found to be CD29, CD44, CD90 positive and CD45, CD79α, MHC-II, and a monocyte marker negative. A variable expression was found for CD73 and CD105. Successful differentiation towards the osteogenic, chondrogenic, and adipogenic lineage was used as additional validation. We suggest that this selected nine-marker panel can be used for the adequate immunophenotyping of equine MSC.  相似文献   

8.
Background aimsMesenchymal stromal cells (MSC) exhibit non-specific hematopoietic cell and/or stromal cell markers (e.g. CD73, CD105 and CD166) that have been used to identify MSC by flow cytometry. Because a neural glial antigen, NG2 (a progenitor cell marker in the central nervous system), is expressed by several tissue cells originating in the mesenchyme but not hematopoietic cells, it might be useful for isolating and identifying MSC. We investigated NG2 expression on culture-expanded MSC by flow cytometry.MethodsHuman bone marrow (BM) samples taken from 12 donors were cultured for MSC to be used in up to nine serial passages. Using flow cytometry, the neural glial antigen NG2 and commonly used MSC markers CD73, CD105 and CD166, were analyzed on the surface of culture-expanded MSC. The multipotential differentiation of the MSC was examined by adipogenic and osteogenic induction.ResultsThe percentage of cells positive for NG2 was similar to the percentages of cells positive for CD73, CD105 and CD166 in all passages of BM samples. The mean fluorescent intensities of NG2 did not change with culture passage. The MSC was successfully differentiated into adipogenic and osteogenic lines. The cells showed no karyotypic abnormalities.ConclusionsNG2 seems to be a promising marker for investigating the biology of MSC.  相似文献   

9.
Mesenchymal stem cells (MSCs) have the ability to differentiate into a variety of lineages and to renew themselves without malignant changes, and thus hold potential for many clinical applications. However, it has not been well characterized how different the properties of MSCs are depending on the tissue source in which they resided. We previously reported a novel technique for the prospective MSC isolation from bone marrow, and revealed that a combination of cell surface markers (LNGFR and THY-1) allows the isolation of highly enriched MSC populations. In this study, we isolated LNGFR+ THY-1 + MSCs from synovium using flow cytometry. The results show that the synovium tissue contained a significantly larger percentage of LNGFR + THY-1 + MSCs. We examined the colony formation and differentiation abilities of bone marrow-derived MSCs (BM-MSCs) and synovium-derived MSCs (SYN-MSCs) isolated from the same patients. Both types of MSCs exhibited a marked propensity to differentiate into specific lineages. BM-MSCs were preferentially differentiated into bone, while in the SYN-MSC culture, enhanced adipogenic and chondrogenic differentiation was observed. These data suggest that the tissue from which MSCs are isolated should be tailored according to their intended clinical therapeutic application.  相似文献   

10.
Background aimsThe immunomodulatory and anti-inflammatory effects of mesenchymal stromal cells (MSC) could prove to be a potential therapeutic approach for prolongation of survival of cell xenotransplantation. Adipose (Ad) MSC from genetically modified pigs could be an abundant source of pig donor-specific MSC.MethodsPig (p) MSC were isolated from adipose tissue of α1,3-galactosyltransferase gene knock-out pigs transgenic for human (h) CD46 (GTKO/hCD46), a potential source of islets. After characterization with differentiation and flow cytometry (FCM), AdMSC were compared with bone marrow (BM) MSC of the same pig and human adipose-derived (hAd) MSC. The modulation of human peripheral blood mononuclear cell (hPBMC) responses to GTKO pig aortic endothelial cells (pAEC) by different MSC was compared by measuring 3H-thymidine uptake. The supernatants from the AdMSC cultures were used to determine the role of soluble factors.ResultsGTKO/hCD46 pAdMSC (i) did not express galactose-α1,3-galactose (Gal) but expressed hCD46, (ii) differentiated into chondroblasts, osteocytes and adipocytes, (iii) expressed stem cell markers, (iv) expressed lower levels of Swine Leucocyte Antigen I (SLAI), Swine Leucocyte Antigen II DR (SLAIIDR) and CD80 than pAEC before and after pig interferon (IFN)-γ stimulation. The proliferative responses of hPBMC to GTKO/hCD46 pAdMSC and hAdMSC stimulators were similar, and both were significantly lower than to GTKO pAEC (P < 0.05). The proliferation of hPBMC to GTKO pAEC was equally suppressed by GTKO/hCD46 pAdMSC and hAdMSC (P > 0.05). The supernatant from GTKO/hCD46 pAdMSC did not suppress the human xenoresponse to GTKO pAEC, which was cell–cell contact-dependent.ConclusionsInitial evidence suggests that genetically modified pAdMSC function across the xenogeneic barrier and may have a role in cellular xenotransplantation.  相似文献   

11.
目的:建立并优化人脐带间充质干细胞分离纯化方法,并对其表面标志与多向分化潜能进行鉴定。方法:收集健康足月产胎儿脐带组织,采用组织块贴壁法进行原代培养,流式细胞仪对其表面标志进行检测,通过向成骨成脂分化对其多向分化潜能进行鉴定,RT-PCR对其干细胞特性基因Oct4、Nanog、Sox2、Nestin进行检测。结果:采用组织块贴壁法可在2周左右获得大量间充质干细胞,培养的细胞经流式细胞仪检测,高表达CD29、CD44、CD105、CD106,低表达CD34、CD45;经成骨成脂诱导2周后可分化为成骨细胞和成脂细胞,RT-PCR检测发现原代细胞表达Oct4、Nanog、Sox2、Nestin基因。结论:人脐带间充质干细胞可在体外扩增培养,具有多向分化潜能,可作为组织工程种子细胞来源。  相似文献   

12.
13.
14.
Background aimsMesenchymal stromal cells (MSCs) have been studied as cell therapy to treat a vast array of diseases. In clinical MSC production, the isolated cells must undergo extensive ex vivo expansion to obtain a sufficient dose of MSCs for the investigational treatment. However, extended tissue culture is fraught with potential hazards, including contamination and malignant transformation. Changes of gene expression with prolonged culture may alter the therapeutic potential of the cells. Increasing the recovery of MSCs from the freshly harvested bone marrow allowing for less ex vivo expansion would represent a major advance in MSC therapy.MethodsHuman bone marrow cells from eight healthy donors were processed using a marrow filter device and, in parallel, using buoyant density centrifugation by two independent investigators. The initial nucleated cell recovery and the final yield, immunophenotype and trilineage differentiation potential of second-passage MSCs were examined.ResultsThe marrow filter device generated significantly greater initial cell recovery requiring less investigator time and resulted in approximately 2.5-fold more MSCs after the second passage. The immunophenotype and differentiation potential of MSCs isolated using the two methods were equivalent and consistent with the defining criteria. The two independent investigators generated comparable results.ConclusionsThis novel filter device is a fast, efficient and reliable system to isolate MSCs and should greatly expedite pre-clinical and clinical investigations of MSC therapy.  相似文献   

15.

Background  

There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC) have been isolated from fresh umbilical cord blood of humans collected non-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is low and the future isolation percentage of MSCs from cryopreserved equine cord blood is therefore expectedly low. The hypothesis of this study was that equine MSCs could be isolated from fresh whole equine cord blood.  相似文献   

16.
17.
Background aimsMultipotent mesenchymal stromal cells, also known as mesenchymal stem cells (MSC), can be isolated from adult and fetal tissues. Recently, there has been considerable interest in MSC because they have features favorable for transplantation, namely their multipotency and non-immunogenic properties.MethodsWe analyzed how human MSC derived from first-trimester fetal liver and adult bone marrow interact with naive and activated innate natural killer (NK) cells. NK cell function was studied by measuring killing of MSC, as well as degranulation (CD107a) induced by MSC. To assess the importance of NK cell killing, expression of surface epitopes was analyzed by flow cytometry on MSC before and after stimulation with interferon (IFN)γ.ResultsFetal and adult MSC express several ligands to activating NK cell receptors as well as low levels of HLA class I, with large inter-individual variation. Naive peripheral blood NK cells did not lyse fetal or adult MSC, whereas interleukin (IL)2 activated allogeneic as well as autologous NK cells did. Pre-incubation of MSC with IFN-γ increased their levels of HLA class I, protecting them from NK cell recognition. Fetal and adult MSC were preferably killed via the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL) pathways, respectively. Blocking NKG2D reduced NK cell degranulation in both fetal and adult MSC.ConclusionsFetal and adult MSC differ in their interactions with NK cells. Both fetal and adult MSC are susceptible to lysis by activated NK cells, which may have implications for the use of MSC in cell therapy.  相似文献   

18.
Gingival fibroblasts (GFs) that exhibit adult stem cell-like characteristics are known as gingival mesenchymal stem cells (GMSCs). Specific mesenchymal stem cell (MSC) markers have not been identified to distinguish GMSCs from GFs. Recently, the cell surface molecule known as cluster of differentiation (CD) 146 has been identified as a potential MSC surface marker. In the present study, we investigated the differentiation potential of GMSCs based on CD146 expression.GFs were isolated by two techniques: tissue explants or enzymatic digestion. GFs were cultured and expanded then magnetically sorted according to CD146 expression. CD146low and CD146high cells were collected, expanded, and then tested for stem cell markers by flow cytometry as well as osteogenic and chondrogenic differentiation potential. The differentiation of these cells was analyzed after 21 days using histology, immunofluorescence, real-time quantitative PCR (qPCR), and glycosaminoglycan (GAG) to DNA ratio (GAG/DNA) assays. Positive histological staining indicated osteogenic differentiation of all groups regardless of the isolation techniques utilized. However, none of the groups demonstrated chondrogenic differentiation, confirmed by the lack of collagen type II in the extracellular matrix (ECM) of GF aggregates. Our data suggest that identification of gingival stem cells based solely on CD146 is not sufficient to properly carry out translational research using gingival fibroblasts for novel therapeutic methods of treating oral disease.  相似文献   

19.
Endothelial progenitor cells (EPC) participate in revascularization and angiogenesis. EPC can be cultured in vitro from mononuclear cells of peripheral blood, umbilical cord blood or bone marrow; they also can be transdifferentiated from mesenchymal stem cells (MSC). We isolated EPCs from Wharton's jelly (WJ) using two methods. The first method was by obtaining MSC from WJ and characterizing them by flow cytometry and their adipogenic and osteogenic differentiation, then applying endothelial growth differentiating media. The second method was by direct culture of cells derived from WJ into endothelial differentiating media. EPCs were characterized by morphology, Dil-LDL uptake/UEA-1 immunostaining and testing the expression of endothelial markers by flow cytometry and RT-PCR. We found that MSC derived from WJ differentiated into endothelial-like cells using simple culture conditions with endothelium induction agents in the medium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号