首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosome numbers for 106 species in 36 genera of Mexican ferns are reported. Of these, 47 are first reports for the species. Ten additional counts differ from previous reports. These counts suggest taxa where additional sampling might aid in making taxonomic decisions.  相似文献   

2.
Emerging technologies based on the detection of electro‐magnetic energy offer promising opportunities for sampling biodiversity. We exploit their potential by showing here how they can be used in bat point counts—a novel method to sample flying bats—to overcome shortcomings of traditional sampling methods, and to maximize sampling coverage and taxonomic resolution of this elusive taxon with minimal sampling bias. We conducted bat point counts with a sampling rig combining a thermal scope to detect bats, an ultrasound recorder to obtain echolocation calls, and a near‐infrared camera to capture bat morphology. We identified bats with a dedicated identification key combining acoustic and morphological features, and compared bat point counts with the standard bat sampling methods of mist‐netting and automated ultrasound recording in three oil palm plantation sites in Indonesia, over nine survey nights. Based on rarefaction and extrapolation sampling curves, bat point counts were similarly effective but more time‐efficient than the established methods for sampling the oil palm species pool in our study. Point counts sampled species that tend to avoid nets and those that are not echolocating, and thus cannot be detected acoustically. We identified some bat sonotypes with near‐infrared imagery, and bat point counts revealed strong sampling biases in previous studies using capture‐based methods, suggesting similar biases in other regions might exist. Our method should be tested in a wider range of habitats and regions to assess its performance. However, while capture‐based methods allow to identify bats with absolute and internal morphometry, and unattended ultrasound recorders can effectively sample echolocating bats, bat point counts are a promising, non‐invasive, and potentially competitive new tool for sampling all flying bats without bias and observing their behavior in the wild.  相似文献   

3.
A long-standing goal in artificial intelligence is creating agents that can learn a variety of different skills for different problems. In the artificial intelligence subfield of neural networks, a barrier to that goal is that when agents learn a new skill they typically do so by losing previously acquired skills, a problem called catastrophic forgetting. That occurs because, to learn the new task, neural learning algorithms change connections that encode previously acquired skills. How networks are organized critically affects their learning dynamics. In this paper, we test whether catastrophic forgetting can be reduced by evolving modular neural networks. Modularity intuitively should reduce learning interference between tasks by separating functionality into physically distinct modules in which learning can be selectively turned on or off. Modularity can further improve learning by having a reinforcement learning module separate from sensory processing modules, allowing learning to happen only in response to a positive or negative reward. In this paper, learning takes place via neuromodulation, which allows agents to selectively change the rate of learning for each neural connection based on environmental stimuli (e.g. to alter learning in specific locations based on the task at hand). To produce modularity, we evolve neural networks with a cost for neural connections. We show that this connection cost technique causes modularity, confirming a previous result, and that such sparsely connected, modular networks have higher overall performance because they learn new skills faster while retaining old skills more and because they have a separate reinforcement learning module. Our results suggest (1) that encouraging modularity in neural networks may help us overcome the long-standing barrier of networks that cannot learn new skills without forgetting old ones, and (2) that one benefit of the modularity ubiquitous in the brains of natural animals might be to alleviate the problem of catastrophic forgetting.  相似文献   

4.
Species identification lies at the heart of most ecological studies, but it is recognized as a difficult and often frustrating task. Taxonomists have sought to overcome the difficulties of species identification by developing a range of tools and techniques that have increasingly involved the use of computers. We describe recent developments in computer-aided species identification, which have been in four main areas; multi-access keys; hypertext keys; expert systems; and neural networks. We also suggest which technique might be appropriate for a particular taxonomic group.  相似文献   

5.
Seventy-two chromosome counts representing 36 species are recorded with taxonomic notes and discussed in relation to the classifications of the family proposed by Copeland and Morton. A comparison of the available cytological data with the two classifications raises problems of a different nature with respect to the proposed subdivisions of the hymenophylloid and trichomanoid species. Many of the hymenophylloid taxa are cytologically heterogeneous, and it is suggested that morphological reassessment of cytologically authenticated material may lead to a more satisfactory grouping of these species. In contrast most of the trichomanoid taxa are confirmed by the cytological data; but at the same time there is considerable cytological uniformity among the numerous small genera recognized by Copeland. The cytological pattern of the subgenera in Morton's classification indicates how an improved classification of these species, recognizing fewer genera, might eventually be achieved.  相似文献   

6.
Recent studies of children''s tool innovation have revealed that there is variation in children''s success in middle-childhood. In two individual differences studies, we sought to identify personal characteristics that might predict success on an innovation task. In Study 1, we found that although measures of divergent thinking were related to each other they did not predict innovation success. In Study 2, we measured executive functioning including: inhibition, working memory, attentional flexibility and ill-structured problem-solving. None of these measures predicted innovation, but, innovation was predicted by children''s performance on a receptive vocabulary scale that may function as a proxy for general intelligence. We did not find evidence that children''s innovation was predicted by specific personal characteristics.  相似文献   

7.

Background

Various neuroimaging studies, both structural and functional, have provided support for the proposal that a distributed brain network is likely to be the neural basis of intelligence. The theory of Distributed Intelligent Processing Systems (DIPS), first developed in the field of Artificial Intelligence, was proposed to adequately model distributed neural intelligent processing. In addition, the neural efficiency hypothesis suggests that individuals with higher intelligence display more focused cortical activation during cognitive performance, resulting in lower total brain activation when compared with individuals who have lower intelligence. This may be understood as a property of the DIPS.

Methodology and Principal Findings

In our study, a new EEG brain mapping technique, based on the neural efficiency hypothesis and the notion of the brain as a Distributed Intelligence Processing System, was used to investigate the correlations between IQ evaluated with WAIS (Whechsler Adult Intelligence Scale) and WISC (Wechsler Intelligence Scale for Children), and the brain activity associated with visual and verbal processing, in order to test the validity of a distributed neural basis for intelligence.

Conclusion

The present results support these claims and the neural efficiency hypothesis.  相似文献   

8.
Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including ‘random’ and ‘4Q’ (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the ‘4Q’ cultures presented absolutely different activities, and the robot controlled by the ‘4Q’ network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.  相似文献   

9.
Chromosome observations reported here from 70 collections representing 65 species from 40 genera of Compositae (mostly Heliantheae) provide taxonomically useful information. First counts for 28 species, including the first count for Psacaliopsis, may prove to be especially interesting in relation to phyletic and taxonomic alignments of the taxa. Of special interest among first reports is 2n = 5 II for Stevia lita; other stevias have x = 11, 12, or 17. Thirteen of our counts differ from prior reports and may also be of particular interest in phyletic and taxonomic contexts.  相似文献   

10.
Amphibians, reptiles, birds and mammals serve as hosts for 19 species of Cryptosporidium. All 19 species have been confirmed by morphological, biological, and molecular data. Fish serve as hosts for three additional species, all of which lack supporting molecular data. In addition to the named species, gene sequence data from more than 40 isolates from various vertebrate hosts are reported in the scientific literature or are listed in GenBank. These isolates lack taxonomic status and are referred to as genotypes based on the host of origin. Undoubtedly, some will eventually be recognized as species. For them to receive taxonomic status sufficient morphological, biological, and molecular data are required and names must comply with the rules of the International Code for Zoological Nomenclature (ICZN). Because the ICZN rules may be interpreted differently by persons proposing names, original names might be improperly assigned, original literature might be overlooked, or new scientific methods might be applicable to determining taxonomic status, the names of species and higher taxa are not immutable. The rapidly evolving taxonomic status of Cryptosporidium sp. reflects these considerations.  相似文献   

11.
A number of major inventions in history have been based on bionic imitation. Heuristics, by applying biological systems to the creation of artificial devices and machines, might be one of the most critical processes in scientific innovation. In particular, prototype heuristics propositions that innovation may engage automatic activation of a prototype such as a biological system to form novel associations between a prototype''s function and problem-solving. We speculated that the cortical dissociation between the automatic activation and forming novel associations in innovation is critical point to heuristic creativity. In the present study, novel and old scientific innovations (NSI and OSI) were selected as experimental materials in using learning-testing paradigm to explore the neural basis of scientific innovation induced by heuristic prototype. College students were required to resolve NSI problems (to which they did not know the answers) and OSI problems (to which they knew the answers). From two fMRI experiments, our results showed that the subjects could resolve NSI when provided with heuristic prototypes. In Experiment 1, it was found that the lingual gyrus (LG; BA18) might be related to prototype heuristics in college students resolving NSI after learning a relative prototype. In Experiment 2, the LG (BA18) and precuneus (BA31) were significantly activated for NSI compared to OSI when college students learned all prototypes one day before the test. In addition, the mean beta-values of these brain regions of NSI were all correlated with the behavior accuracy of NSI. As our hypothesis indicated, the findings suggested that the LG might be involved in forming novel associations using heuristic information, while the precuneus might be involved in the automatic activation of heuristic prototype during scientific innovation.  相似文献   

12.
The number of functional traits of a wastewater treatment plant (WWTP) microbial community (i.e. functional richness) is thought to be an important determinant of its overall functional performance, but the ecological factors that determine functional richness remain unclear. The number of taxa within a community (i.e. taxonomic richness) is one ecological factor that might be important. Communities that contain more taxa are more likely to have more functional traits, and a positive association is therefore expected between functional and taxonomic richness. Empirical tests for this positive association among WWTP communities, however, are lacking. We address this knowledge gap by measuring the functional and taxonomic richness of 10 independent WWTP communities. We demonstrate that functional and taxonomic richness are positively associated with each other. We further demonstrate that functional and taxonomic richness are negatively associated with the effluent NH4‐N and BOD5 concentrations. This led us to hypothesize that correlated variation in functional and taxonomic richness is likely related to variation in ambient nitrogen and carbon availability. We finally demonstrate that this hypothesis is consistent with the functional and taxonomic attributes of the WWTP communities. Together, our results improve our basic understanding of the ecology and functioning of WWTP communities.  相似文献   

13.
While self-assembly is a fairly active area of research in swarm intelligence, relatively little attention has been paid to the issues surrounding the construction of network structures. In this paper we extend methods developed previously for controlling collective movements of agent teams to serve as the basis for self-assembly or “growth” of networks, using neural networks as a concrete application to evaluate our approach. Our central innovation is having network connections arise as persistent “trails” left behind moving agents, trails that are reminiscent of pheromone deposits made by agents in ant colony optimization models. The resulting network connections are thus essentially a record of agent movements. We demonstrate our model’s effectiveness by using it to produce two large networks that support subsequent learning of topographic and feature maps. Improvements produced by the incorporation of collective movements are also examined through computational experiments. These results indicate that methods for directing collective movements can be adopted to facilitate network self-assembly.  相似文献   

14.
Explanations for taxonomic diversity in a particular clade often implicate evolutionary innovations, possessed by members of the clade, that are thought to have favoured diversification. We review such “key innovation”; hypotheses, the ecological mechanisms involved, and potential tests of such hypotheses.

Key innovation hypotheses can be supported by evidence of ecological mechanism and by comparative tests. We argue that both are necessary for convincing support. In fact, few key innovation hypotheses are currently backed by either one.

We group ecological mechanisms of diversification in three major classes. Diversification may be spurred by innovations that: I) allow invasion of new adaptive zones; II) increase fitness, allowing one clade to replace another; or III) increase the propensity for reproductive or ecological specialization. Key innovations in different classes are likely to produce different evolutionary patterns, and therefore may be supported by different kinds of ecological evidence.  相似文献   

15.
Previous anatomical and physiological studies have implicated the lateral habenula, and especially its medial division (LHbM), as a candidate component of the circadian timing system in rodents. We assayed lateral habenula rhythmicity in rodents using c-FOS immunohistochemistry and found a robust rhythm in immunoreactive cell counts in the LHbM, with higher counts during the dark phase of a light-dark (LD) cycle and during subjective night in constant darkness. We have also observed an obvious asymmetry of c-FOS expression in the LHbM of behaviorally "split" hamsters in constant light, but only during their active phase (when they were running in wheels). Locomotor activity rhythms appear to be regulated by the suprachiasmatic nucleus (SCN) via multiple output pathways, one of which might be diffusible while the other might be neural, involving the lateral habenula.  相似文献   

16.
In a comparative study of neophilia, innovation and social attentiveness we exposed individuals in seven callitrichid species, from three genera, to novel extractive foraging tasks. The results revealed consistently shorter response latencies, higher levels of successful and unsuccessful manipulation, and greater attentiveness to the task and to conspecifics inLeontopithecus (lion tamarins) than in both Saguinus (tamarins) and Callithrix (marmosets). This is consistent with the hypothesis that species dependent upon manipulative and explorative foraging tend to be less neophobic and more innovative than other species. Furthermore, Callithrix appeared to be less neophobic than Saguinus; ifCallithrix is regarded as the greater specialist, this result is inconsistent with the hypothesis that neophobia is associated with foraging specialization. We consider the relevance of our findings to taxonomic relationships, and to technical and Machiavellian intelligence hypotheses and discuss the implications for captive breeding and reintroduction strategies.Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

17.
Rapid increases in taxonomic diversity are generally described as adaptive or evolutionary radiations. Such radiations differ widely in the rate and extent of morphologic innovation, taxonomic diversification and phylogenetic breadth, suggesting that several patterns, and likely processes, are involved. At least four distinct patterns of evolutionary radiation can be identified: novelty events, which generate new morphological complexity (altering the body plan of the group under consideration) but not necessarily with the associated production of many lower taxa; broad diversification events involving many independent lineages that undergo diversification, generate many new species and are driven by new ecological opportunities; economic radiations of a limited group of ecologically (but not necessarily phylogenetically) related clades exploiting a limited new ecologic opportunity; and adaptive radiations that may occur at any taxonomic level, but involve a rapid increase in diversity within a single clade, including “true”; adaptive radiations. Many events produce simple diversity increases with no corresponding increase in genetic/developmental/morphological/behavioral sophistication, but the most evolutionarily interesting events add new levels of complexity.  相似文献   

18.
Although the commonly used internal transcribed spacer region of rDNA (ITS) is well suited for taxonomic identification of fungi, the information on the relative abundance of taxa and diversity is negatively affected by the multicopy nature of rDNA and the existence of ITS paralogues. Moreover, due to high variability, ITS sequences cannot be used for phylogenetic analyses of unrelated taxa. The part of single‐copy gene encoding the second largest subunit of RNA polymerase II (rpb2) was thus compared with first spacer of ITS as an alternative marker for the analysis of fungal communities in spruce forest topsoil, and their applicability was tested on a comprehensive mock community. In soil, rpb2 exhibited broad taxonomic coverage of the entire fungal tree of life including basal fungal lineages. The gene exhibited sufficient variation for the use in phylogenetic analyses and taxonomic assignments, although it amplifies also paralogues. The fungal taxon spectra obtained with rbp2 region and ITS1 corresponded, but sequence abundance differed widely, especially in the basal lineages. The proportions of OTU counts and read counts of major fungal groups were close to the reality when rpb2 was used as a molecular marker while they were strongly biased towards the Basidiomycota when using the ITS primers ITS1/ITS4. Although the taxonomic placement of rbp2 sequences is currently more difficult than that of the ITS sequences, its discriminative power, quantitative representation of community composition and suitability for phylogenetic analyses represent significant advantages.  相似文献   

19.
In primates, baseline levels of white blood cell (WBC) counts are related to mating promiscuity. It was hypothesized that differences in the primate immune system reflect pathogen risks from sexually transmitted diseases (STDs). Here, we test for the generality of this result by examining hypotheses involving behavioural, ecological and life-history factors in carnivores. Again, we find a significant correlation in carnivores between mating promiscuity and elevated levels of WBC counts. In addition, we find relationships with measures of sociality, substrate use and life-history parameters. These comparative results across independent taxonomic orders indicate that the evolution of the immune system, as represented by phylogenetic differences in basal levels of blood cell counts, is closely linked to disease risk involved with promiscuous mating and associated variables. We found only limited support for an association between the percentage of meat in the diet and WBC counts, which is consistent with the behavioural and physiological mechanisms that carnivores use to avoid parasite transmission from their prey. We discuss additional comparative questions related to taxonomic differences in disease risk, modes of parasite transmission and implications for conservation biology.  相似文献   

20.
Previous anatomical and physiological studies have implicated the lateral habenula, and especially its medial division (LHbM), as a candidate component of the circadian timing system in rodents. We assayed lateral habenula rhythmicity in rodents using c‐FOS immunohistochemistry and found a robust rhythm in immunoreactive cell counts in the LHbM, with higher counts during the dark phase of a light‐dark (LD) cycle and during subjective night in constant darkness. We have also observed an obvious asymmetry of c‐FOS expression in the LHbM of behaviorally “split” hamsters in constant light, but only during their active phase (when they were running in wheels). Locomotor activity rhythms appear to be regulated by the suprachiasmatic nucleus (SCN) via multiple output pathways, one of which might be diffusible while the other might be neural, involving the lateral habenula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号