首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
alphabeta TCRs, which use an Ab-like structure to form a combining site, recognize molecular complexes consisting of peptides bound to MHC class I (MHC-I) or class II (MHC-II) molecules. To explore the similarities and differences between Ab and T cell recognition of similar structures, we have isolated two mAbs, KP14 and KP15, that specifically bind H-2D(d) complexed with an HIV envelope gp160-derived peptide, P18-I10. These Abs are MHC and peptide specific. Fine specificity of mAb binding was analyzed using a panel of synthetic peptides, revealing similarities between the mAb and a cloned TCR with the same specificity. These two mAbs used the same V(H) and J(H) gene segments, but different D, Vkappa, and Jkappa genes. Administered in vivo, mAb KP15 blocked the induction of CTL specific for recombinant vaccinia virus-encoded gp160, indicating its ability to bind endogenously generated MHC/peptide complexes. Analysis of the fine specificity of these mAbs in the context of their encoded amino acid sequences and the known three-dimensional structure of the H-2D(d)/P18-I10 complex suggests that they bind in an orientation similar to that of the TCR. Thus, the plasticity of the B cell receptor repertoire and the structural similarities among BCR and TCR allow Abs to effectively mimic alphabeta TCRs. Such mAbs may be useful in the therapeutic modulation of immune responses against infectious agents or harmful self Ags as well as in tracing steps in Ag processing.  相似文献   

2.
The CD8(+)-T-cell response to Moloney murine leukemia virus (M-MuLV)-associated antigens in C57BL/6 mice is directed against an immunodominant gag-encoded epitope (CCLCLTVFL) presented in the context of H-2D(b) and is restricted primarily to cytotoxic T lymphocytes (CTL) expressing the Valpha3.2 and Vbeta5.2 gene segments. We decided to examine the M-MuLV response in congenic C57BL/6 Vbeta(a) mice which are unable to express the dominant Valpha3.2(+) Vbeta5.2(+) T-cell receptor (TCR) due to a large deletion at the TCR locus that includes the Vbeta5.2 gene segment. Interestingly, M-MuLV-immune C57BL/6 Vbeta(a) mice were still able to reject M-MuLV-infected tumor cells and direct ex vivo analysis of peripheral blood lymphocytes from these immune mice revealed a dramatic increase in CD8(+) cells utilizing the same Valpha3.2 gene segment in association with two different Vbeta segments (Vbeta3 and Vbeta17). Surprisingly, all these CTL recognized the same immunodominant M-MuLV gag epitope. Analysis of the TCR repertoire of individual M-MuLV-immune (C57BL/6 x C57BL/6 Vbeta(a))F(1) mice revealed a clear hierarchy in Vbeta utilization, with a preferential usage of the Vbeta17 gene segment, whereas Vbeta3 and especially Vbeta5.2 were used to much lesser extents. Sequencing of TCRalpha- and -beta-chain junctional regions of CTL clones specific for the M-MuLV gag epitope revealed a diverse repertoire of TCRbeta chains in Vbeta(a) mice and a highly restricted TCRbeta-chain repertoire in Vbeta(b) mice, whereas TCRalpha-chain sequences were highly conserved in both cases. Collectively, our data indicate that the H-2D(b)-restricted M-MuLV gag epitope can be recognized in a hierarchal fashion by different Vbeta domains and that the degree of beta-chain diversity varies according to Vbeta utilization.  相似文献   

3.
Culturing naive T cells with 50 microM selected HIV-1 envelope peptides for 6 days in the presence of IL-2 drives the emergence of a substantial CD8(+) population that secretes IFN-gamma following short-term stimulation with 1 microM peptide. This response is H-2K(b) restricted, epitope specific, and requires the continuing presence of peptide. The same effect was found for known H-2D(b)-restricted peptides from two influenza virus proteins. The great majority of these influenza-specific CD8(+)IFN-gamma(+) T cells neither stained with the cognate tetramer nor expressed the TCR Vbeta bias that is characteristic of the CD8(+) set expanded in vivo during an infection. Thus, multipoint binding of low affinity TCRs on naive CD8(+) T cells can drive peptide-specific cytokine production. However, at least for two influenza-derived epitopes, the avidity of the TCR-MHC peptide interaction appears to be insufficient to stabilize a tetrameric complex of MHC class I glycoprotein plus peptide on the lymphocyte surface.  相似文献   

4.
The CD8(+) T cell response to Moloney-murine leukemia virus (M-MuLV)-induced Ags is almost entirely dominated by the exclusive expansion of lymphocytes that use preferential TCRVbeta chain rearrangements. In mice lacking T cells expressing these TCRVbeta, we demonstrate that alternative TCRVbeta can substitute for the lack of the dominant TCRVbeta in the H-2-restricted M-MuLV Ag recognition. We show that, at least for the H-2(b)-restricted response, the shift of TCR usage is not related to a variation of the immunodominant M-MuLV epitope recognition. After virus immunization, all the potentially M-MuLV-reactive lymphocytes are primed, but only the deletion of dominant Vbeta rescues the alternative Vbeta response. The mechanism of clonal T cell "immunodomination" that guides the preferential Vbeta expansion is likely the result of a proliferative advantage of T cells expressing dominant Vbeta, due to differences in TCR affinity and/or cosignal requirements. In this regard, a CD8 involvement is strictly required for the virus-specific cytotoxic activity of CTL expressing alternative, but not dominant, Vbeta gene rearrangements. The ability of T cells expressing alternative TCRVbeta rearrangements to mediate tumor protection was evaluated by a challenge with M-MuLV tumor cells. Although T cells expressing alternative Vbeta chains were activated and expanded, they were not able to control tumor growth in a long-lasting manner due to their incapacity of conversion and accumulation in the T central memory pool.  相似文献   

5.
Mutations in ras proto-oncogenes are commonly found in a diversity of malignancies and may encode unique, non-self epitopes for T cell-mediated antitumor activity. In a BALB/c (H-2(d)) murine model, we have identified a single peptide sequence derived from the ras oncogenes that contained both CD8(+) and CD4(+) T cell epitopes in a nested configuration. This peptide reflected ras sequence 4-16, and contained the substitution of Gly to Val at position 12 ?i.e., 4-16(Val12)?. Mice immunized with this 13-mer peptide induced a strong antigen (Ag)-specific CD4(+) proliferative response in vitro. In contrast, mice inoculated with the wild-type ras sequence failed to generate a peptide-specific T cell response. Additionally, mice immunized with the ras 4-16(Val12) peptide concomitantly displayed an Ag-specific CD8(+) cytotoxic T lymphocyte (CTL) response, as determined by lysis of syngeneic tumor target cells incubated with the nominal 9-mer nested epitope peptide ?i.e., 4-12(Val12)?, as well as lysis of tumor target cells expressing the corresponding ras codon 12 mutation. Analysis of the Valpha- and Vbeta-chains of the T cell receptor (TCR) expressed by these CTL revealed usage of the Valpha1 and Vbeta9 subunits, consistent with the TCR phenotype of anti-ras Val12 CTL lines produced by in vivo immunization with the nominal peptide epitope alone. Moreover, immunization with the nested epitope peptide, as compared to immunization with either the 9-mer CTL peptide alone or an admixture of the 9-mer CTL peptide with an overlapping 13-mer CD4(+) T cell helper peptide ?i.e., 5-17(Val12)? lacking the class I N-terminus anchor site, enhanced the production of the CD8(+) T cell response. Finally, immunization with plasmid DNA encoding the ras 4-16(Val12) sequence led to the induction of both Ag-specific proliferative and cytotoxic responses. Overall, these results suggested that a single peptide immunogen containing nested mutant ras-specific CD4(+) and CD8(+) T cell epitopes: (1) can be processed in vivo to induce both subset-specific T lymphocyte responses; and (2) leads to the generation of a quantitatively enhanced CD8(+) CTL response, likely due to the intimate coexistence of CD4(+) help, which may have implications in peptide- or DNA-based immunotherapies.  相似文献   

6.
During primary viral infection, in vivo exposure to high doses of virus causes a loss of Ag-specific CD8(+) T cells. This phenomenon, termed clonal exhaustion, and other mechanisms by which CTLs are deleted are poorly understood. Here we show evidence for a novel form of cell death in which recently stimulated CD8(+) HIV-1 envelope gp160-specific murine CTLs become apoptotic in vitro after brief exposure to free antigenic peptide (P18-I10). Peak apoptosis occurred within 3 h of treatment with peptide, and the level of apoptosis was dependent on both the time after initial stimulation with target cells and the number of targets. Using T cell-specific H-2D(d)/P18-I10 tetramers, we observed that the apoptosis was induced by such complexes. Induction of apoptosis was blocked by cyclosporin A, a caspase 3 inhibitor, and a mitogen-activated protein kinase inhibitor, but not by Abs to either Fas ligand or to TNF-alpha. Thus, these observations suggest the existence of a Fas- or TNF-alpha-independent pathway initiated by TCR signaling that is involved in the rapid induction of CTL apoptosis. Such a pathway may prove important in the mechanism by which virus-specific CTLs are deleted in the presence of high viral burdens.  相似文献   

7.
Heteroclitic peptides are used to enhance the immunogenicity of tumor-associated Ags to break T cell tolerance to these self-proteins. One such altered peptide ligand (Cap1-6D) has been derived from an epitope in human carcinoembryonic Ag, CEA(605-613) (Cap1). Clinical responses have been seen in colon cancer patients receiving a tumor vaccine comprised of this altered peptide. Whether Cap1-6D serves as a T cell agonist for Cap1-specific T cells or induces different T cells is unknown. We, therefore, examined the T cell repertoires elicited by Cap1-6D and Cap1. Human CTL lines and clones were generated with either Cap1-6D peptide (6D-CTLs) or Cap1 peptide (Cap1-CTLs). The TCR Vbeta usage and functional avidity of the T cells induced in parallel against these target peptides were assessed. The predominant CTL repertoire induced by agonist Cap1-6D is limited to TCR Vbeta1-J2 with homogenous CDR3 lengths. In contrast, the majority of Cap1-CTLs use different Vbeta1 genes and also had diverse CDR3 lengths. 6D-CTLs produce IFN-gamma in response to Cap1-6D peptide with high avidity, but respond with lower avidity to the native Cap1 peptide when compared with the Cap1-CTLs. Nevertheless, 6D-CTLs could still lyse targets bearing the native epitope. Consistent with these functional results, 6D-CTLs possess TCRs that bind Cap-1 peptide/MHC tetramer with higher intensity than Cap1-CTLs but form less stable interactions with peptide/MHC as measured by tetramer decay. These results demonstrate that priming with this CEA-derived altered peptide ligand can induce distinct carcinoembryonic Ag-reactive T cells with different functional capacities.  相似文献   

8.
For the analysis of mucosal immunity to HIV-1, we have recently established a line of transgenic (Tg) mice expressing the TCRalpha and TCRbeta genes of the murine CTL clone RT1 specific for P18-I10 (RGPGRAFVTI), an immunodominant gp160 envelope-derived epitope of IIIB isolate, restricted by the H-2D(d) MHC-I molecule. Here we examine those cells bearing specific TCR among the intraepithelial lymphocytes (IELs), with flow cytometric analysis using H-2D(d)/P18-I10 tetramers. We observed three distinct CD3(+), tetramer positive populations among the IELs: extra-thymic CD8alphabeta(+), alphabetaTCR T-cells; CD8 alphaalpha+, gammadeltaTCR T-cells; and thymus-derived CD8alphabeta+, alphabetaTCR T-cells. Challenge of these Tg mice with P18-I10 encoded by a vaccinia virus vector, either intrarectally (i.r.) or intraperitoneally (i.p.), revealed that the intraepithelial compartment seems to be a major site for prevention of the spread of viral infection. Such immunity appears due to the thymus-derived, CD8alphabeta+ antigen-specific CTLs together with CD8alphaalpha+ gammadelta cells, which regulate virus spread. This model system for studying CTL based immunity at mucosal sites should prove helpful in developing rational approaches for HIV control.  相似文献   

9.
Lymphocytic choriomeningitis virus infection of H-2(b) mice generates a strong CD8(+) CTL response mainly directed toward three immunodominant epitopes, one of which, gp33, is presented by both H-2D(b) and H-2K(b) MHC class I molecules. This CTL response acts as a selective agent for the emergence of viral escape variants. These variants generate altered peptide ligands (APLs) that, when presented by class I MHC molecules, antagonize CTL recognition and ultimately allow the virus to evade the cellular immune response. The emergence of APLs of the gp33 epitope is particularly advantageous for LCMV, as it allows viral escape in the context of both H-2D(b) and H-2K(b) MHC class I molecules. We have determined crystal structures of three different APLs of gp33 in complex with both H-2D(b) and H-2K(b). Comparison between these APL/MHC structures and those of the index gp33 peptide/MHC reveals the structural basis for three different strategies used by LCMV viral escape mutations: 1) conformational changes in peptide and MHC residues that are potential TCR contacts, 2) impairment of APL binding to the MHC peptide binding cleft, and 3) introduction of subtle changes at the TCR/pMHC interface, such as the removal of a single hydroxyl group.  相似文献   

10.
Recent studies have shown that CTL epitopes derived from tumor-associated Ags can be encoded by both primary and nonprimary open reading frames (ORF). In this study we have analyzed the HLA-A2-restricted CD8(+) T cell response to a recently identified CTL epitope derived from an alternative ORF product of gene LAGE-1 (named CAMEL), and the highly homologous gene NY-ESO-1 in melanoma patients. Using MHC/peptide tetramers we detected CAMEL(1-11)-specific CD8(+) T cells in peptide-stimulated PBMC as well as among tumor-infiltrated lymph node cells from several patients. Sorting and expansion of tetramer(+) CD8(+) T cells allowed the isolation of tetramer(bright) and tetramer(dull) populations that specifically recognized the peptide Ag with high and low avidity, respectively. Remarkably, only high avidity CAMEL-specific CTL were able to recognize Ag-expressing tumor cells. A large series of HLA-A2-positive melanoma cell lines was characterized for the expression of LAGE-1 and NY-ESO-1 mRNA and protein and tested for recognition by CAMEL-specific CTL as well as CTL that recognize a peptide (NY-ESO-1(157-165)) encoded by the primary ORF products of the LAGE-1 and NY-ESO-1 genes. This analysis revealed that tumor-associated CD8(+) T cell epitopes are simultaneously and efficiently generated from both primary and nonprimary ORF products of LAGE-1 and NY-ESO-1 genes and, importantly, that this occurs in the majority of melanoma tumors. These findings underscore the in vivo immunological relevance of CTL epitopes derived from nonprimary ORF products and support their use as candidate vaccines for inducing tumor specific cell-mediated immunity against cancer.  相似文献   

11.
In this study, we developed a mouse model of adoptive immunotherapy reflecting immune recognition of syngeneic tumor cells naturally expressing an endogenous rejection Ag. Specifically, in a pulmonary metastases model, we examined the potency and maintenance of an antitumor CD8(+) CTL response in vivo, as well as its effectiveness against an "extensive" tumor burden. The approach taken was to first generate tumor-specific CTL from mice challenged with the CMS4 sarcoma coadministered with anti-CTLA4 mAb, which has been shown to facilitate the induction of Ag-specific T cell responses in vivo. An H-2L(d)-restricted nonamer peptide, derived from an endogenous murine leukemia provirus was identified as a CMS4-reactive CTL epitope based upon the following: CTL cross-recognition of another syngeneic tumor cell line (CT26 colon carcinoma) previously characterized to express that gene product; sensitization of Ag-negative lymphoblasts or P815 targets with the peptide; and by cold target inhibition assays. In vivo, the adoptive transfer of CMS4-reactive CTL (> or =1 x 10(6)) resulted in nearly the complete regression of 3-day established lung metastases. Furthermore, mice that rejected CMS4 following a single adoptive transfer of CTL displayed antitumor activity to a rechallenge 45 days later, not only in the lung, but also at a s.c. distal site. Lastly, the adoptive transfer of CTL to mice harboring extensive pulmonary metastases (> 150 nodules) led to a substantial reduction in tumor burden. Overall, these data suggest that the adoptive transfer of tumor-specific CTL may have therapeutic potential for malignancies that proliferate in or metastasize to the lung.  相似文献   

12.
Both the underlying molecular mechanisms and the kinetics of TCR repertoire selection following vaccination against tumor Ags in humans have remained largely unexplored. To gain insight into these questions, we performed a functional and structural longitudinal analysis of the TCR of circulating CD8(+) T cells specific for the HLA-A2-restricted immunodominant epitope from the melanocyte differentiation Ag Melan-A in a melanoma patient who developed a vigorous and sustained Ag-specific T cell response following vaccination with the corresponding synthetic peptide. We observed an increase in functional avidity of Ag recognition and in tumor reactivity in the postimmune Melan-A-specific populations as compared with the preimmune blood sample. Improved Ag recognition correlated with an increase in the t(1/2) of peptide/MHC interaction with the TCR as assessed by kinetic analysis of A2/Melan-A peptide multimer staining decay. Ex vivo analysis of the clonal composition of Melan-A-specific CD8(+) T cells at different time points during vaccination revealed that the response was the result of asynchronous expansion of several distinct T cell clones. Some of these T cell clones were also identified at a metastatic tumor site. Collectively, these data show that tumor peptide-driven immune stimulation leads to the selection of high-avidity T cell clones of increased tumor reactivity that independently evolve within oligoclonal populations.  相似文献   

13.
Previously, we reported that a 7-mer HLA-A11-restricted peptide (YVNTNMG) of hepatitis B virus (HBV) core Ag (HBcAg(88-94)) was associated with heat shock protein (HSP) gp96 in liver tissues of patients with HBV-induced hepatocellular carcinoma (HCC). This peptide is highly homologous to a human HLA-A11-restricted 9-mer peptide (YVNVNMGLK) and to a mouse H-2-K(d)-restricted 9-mer peptide (SYVNTNMGL). To further characterize its immunogenicity, BALB/c mice were vaccinated with the HBV 7-mer peptide. It was found that a specific CTL response was induced by the 7-mer peptide, although the response was approximately 50% of that induced by the mouse H-2-K(d)-restricted 9-mer peptide, as detected by ELISPOT, tetramer, and (51)Cr release assays. To evaluate the adjuvant effect of HSP gp96, mice were coimmunized with gp96 and the 9-mer peptide, and a significant adjuvant effect was observed with gp96. To further determine whether the immune effect of gp96 was dependent on peptide binding, the N- and C-terminal fragments of gp96, which are believed to contain the putative peptide-binding domain, were cloned and expressed in Escherichia coli. CTL assays indicated that only the N-terminal fragment, but not the C-terminal fragment, was able to produce the adjuvant effect. These results clearly demonstrated the potential of using gp96 or its N-terminal fragment as a possible adjuvant to augment CTL response against HBV infection and HCC.  相似文献   

14.
15.
Adoptive transfer of T cells expressing transgenic TCR with antitumor specificity provides a hopeful new therapy for patients with advanced cancer. To fulfill a large need for TCR with high affinity and specificity for various tumor entities, we sought to identify parameters for rapid selection of CTL clones with suitable characteristics. Twelve CTL clones displaying different Ag sensitivities for the same peptide-MHC epitope of the melanoma-associated Ag tyrosinase were analyzed in detail. Better MHC-multimer binding and slower multimer release are thought to reflect stronger TCR-peptide-MHC interactions; thus, these parameters would seem well suited to identify higher avidity CTL. However, large disparities were found comparing CTL multimer binding with peptide sensitivity. In contrast, CD8(+) CTL with superior Ag sensitivity mediated good tumor cytotoxicity and also secreted the triple combination of IFN-γ, IL-2, and TNF-α, representing a Th1 pattern often missing in lower avidity CTL. Furthermore, recipient lymphocytes were imbued with high Ag sensitivity, superior tumor recognition, as well as capacity for Th1 polycytokine secretion after transduction with the TCR of a high-avidity CTL. Thus, Th1 polycytokine secretion served as a suitable parameter to rapidly demark cytotoxic CD8(+) T cell clones for further TCR evaluation.  相似文献   

16.
Anchor residue-modified peptides derived from tumor-associated Ag have demonstrated success in engendering immune responses in clinical studies. However, tumor regression does not always correlate with immune responses. One hypothesis to explain this is that CTL resulting from such immunization approaches are variable in antitumor potency. In the present study, we evaluated this hypothesis by characterizing the activity of tumor-associated Ag-specific CTL. We chose an anchor residue-modified peptide from gp100, G209-2M, and used peptide-pulsed dendritic cells to generate CTL from PBMC of HLA-A2(+) normal donors. The specificities and avidities of the resulting CTL were evaluated. The results demonstrate that CTL generated by G209-2M can be classified into three categories: G209-2M-specific CTL which are cytotoxic only to G209-2M-pulsed targets; peptide-specific CTL which recognize both G209 and G209-2M peptides but not melanomas; and melanoma-reactive CTL which recognize peptide-pulsed targets as well as HLA-A2(+)gp100(+) melanomas. CTL that kill only peptide-pulsed targets require a higher peptide concentration to mediate target lysis, whereas CTL that lyse melanomas need a lower peptide concentration. Increasing peptide density on melanomas by loading exogenous G209 peptide enhances their sensitivity to peptide-specific CTL. High avidity CTL clones also demonstrate potent antimelanoma activity in melanoma model in nude mice. Injection of G209 peptide around transplanted tumors significantly enhances the antitumor activity of low avidity CTL. These results suggest that peptide stimulation causes expansion of T cell populations with a range of avidities. Successful immunotherapy may require selective expansion of the higher-avidity CTL and intratumor injection of the peptide may enhance the effect of peptide vaccines.  相似文献   

17.
Using plasmid vaccination with DNA encoding the putative phosphate transport receptor PstS-3 from Mycobacterium tuberculosis and 36 overlapping 20-mer peptides spanning the entire PstS-3 sequence, we determined the immunodominant Th1-type CD4(+) T cell epitopes in C57BL/10 mice, as measured by spleen cell IL-2 and IFN-gamma production. Furthermore, a potent IFN-gamma-inducing, D(b)-restricted CD8(+) epitope was identified using MHC class I mutant B6.C-H-2(bm13) mice and intracellular IFN-gamma and whole blood CD8(+) T cell tetramer staining. Using adoptive transfer of CFSE-labeled, peptide-pulsed syngeneic spleen cells from naive animals into DNA vaccinated or M. tuberculosis-infected recipients, we demonstrated a functional in vivo CTL activity against this D(b)-restricted PstS-3 epitope. IFN-gamma ELISPOT responses to this epitope were also detected in tuberculosis-infected mice. The CD4(+) and CD8(+) T cell epitopes defined for PstS-3 were completely specific and not recognized in mice vaccinated with either PstS-1 or PstS-2 DNA. The H-2 haplotype exerted a strong influence on immune reactivity to the PstS-3 Ag, and mice of the H-2(b, p, and f) haplotype produced significant Ab and Th1-type cytokine levels, whereas mice of H-2(d, k, r, s, and q) haplotype were completely unreactive. Low responsiveness against PstS-3 in MHC class II mutant B6.C-H-2(bm12) mice could be overcome by DNA vaccination. IFN-gamma-producing CD8(+) T cells could also be detected against the D(b)-restricted epitope in H-2(p) haplotype mice. These results highlight the potential of DNA vaccination for the induction and characterization of CD4(+) and particularly CD8(+) T cell responses against mycobacterial Ags.  相似文献   

18.
The TCR-alpha beta of CTL recognize peptide Ag in association with MHC class I molecules. TCR binding should be highly specific to guarantee pathogen specificity and to avoid self-reactivity. Therefore, the in vivo relevance of T cells exhibiting cross-reactivities in vitro and the respective role of the TCR affinities involved are not clear. To analyze high and low avidity T cell activities both in vitro and in vivo, we investigated primary and clonal CTL responses specific for the lymphocytic choriomeningitis virus nucleoprotein 118-126 epitope in association with the two closely related H-2Ld or H-2Lq molecules. As expected, we found highly specific class I-allele-restricted CTL responses when antiviral protection or immunopathology in vivo and lysis of virus infected target cells in vitro were analyzed. In contrast, the CTL were MHC crossreactive and thus considerably less discriminatory against targets expressing high MHC-peptide densities and in proliferation assays. The data show that relatively high TCR avidities are required for virus neutralization in vivo, in contrast to in vitro analyses of peptide-coated target cells or proliferative T cell responses that may engage TCR of low avidity and broad specificity and therefore may not reflect biologically relevant TCR avidities.  相似文献   

19.
We have examined the possibility that Ag-specific CTL responses may play a role in the pathogenesis of CREAE by using an effector T cell line (LN400) specifically reactive to the SJL encephalitogenic epitope defined by myelin basic protein MBP residues(90-101). The LN400 cell line was capable of adoptively transferring CREAE to naive SJL mice and proliferated specifically to synthetic peptides corresponding to MBP residues(90-101) and an N-acetylated analogue of this epitope, as well as MBP. Moreover, the cell line generated Ag-specific CTL responses only against syngeneic targets that had been pulsed with these Ag. Targets pulsed with irrelevant Ag were not lysed. These CTL responses were MHC restricted to H-2s and were inhibited if targets were preincubated with mAb specific for relevant class II Ag. No inhibition was seen if targets were preincubated with mAb specific for class I Ag, indicating that the CTL responses generated by this L3T4+ Lyt-2.2- cell lines were class II restricted. Studies designed to detect nonspecific CTL through a bystander mechanism failed to demonstrate significant lysis of bystander targets by this Ag-specific cell line. These findings have relevance in defining potential mechanisms of disease induction in this model autoimmune disease.  相似文献   

20.
C57BL/6 (B6; H-2(b)) mice mount strong AKR/Gross murine leukemia virus (MuLV)-specific CD8(+) CTL responses to the immunodominant K(b)-restricted epitope, KSPWFTTL, of endogenous AKR/Gross MuLV. In sharp contrast, spontaneous virus-expressing AKR.H-2(b) congenic mice are low/nonresponders for the generation of AKR/Gross MuLV-specific CTL. Furthermore, when viable AKR.H-2(b) spleen cells are cocultured with primed responder B6 antiviral precursor CTL, the AKR.H-2(b) cells function as "veto" cells that actively mediate the inhibition of antiviral CTL generation. AKR.H-2(b) veto cell inhibition is virus specific, MHC restricted, contact dependent, and mediated through veto cell Fas ligand/responder T cell Fas interactions. In this study, following specific priming and secondary in vitro restimulation, antiretroviral CD8(+) CTL were identified by a labeled K(b)/KSPWFTTL tetramer and flow cytometry, enabling direct visualization of AKR.H-2(b) veto cell-mediated depletion of these CTL. A 65-93% reduction in the number of B6 K(b)/KSPWFTTL tetramer(+) CTL correlated with a similar reduction in antiviral CTL cytotoxicity. Addition on sequential days to the antiviral CTL restimulation cultures of either 1) AKR.H-2(b) veto cells or 2) a blocking Fas-Ig fusion protein (to cultures also containing AKR.H-2(b) veto cells) to block inhibition demonstrated that AKR.H-2(b) veto cells begin to inhibit B6 precursor CTL/CTL expansion during days 2 and 3 of the 6-day culture. Shortly thereafter, a high percentage of B6 tetramer(+) CTL cocultured with AKR.H-2(b) veto cells was annexin V positive and Fas(high), indicating apoptosis as the mechanism of veto cell inhibition. Experiments using the irreversible inhibitor emetine demonstrated that AKR.H-2(b) cells had to be metabolically active and capable of protein synthesis to function as veto cells. Of the tetramer-positive CTL that survived veto cell-mediated apoptosis, there was no marked skewing from the preferential usage of Vbeta4, 8.1/8.2, and 11 TCR normally observed. These findings provide further insight into the complexity of host/virus interactions and suggest a fail-safe escape mechanism by virus-infected cells for epitopes residing in critical areas of viral proteins that cannot accommodate variations of amino acid sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号