首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The StAR-related lipid transfer (START) domain, first identified in the steroidogenic acute regulatory protein (StAR), is involved in the intracellular trafficking of lipids. Sixteen mammalian START domain-containing proteins have been identified to date. StAR, a protein targeted to mitochondria, stimulates the movement of cholesterol from the outer to the inner mitochondrial membranes, where it is metabolized into pregnenolone in steroidogenic cells. MLN64, the START domain protein most closely related to StAR, is localized to late endosomes along with other proteins involved in sterol trafficking, including NPC1 and NPC2, where it has been postulated to participate in sterol distribution to intracellular membranes. To investigate the role of MLN64 in sterol metabolism, we created mice with a targeted mutation in the Mln64 START domain, expecting to find a phenotype similar to that in humans and mice lacking NPC1 or NPC2 (progressive neurodegenerative symptoms, free cholesterol accumulation in lysosomes). Unexpectedly, mice homozygous for the Mln64 mutant allele were viable, neurologically intact, and fertile. No significant alterations in plasma lipid levels, liver lipid content and distribution, and expression of genes involved in sterol metabolism were observed, except for an increase in sterol ester storage in mutant mice fed a high fat diet. Embryonic fibroblast cells transfected with the cholesterol side-chain cleavage system and primary cultures of granulosa cells from Mln64 mutant mice showed defects in sterol trafficking as reflected in reduced conversion of endogenous cholesterol to steroid hormones. These observations suggest that the Mln64 START domain is largely dispensable for sterol metabolism in mice.  相似文献   

2.
This study demonstrates that the steroidogenic acute regulatory protein-related lipid transfer (START) domain-containing protein, MLN64, participates in intracellular cholesterol trafficking. Analysis of the intracellular itinerary of MLN64 and MLN64 mutants tagged with green fluorescent protein showed that the N-terminal transmembrane domains mediate endocytosis of MLN64 from the plasma membrane to late endocytic compartments. MLN64 constitutively traffics via dynamic NPC1-containing late endosomal tubules in normal cells; this dynamic movement was inhibited in cholesterol-loaded cells, and MLN64 is trapped at the periphery of cholesterol-laden lysosomes. The MLN64 START domain stimulated free cholesterol transfer from donor to acceptor mitochondrial membranes and enhanced steroidogenesis by placental mitochondria. Expression of a truncated form of MLN64 (DeltaSTART-MLN64), which contains N-terminal transmembrane domains but lacks the START domain, caused free cholesterol accumulation in lysosomes and inhibited late endocytic dynamics. The DeltaSTART-MLN64 dominant negative protein was located at the surface of the cholesterol-laden lysosomes. This dominant negative mutant suppressed steroidogenesis in COS cells expressing the mitochondrial cholesterol side chain cleavage system. We conclude that MLN64 participates in mobilization and utilization of lysosomal cholesterol by virtue of the START domain's role in cholesterol transport.  相似文献   

3.
The steroidogenic acute regulatory (StAR)-related lipid transfer (START) domains are found in a wide range of proteins involved in intracellular trafficking of cholesterol and other lipids. Among the START proteins are the StAR protein itself (STARD1) and the closely related MLN64 protein (STARD3), which both function in cholesterol movement. We compared the cholesterol-binding properties of these two START domain proteins. Cholesterol stabilized STARD3-START against trypsin-catalyzed degradation, whereas cholesterol had no protective effect on STARD1-START. [(3)H]Azocholestanol predominantly labeled a 6.2 kDa fragment of STARD1-START comprising amino acids 83-140, which contains residues proposed to interact with cholesterol in a hydrophobic cavity. Photoaffinity labeling studies suggest that cholesterol preferentially interacts with one side wall of this cavity. In contrast, [(3)H]azocholestanol was distributed more or less equally among the polypeptides of STARD3-START. Overall, our results provide evidence for differential cholesterol binding of the two most closely related START domain proteins STARD1 and STARD3.  相似文献   

4.
Abstract

Conversion of cholesterol to pregnenolone is the rate-limiting step in steroidogenesis, which is mediated by StAR protein. The mammalian genome contains 15 START domain proteins (StARD1–StARD15) of which C-terminal cytosolic START domain of metastatic lymph node 64 (MLN64 or StARD3), is known to mobilize cholesterol and proposed to participate in steroidogenesis. Being a key in steroidogenesis, it is of interest to identify new inhibitors that are able to bind MLN64 protein. In the present study, we used ligand-based virtual screening approach to identify ligands from the ZINC database with D(?)-Tartaric Acid (TAR) serving as a template.  相似文献   

5.
MLN64 is a transmembrane protein that shares homology with the cholesterol binding domain (START domain) of the steroidogenic acute regulatory protein. The steroidogenic acute regulatory protein is located in the inner membrane of mitochondria, where it facilitates cholesterol import into the mitochondria. Crystallographic analysis showed that the START domain of MLN64 is a cholesterol-binding domain. The present work was undertaken to determine which step of the intracellular cholesterol pathway MLN64 participates in. Using immunocytofluorescence, MLN64 colocalizes with LBPA, a lipid found specifically in late endosomes. Electron microscopy indicates that MLN64 is restricted to the limiting membrane of late endosomes. Microinjection or endocytosis of specific antibodies shows that the START domain of MLN64 is cytoplasmic. Deletion and mutagenesis experiments demonstrate that the amino-terminal part of MLN64 is responsible for its addressing. Although this domain does not contain conventional dileucine- or tyrosine-based targeting signals, we show that a dileucine motif (Leu(66)-Leu(67)) and a tyrosine residue (Tyr(89)) are critical for the targeting or the proper folding of the molecule. Finally, MLN64 colocalizes with cholesterol and Niemann Pick C1 protein in late endosomes. However, complementation assays show that MLN64 is not involved in the Niemann Pick C2 disease which, results in cholesterol lysosomal accumulation. Together, our results show that MLN64 plays a role at the surface of the late endosomes, where it might shuttle cholesterol from the limiting membrane to cytoplasmic acceptor(s).  相似文献   

6.
MLN64 is an integral membrane protein localized to the late endosome and plasma membrane that is thought to function as a mediator of cholesterol transport from endosomal membranes to the plasma membrane and/or mitochondria. The protein consists of two distinct domains: an N-terminal membrane-spanning domain that shares homology with the MENTHO protein and a C-terminal steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain that binds cholesterol. To further characterize the MLN64 protein, full-length and truncated proteins were overexpressed in cells and the effects on MLN64 trafficking and endosomal morphology were observed. To gain insight into MLN64 function, affinity chromatography and mass spectrometric techniques were used to identify potential MLN64 interacting partners. Of the 15 candidate proteins identified, 14-3-3 was chosen for further characterization. We show that MLN64 interacts with 14-3-3 in vitro as well as in vivo and that the strength of the interaction is dependent on the 14-3-3 isoform. Furthermore, blocking the interaction through the use of a 14-3-3 antagonist or MLN64 mutagenesis delays the trafficking of MLN64 to the late endosome and also results in the dispersal of endocytic vesicles to the cell periphery. Taken together, these studies have determined that MLN64 is a novel 14-3-3 binding protein and indicate that 14-3-3 plays a role in the endosomal trafficking of MLN64. Furthermore, these studies suggest that 14-3-3 may be the link by which MLN64 exerts its effects on the actin-mediated endosome dynamics.  相似文献   

7.
Steroidogenic acute regulatory (StAR)—related lipid transfer proteins possess a START (steroidogenic acute regulatory-related lipid transfer) domain. START domains are conserved protein modules involved in the non-vesicular intracellular transport of lipids and cholesterol in mammals. Fifteen mammalian proteins, divided in five subfamilies, are reported to possess a START domain. Members of the STARD4 subfamily, i.e. STARD4, 5 and 6 are essentially single START domains and are thought to be involved in the intracellular transport of cholesterol. No structure of a cholesterol-bound START domain from this family has been resolved yet. The determination of the structure of such a complex would contribute to a better understanding of the mechanism of ligand binding and transport by START domains, two unresolved aspects of their structural biology. In this context, we have undertaken the structure determination of a ligand-bound form of STARD5 by NMR. Here, we report the 1H, 13C and 15N backbone resonance assignments of the ligand-free STARD5.  相似文献   

8.
Bose HS  Whittal RM  Huang MC  Baldwin MA  Miller WL 《Biochemistry》2000,39(38):11722-11731
The steroidogenic acute regulatory protein (StAR) facilitates the movement of cholesterol from the outer to inner mitochondrial membrane in adrenal and gonadal cells, fostering steroid biosynthesis. MLN64 is a 445-amino acid protein of unknown function. When 218 amino-terminal residues of MLN-64 are deleted, the resulting N-218 MLN64 has 37% amino acid identity with StAR and 50% of StAR's steroidogenic activity in transfected cells. Antiserum to StAR cross-reacts with N-218 MLN64, indicating the presence of similar epitopes in both proteins. Western blotting shows that MLN64 is proteolytically cleaved in the placenta to a size indistinguishable from N-218 MLN64. Bacterially expressed N-218 MLN64 exerts StAR-like activity to promote the transfer of cholesterol from the outer to inner mitochondrial membrane in vitro. CD spectroscopy indicates that N-218 MLN64 is largely alpha-helical and minimally affected by changes in ionic strength or the hydrophobic character of the solvent, although glycerol increases the beta-sheet content. However, decreasing pH diminishes structure, causing aggregation. Limited proteolysis at pH 8.0 shows that the C-terminal domain of N-218 MLN64 is accessible to proteolysis whereas the 244-414 domain is resistant, suggesting it is more compactly folded. The presence of a protease-resistant domain and a protease-sensitive carboxy-terminal domain in N-218 MLN64 is similar to the organization of StAR. However, as MLN64 never enters the mitochondria, the protease-resistant domain of MLN64 cannot be a mitochondrial pause-transfer sequence, as has been proposed for StAR. Thus the protease-resistant domain of N-218 MLN64, and by inference the corresponding domain of StAR, may have direct roles in their action to foster the flux of cholesterol from the outer to the inner mitochondrial membrane.  相似文献   

9.
MLN64 is a late endosomal membrane protein containing a carboxyl-terminal cholesterol binding START domain and is presumably involved in intracellular cholesterol transport. In the present study, we have cloned a human cDNA encoding a novel protein that we called MENTHO as an acronym for MLN64 N-terminal domain homologue because this protein is closely related to the amino-terminal half of MLN64. MLN64 and MENTHO share 70% identity and 83% similarity in an original protein domain encompassing 171 amino acids that we designated as the MENTAL (MLN64 N-terminal) domain. By translation initiation scanning MENTHO is synthesized as two isoforms of 234 (alpha) and 227 (beta) amino acids that can be phosphorylated. As MLN64, MENTHO is ubiquitously expressed and is located in the membrane of late endosomes, its amino and carboxyl-terminal extremities projecting toward the cytoplasm. We show that MENTHO overexpression does not rescue the Niemann-Pick type C lipid storage phenotype. However, MENTHO overexpression alters severely the endocytic compartment by leading at steady state to the accumulation of enlarged endosomes. These results indicate that in addition to its previously established function in addressing and anchoring proteins to the membrane of late endosomes, the MENTAL domain possesses an intrinsic biological function in endocytic transport.  相似文献   

10.
Steroidogenic acute regulatory protein-related lipid transfer (StART) domains are ubiquitously involved in intracellular lipid transport and metabolism and other cell-signaling events. In this work, we use a flexible docking algorithm, comparative modeling, and molecular dynamics (MD) simulations to generate plausible three-dimensional atomic models of the StART domains of human metastatic lymph node 64 (MLN64) and steroidogenic acute regulatory protein (StAR) proteins in complex with cholesterol. Our results show that cholesterol can adopt a similar conformation in the binding cavity in both cases and that the main contribution to the protein-ligand interaction energy derives from hydrophobic contacts. However, hydrogen-bonding and water-mediated interactions appear to be important in the fine-tuning of the binding affinity and the position of the ligand. To gain insights into the mechanism of binding, we carried out steered MD simulations in which cholesterol was gradually extracted from within the StAR model. These simulations indicate that a transient opening of loop Omega1 may be sufficient for uptake and release, and they also reveal a pathway of intermediate states involving residues known to be crucial for StAR activity. Based on these observations, we suggest specific mutagenesis targets for binding studies of cholesterol and its derivatives that could improve our understanding of the structural determinants for ligand binding by sterol carrier proteins.  相似文献   

11.
Iyer LM  Koonin EV  Aravind L 《Proteins》2001,43(2):134-144
With a protein structure comparison, an iterative database search with sequence profiles, and a multiple-alignment analysis, we show that two domains with the helix-grip fold, the star-related lipid-transfer (START) domain of the MLN64 protein and the birch allergen, are homologous. They define a large, previously underappreciated superfamily that we call the START superfamily. In addition to the classical START domains that are primarily involved in eukaryotic signaling mediated by lipid binding and the birch antigen family that consists of plant proteins implicated in stress/pathogen response, the START superfamily includes bacterial polyketide cyclases/aromatases (e.g., TcmN and WhiE VI) and two families of previously uncharacterized proteins. The identification of this domain provides a structural prediction of an important class of enzymes involved in polyketide antibiotic synthesis and allows the prediction of their active site. It is predicted that all START domains contain a similar ligand-binding pocket. Modifications of this pocket determine the ligand-binding specificity and may also be the basis for at least two distinct enzymatic activities, those of a cyclase/aromatase and an RNase. Thus, the START domain superfamily is a rare case of the adaptation of a protein fold with a conserved ligand-binding mode for both a broad variety of catalytic activities and noncatalytic regulatory functions. Proteins 2001;43:134-144.  相似文献   

12.
Functional characterization of the MENTAL domain   总被引:2,自引:0,他引:2  
Human metastatic lymph node (MLN) 64 is composed of two conserved regions. The amino terminus contains a conserved membrane-spanning MENTAL (MLN64 NH(2)-terminal) domain shared with an unique protein called MENTHO (MLN64 NH(2)-terminal domain homologue) and targets the protein to late endosome. The carboxyl-terminal domain is composed of a cholesterol binding steroidogenic acute regulatory-related lipid transfer domain exposed to the cytoplasm. MENTHO overexpression leads to the accumulation of enlarged endosomes. In this study, we show that MLN64 overexpression also induces the formation of enlarged endosomes, an effect that is probably mediated by the MENTAL domain. Using an in vivo photocholesterol binding assay, we find that the MENTAL domain of MLN64 is a cholesterol binding domain. Moreover, glutathione S-transferase pull-down or co-immunoprecipitation experiments demonstrate that this domain mediates homo- and hetero-interaction of MLN64 and MENTHO. In living cells, the expression of paired yellow fluorescent and cyan fluorescent fusion proteins show MENTHO homo-interaction and its interaction with MLN64. These data indicate that within late-endosomal membranes, MLN64 and MENTHO define discrete cholesterol-containing subdomains. The MENTAL domain might serve to maintain cholesterol at the membrane of late endosomes prior to its shuttle to cytoplasmic acceptor(s).  相似文献   

13.
Protein-mediated cholesterol trafficking is central to maintaining cholesterol homeostasis in cells. START (Steroidogenic acute regulatory protein-related lipid transfer) domains constitute a sterol and lipid binding motif and the START domain protein StARD4 typifies a small family of mammalian sterol transport proteins. StARD4 consists of a single START domain and has been reported to act as a general cholesterol transporter in cells. However, the structural basis of cholesterol uptake and transport is not well understood and no cholesterol-bound START domain structures have been reported. We have undertaken the study of cholesterol binding and transport by StARD4 using solution state NMR spectroscopy. To this end, we report nearly complete 1H, 15N, and 13C backbone resonance assignments of an inactive but well behaved mutant (L124D) of StARD4.  相似文献   

14.
Strauss JF  Liu P  Christenson LK  Watari H 《Steroids》2002,67(12):947-951
Cholesterol is an important structural component of membranes as well as a precursor for steroid hormone, bile acid and regulatory oxysterol biosynthesis. Recent observations revealed that cholesterol plays an important role in signaling and the regulation of intracellular vesicular trafficking. Studies on Niemann-Pick type C disease, a fatal neuro-visceral cholesterol storage disorder, led to the elucidation of a sterol-modulated vesicular trafficking pathway. Mutations in the NPC1 gene, which cause the majority of cases of Niemann-Pick type C disease, result in the accumulation of free cholesterol in lysosomes and associated defects in glycolipid sorting. NPC1 has a sterol-sensing domain that presumably recognizes free sterols in the protein's environment and participates in the movement of cholesterol out of lysosomes. The compartment containing NPC1 is a subset of late endosomes; it is highly mobile, travels along microtubules, emitting flexible tubules. The movements of this compartment require an intact NPC1 sterol-sensing domain and are dramatically suppressed when free cholesterol accumulates in the late endosomes. Two other proteins involved in sterol trafficking enter into the NPC1 compartment, NPC2 also known as HE1, a secreted sterol-binding glycoprotein, and MLN64, a StAR-related lipid transfer (START) domain protein, which can bind cholesterol and promote its movement from donor to acceptor membranes. Mutations in NPC2 cause a rarer form of Niemann-Pick type C disease, establishing its importance in intracellular sterol movement. NPC2, NPC1 and MLN64 may act in an ordered sequence to sense cholesterol, effect sterol movement, and consequently, influence the process of vesicular trafficking.  相似文献   

15.
There are two major pathways of bile acid synthesis: the "neutral" pathway, initiated by highly regulated microsomal cholesterol 7alpha-hydroxylase (CYP7A1), and an "alternative" pathway, initiated by mitochondrial sterol 27-hydroxylase (CYP27A1). In hepatocyte cultures, overexpression of CYP7A1 increases bile acid synthesis by >8-fold. However, overexpression of CYP27A1 in hepatocytes only increases it by 1.5-fold, suggesting that additional rate-limiting steps must be involved in the regulation of this pathway. The effects of intracellular cholesterol transport proteins on bile acid synthesis have been investigated in the current study. Under culture conditions in which the neutral pathway was inactive, selective overexpression of the gene encoding steroidogenic acute regulatory protein (StAR), MLN64 (StAR homolog protein), and sterol carrier protein-2 (SCP-2) led to 5.7-, 1.2-, and 1.7-fold increases, respectively, in the rates of bile acid synthesis in primary rat hepatocytes. Surprisingly, co-overexpression of MLN64 with StAR, SCP-2, or CYP7A1 blunted the upregulated bile acid synthesis by 48, 47, and 45%, respectively. These results suggest that MLN64, in its full-length form, is not responsible for the transport of cholesterol to the mitochondria or the endoplasmic reticulum, where CYP27A1 or CYP7A1 is located, respectively.  相似文献   

16.
Cholesterol is a vital component of cellular membranes, and is the substrate for biosynthesis of steroids, oxysterols and bile acids. The mechanisms directing the intracellular trafficking of this nearly insoluble molecule have received increased attention through the discovery of the steroidogenic acute regulatory protein (StAR) and similar proteins containing StAR-related lipid transfer (START) domains. StAR can transfer cholesterol between synthetic liposomes in vitro, an activity which appears to correspond to the trans-cytoplasmic transport of cholesterol to mitochondria. However, trans-cytoplasmic cholesterol transport in vivo appears to involve the recently-described protein StarD4, which is expressed in most cells. Steroidogenic cells must also move large amounts of cholesterol from the outer mitochondrial membrane to the first steroidogenic enzyme, which lies on the matrix side of the inner membrane; this action requires StAR. Congenital lipoid adrenal hyperplasia, a rare and severe disorder of human steroidogenesis, results from mutations in StAR, providing a StAR knockout of nature that has provided key insights into its activity. Cell biology experiments show that StAR moves large amounts of cholesterol from the outer to inner mitochondrial membrane, but acts exclusively on the outer membrane. Biophysical data show that only the carboxyl-terminal alpha-helix of StAR interacts with the outer membrane. Spectroscopic data and molecular dynamics simulations show that StAR's interactions with protonated phospholipid head groups on the outer mitochondrial membrane induce a conformational change (molten globule transition) needed for StAR's activity. StAR appears to act in concert with the peripheral benzodiazepine receptor, but the precise itinerary of a cholesterol molecule entering the mitochondrion remains unclear.  相似文献   

17.
We identified and characterized a partial cDNA of StAR-related lipid transfer domain containing protein gene from Chironomus riparius (CrSTART1) having homology with human MLN64 and Drosophila melanogaster START1 (DmSTART1) and evaluated the effects of cadmium chloride (Cd) and nonylphenol (NP) on its expression. Pfam analysis identified the presence of two StAR-related lipid transfer (START) domains in CrSTART1 having several conserved amino acid residues, characteristic of the MLN64 and DmSTART1. The mRNA expression of CrSTART1 was observed in all developmental stages. The modulation in the mRNA expression of CrSTART1 was investigated after exposure to different concentrations Cd (0, 2, 10, and 20 mg/L) and NP (0, 10, 50, and 100 μg/L) for different time intervals in fourth instar larvae of C. riparius. Significant downregulation of CrSTART1 mRNA was observed after exposure to 2, 10 and 20 mg/L of Cd for 24, 48 and 72 h. Significant upregulation of CrSTART1 was observed after exposure to 10 and 50 μg/L of NP for 24, and 48 h period. At 100 μg/L of NP significant upregulation of CrSTART1 was observed after 12 h and downregulated after 24, 48 and 72 h.  相似文献   

18.
StarD4 protein is a member of the StarD4 subfamily of steroidogenic acute regulatory-related lipid transfer (START) domain proteins that includes StarD5 and StarD6, proteins whose functions remain poorly defined. The objective of this study was to isolate and characterize StarD4's sterol binding and to determine in a hepatocyte culture model its sterol transport capabilities. Utilizing purified full-length StarD4, in vitro binding assays demonstrated a concentration-dependent binding of [(14)C]cholesterol by StarD4 similar to that of the cholesterol binding START domain proteins StarD1 and StarD5. Other tested sterols showed no detectable binding to StarD4, except for 7alpha-hydroxycholesterol, for which StarD4 demonstrated weak binding on lipid protein overlay assays. Subsequently, an isolated mouse hepatocyte model was used to study the ability of StarD4 to bind/mobilize/distribute cellular cholesterol. Increased expression of StarD4 in primary mouse hepatocytes led to a marked increase in the intracellular cholesteryl ester concentration and in the rates of bile acid synthesis. The ability and specificity of StarD4 to bind cholesterol and, as a function of its level of expression, to direct endogenous cellular cholesterol suggest that StarD4 plays an important role as a directional cholesterol transporter in the maintenance of cellular cholesterol homeostasis.  相似文献   

19.
We originally identified StarD10 as a protein overexpressed in breast cancer that cooperates with the ErbB family of receptor tyrosine kinases in cellular transformation. StarD10 contains a steroidogenic acute regulatory protein (StAR/StarD1)-related lipid transfer (START) domain that is thought to mediate binding of lipids. We now provide evidence that StarD10 interacts with phosphatidylcholine (PC) and phosphatidylethanolamine (PE) by electron spin resonance measurement. Interaction with these phospholipids was verified in a fluorescence resonance energy transfer-based assay with 7-nitro-2,1,3-benzoxadiazol-4-yl-labeled lipids. Binding was not restricted to lipid analogs since StarD10 selectively extracted PC and PE from small unilamellar vesicles prepared with endogenous radiolabeled lipids from Vero monkey kidney cells. Mass spectrometry revealed that StarD10 preferentially selects lipid species containing a palmitoyl or stearoyl chain on the sn-1 and an unsaturated fatty acyl chain (18:1 or 18:2) on the sn-2 position. StarD10 was further shown to bind lipids in vivo by cross-linking of protein expressed in transfected HEK-293T cells with photoactivable phosphatidylcholine. In addition to a lipid binding function, StarD10 transferred PC and PE between membranes. Interestingly, these lipid binding and transfer specificities distinguish StarD10 from the related START domain proteins Pctp and CERT, suggesting a distinct biological function.  相似文献   

20.
The steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step of steroidogenesis, delivery of cholesterol to the inner mitochondrial membrane. However, the mechanism whereby cholesterol translocation is accomplished has not been resolved. Recombinant StAR proteins lacking the first N-terminal 62 amino acids comprising the mitochondrial-targeting sequence were used to determine if StAR binds cholesterol and alters mitochondrial membrane cholesterol domains to enhance sterol transfer. First, a fluorescent NBD-cholesterol binding assay revealed 2 sterol binding sites (K(d) values near 32 nm), whereas the inactive A218V N-62 StAR mutant had only a single binding site with 8-fold lower affinity. Second, NBD-cholesterol spectral shifts and fluorescence resonance energy transfer from StAR Trp residues to NBD-cholesterol showed (i) close molecular interaction between these molecules (R(2/3) = 33 A) and (ii) sensitized NBD-cholesterol emission from only one of the two sterol binding sites. Third, circular dichroism showed that cholesterol binding induced a change in StAR secondary structure. Fourth, a fluorescent sterol transfer assay that did not require separation of donor and acceptor mitochondrial membranes demonstrated that StAR enhanced mitochondrial sterol transfer as much as 100-fold and induced/increased the formation of rapidly transferable cholesterol domains in isolated mitochondrial membranes. StAR was 67-fold more effective in transferring cholesterol from mitochondria of steroidogenic MA-10 cells than from human fibroblast mitochondria. In contrast, sterol carrier protein-2 (SCP-2) was only 2.2-fold more effective in mediating sterol transfer from steroidogenic cell mitochondria. Taken together these data showed that StAR is a cholesterol-binding protein, preferentially enhances sterol transfer from steroidogenic cell mitochondria, and interacts with mitochondrial membranes to alter their sterol domain structure and dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号