首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corneal fragments of larval Xenopus laevis at stage 48 (according to Nieuwkoop and Faber, '56), were implanted into sham denervated unamputated hindlimbs, denervated unamputated hindlimbs, amputated and sham denervated hindlimbs, and amputated and denervated hindlimbs of larvae at stages 52 and 57. The results show that unamputated limbs at stage 52, either innervated or denervated, manifest a weak capacity to promote the first lens-forming transformations of the outer cornea. This capacity is absent in both limb types at stage 57. After amputation, limbs of both early and late stages form a regenerative blastema and support lens formation from the outer cornea. Denervation of early stage limbs has no appreciable effect on blastema formation and lens-forming transformation of corneal implants. However, denervation of late stage limbs inhibits both processes. These results indicate that the limb tissues of the early stage limbs contain non-neural inductive factors at a low level and that after limb amputation and blastema formation the level of these factors becomes high enough to promote lens formation from implanted cornea, even after denervation. In contrast, the limb tissues of late stage limbs do not contain a suitable level of non-neural inductive factors.  相似文献   

2.
Early limbs of larval Xenopus laevis can form a regeneration blastema in the absence of nerves. The nerve-independence could be due to the synthesis of neurotrophic-like factors by the limb bud cells. To test this hypothesis, two series of experiments were performed. Series A: the right hindlimbs of stage 57 larvae (acc. to Nieuwkoop and Faber. 1956. Normal table of Xenopus laevis [Daudin]. Amsterdam: North-Holland Pub. Co.), which are nerve-dependent for regeneration, were amputated through the tarsalia. The regenerating limbs were submitted to: sham denervation; denervation; denervation and implantation of a fragment of an early limb, or a late limb, or a spinal cord. Series B: froglets were subjected to amputation of both forelimbs. The cone blastemas were transplanted into denervated hindlimbs of stage 57 larvae, together with a fragment of an early or a late limb. The results in series A showed that the implantation of early limb tissue into the denervated blastema maintained cell proliferation at levels similar to those observed after the implantation of a spinal cord fragment or in sham denervated blastemas. However, the implantation of late limb tissues were ineffective. The results of series B showed that the implantation of early limb tissue, but not of late limb tissue prevented the inhibition of cell proliferation and the regression of denervated limb blastemas of juveniles. These results indicate that the nerve-independence is related to the synthesis of diffusible mitogenic neurotrophic-like factors in early limb tissues, and that nerve-dependence is established when differentiated cells of late limb tissues stop producing these factors.  相似文献   

3.
The capacity of amputated early and late limbs of larval Xenopus laevis to promote lens-forming transformations of corneal implants in the absence of a limb regeneration blastema has been tested by implanting outer cornea fragments from donor larvae at stage 48 (according to Nieuwkoop and Faber 1956), into limb stumps of larvae at stage 52 and 57. Blastema formation has been prevented either by covering the amputation surface with the skin or by reconnecting the amputated part to the limb stump. Results show that stage 52 non-regenerating limbs could promote lens formation from corneal implants not only when innervated but also when denervated. A similar result was observed in stage 57 limbs where blastema formation was prevented by reconnecting the amputated part to the stump. In this case, relevant tissue dedifferentiation was observed in the boundary region between the stump and the autografted part of the limb. However, stage 57 limbs, where blastema formation was prevented by covering the amputation surface with skin, could promote lens formation from the outer cornea only when innervated. In this case, no relevant dedifferentiation of the stump tissues was observed. These results indicate that blastema formation is not a prerequisite for lens-forming transformations of corneal fragments implanted into amputated hindlimbs of larval X. laevis and that lens formation can be promoted by factors delivered by the nerve fibres or produced by populations of undifferentiated or dedifferentiated limb cells.  相似文献   

4.
The developing neural tubes and associated neural crest cells were removed from stage 30 Ambystoma maculatum embryos to obtain larvae with aneurogenic forelimbs. Forelimbs were allowed to develop to late 3 digit or early 4 digit stages. Limbs amputated through the mid radius-ulna regenerated typically in the aneurogenic condition. Experiments were designed to test whether grafts of aneurogenic limb tissues would rescue denervated host limb stumps into a regeneration response. In Experiment 1, aneurogenic limbs were removed at the body wall and grafted under the dorsal skin of the distal end of amputated forelimbs of control, normally innervated limbs of locally collected Ambystoma maculatum or axolotl (Ambystoma mexicanum) larvae. In Experiment 1, at the time of grafting or 1, 2, 3, 4, 5, 7, or 8 days after grafting, aneurogenic limbs were amputated level with the original host stump. At 7 and 8 days, this amputation included removing the host blastema adjacent to the graft. The host limb was denervated either one day after grafting or on the day of graft amputation. These chimeric limbs only infrequently exhibited delayed blastema formation. Thus, not only did the graft not rescue the host, denervated limb, but the aneurogenic limb tissues themselves could not mount a regeneration response. In Experiment 2, the grafted aneurogenic limb was amputated through its mid-stylopodium at 3, 4, 5, 7, or 8 days after grafting. By 7 and 8 days after grafting, the host limb stump exhibited blastema formation even with the graft extending out from under the dorsal skin. The host limb was denervated at the time of graft amputation. When graft limbs of Experiment 2 were amputated and host limbs were denervated on days 3, 4, or 5, host regeneration did not progress and graft regeneration did not occur. But, when graft limbs were amputated on days 7 or 8 with concomitant denervation of the host limb, regeneration of the host continued and graft regeneration occurred. Thus, regeneration of the graft was correlated with acquisition of nerve-independence by the host limb blastema. In Experiment 3, aneurogenic limbs were grafted with minimal injury to the dorsal skin of neurogenic hosts. When neurogenic host limbs were denervated and the aneurogenic limbs were amputated through the radius/ulna, regeneration of the aneurogenic limb occurred if the neurogenic limb host was not amputated, but did not occur if the neurogenic limb host was amputated. Results of Experiment 3 indicate that the inhibition of aneurogenic graft limb regeneration on a denervated host limb is correlated with substantial injury to the host limb. In Experiment 4, aneurogenic forelimbs were amputated through the mid-radius ulna and pieces of either peripheral nerve, muscle, blood vessel, or cartilage were grafted into the distal limb stump or under the body skin immediately adjacent to the limb at the body wall. In most cases, peripheral nerve inhibited regeneration, blood vessel tissue sometimes inhibited, but other tissues had no effect on regeneration. Taken together, the results suggest: (1) Aneurogenic limb tissues do not produce the neurotrophic factor and do not need it for regeneration, and (2) there is a regeneration-inhibiting factor produced by the nerve-dependent limb stump/blastema after denervation that prevents regeneration of aneurogenic limbs.  相似文献   

5.
Anuran (frog) tadpoles and urodeles (newts and salamanders) are the only vertebrates capable of fully regenerating amputated limbs. During the early stages of regeneration these amphibians form a "blastema", a group of mesenchymal progenitor cells that specifically directs the regrowth of the limb. We report that wnt-3a is expressed in the apical epithelium of regenerating Xenopus laevis limb buds, at the appropriate time and place to play a role during blastema formation. To test whether Wnt/beta-catenin signaling is required for limb regeneration, we created transgenic X. laevis tadpoles that express Dickkopf-1 (Dkk1), a specific inhibitor of Wnt/beta-catenin signaling, under the control of a heat-shock promoter. Heat-shock immediately before limb amputation or during early blastema formation blocked limb regeneration but did not affect the development of contralateral, un-amputated limb buds. When the transgenic tadpoles were heat-shocked following the formation of a blastema, however, they retained the ability to regenerate partial hindlimb structures. Furthermore, heat-shock induced Dkk1 blocked fgf-8 but not fgf-10 expression in the blastema. We conclude that Wnt/beta-catenin signaling has an essential role during the early stages of limb regeneration, but is not absolutely required after blastema formation.  相似文献   

6.
Fibroblast growth factors (FGFs) have been previously implicated in urodele limb regeneration. Here, we examined expression of FGF-1 by blastema cells and neurons and investigated its involvement in wound epithelial formation and function and in the trophic effect of nerves. Neurons innervating the limb and blastema cells in vivo and in vitro expressed the FGF-1 gene. The peptide was present in blastemas in vivo. Wound epithelium thickened when recombinant newt FGF-1 was provided on heparin-coated beads, demonstrating that the FGF-1 was biologically active and that the wound epithelium is a possible target tissue of FGF. FGF-1 did not stimulate accessory limb formation. FGF-1 was as effective as 10% fetal bovine serum in maintaining proliferative activity of blastema cells in vitro but was unable to maintain growth of denervated, nerve-dependent stage blastemas when provided on beads or by injection. FGF-1 had a strong stimulating effect on blastema cell accumulation and proliferation of limbs inserted into the body cavity that were devoid of an apical epithelial cap (AEC). These results show that FGF-1 can signal wound epithelium cap formation and/or function and can stimulate mesenchyme accumulation/proliferation in the absence of the AEC but that FGF-1 is not directly involved in the neural effect on blastema growth.  相似文献   

7.
The aim of the present research is to ascertain whether in larval Xenopus laevis nerve-independence for the regeneration of early stage limbs and nerve-dependence of late stage limbs observed in a previous work (Filoni and Paglialunga, '90) is related to extrinsic (systemic) factors or to intrinsic changes taking place in the limb cells themselves during development. In this paper the regenerative capacity of early and late stage hindlimbs under the same extrinsic conditions, insofar as both are grafted onto the denervated hindlimbs of host larvae at the same developmental stage, is studied. All the grafted limbs are amputated after the host larvae have reached stage 57-58 (according to Nieuwkoop and Faber, '56). In experiment I, the grafted limb is amputated at stage 52, at the thigh level; in experiment II, the grafted limb is amputated at stage 54-55, at the tarsalia level; in experiment III the grafted limb is amputated at stage 57, at the tarsalia level. In all three experiments, together with the grafted limb, also the host limb is amputated at the tarsalia level. The results show that while grafted limbs amputated at stages 52 and 54-55 regenerate in the absence of nerves, grafted limbs amputated at stage 57 cannot. The failure of late stage grafted limbs to regenerate cannot be explained in terms of an immune-type inhibiting reaction since it has been observed also in denervated autografted limbs and in the host limbs. Since all the grafted limbs are in the same environmental conditions, the results show that in larval Xenopus laevis nerve-independence for regeneration of early stage limbs and nerve-dependence of late stage limbs are not related to factors extrinsic to the limb but to intrinsic changes taking place in the limb cells themselves during development.  相似文献   

8.
Summary Xenopus laevis larvae at stage 52–53 (according to Nieuwkoop and Faber 1956) were subjected to amputation of both limbs at the thigh level as well as to repeated denervations of the right limb. Results obtained in larvae sacrificed during wound healing (1 after amputation), blastema formation (3 days) and blastema growth (5 and 7 days) showed that denervated right limbs have undergone the same histological modifications observed in innervated left limbs and have formed a regeneration blastema consisting of mesenchymal cells with a pattern of DNA synthesis and mitosis very similar to that in presence of nerves. Also, the patterns of cellular density in regenerating right and left limbs were very similar. On the whole, the data here reported show a highly remarkable degree of nerve-independence for regeneration in hindlimbs of larval Xenopus laevis at stage 52–53 and lend some substance to the hypothesis that, in early limbs, there would exist trophic factors capable of replacing those released by nerves, promoting DNA synthesis and mitosis in blastemal cells. Offprint requests to: S. Filoni  相似文献   

9.
Amputated, regenerating forelimbs have been compared with the contralateral, denervated non-regenerating limb stumps in the adult newt Notophthalmus viridescens, with respect to hyaluronidase activity and the incorporation of 3H-acetate into glycosaminoglycans (GAG). At 10 days after amputation, which is the time of maximum hyaluronate production in the early growing regenerate, incorporation of 3H-acetate into GAG (cpm/mg protein) in the denervated, nonregenerating limb stump was approximately 50% of that in the contralateral regenerating limbs. At this stage, hyaluronate was the major GAG being produced, but the ratio of incorporation into hyaluronate relative to chondroitin sulfate was reduced in the denervated limbs. In intact, nonamputated limbs, the incorporation into GAG was 5% of that in the regenerating limb 10 days after amputation, and 10% of that in the denervated stumps.At 25 days, cartilage is forming and chondroitin sulfate synthesis predominates in the normal regenerate whilst the contralateral, denervated limb stumps are forming scars. GAG synthesis in the latter was less than one-quarter the level seen in the regenerating limbs, mostly due to low incorporation into chondroitin sulfate.Hyaluronidase activity, which appears in the regenerating limb during differentiation of skeletal elements (20–45 days), was not detectable in limbs denervated early enough to prevent regeneration. However, limbs denervated after formation of the blastema will regenerate without nerve, and hyaluronidase activity in such limbs was normal. Thus, hyaluronidase activity appears when regeneration reaches the cartilage deposition stage, with or without nerve.  相似文献   

10.
FGF-10 stimulates limb regeneration ability in Xenopus laevis   总被引:6,自引:0,他引:6  
By reciprocal transplantation experiments with regenerative and nonregenerative Xenopus limbs, we recently demonstrated that the regenerative capacity of a Xenopus limb depends on mesenchymal tissue and we suggested that fgf-10 is likely to be involved in this capacity (Yokoyama et al., 2000, Dev. Biol. 219, 18-29). However, the data obtained in that study are not conclusive evidence that FGF-10 is responsible for the regenerative capacity. We therefore investigated the role of FGF-10 in regenerative capacity by directly introducing FGF-10 protein into nonregenerative Xenopus limb stumps. Exogenously applied FGF-10 successfully stimulated the regenerative capacity, resulting in the reinduction of all gene expressions (including shh, msx-1, and fgf-10) that we examined and the regeneration of well-patterned limb structures. We report here for the first time that a certain molecule activates the regenerative capacity of Xenopus limb, and this finding suggests that FGF-10 could be a key molecule in possible regeneration of nonregenerative limbs in higher vertebrates.  相似文献   

11.
The punctuated-cycling (PC) hypothesis [39] predicts that the proportion of actively cycling (AC) cells within the blastema influences the rate of limb regeneration in urodele amphibians. To test this, we compared the rate of regeneration and the parameters of the PC hypothesis in small and large Ambystoma mexicanum larvae and in aneurogenic limbs of Ambystoma maculatum. Aneurogenic limbs regenerated more slowly than limbs of small axolotls, but considerably faster than limbs of large axolotls. Regardless of regeneration rates, virtually all blastema cells were in the proliferative fraction (Pf) (ranging from 92.3% +/- 4.2% to 96.2% +/- 3.4%). As predicted, in the blastemata of more rapidly regenerating small axolotls, 86% of the proliferative fraction was actively cycling, but as regeneration slowed, the proportion of the proliferative fraction that was actively cycling decreased (the AC of aneurogenic limbs being 69.5%, and that of large axolotl limbs being 57.3%) and the proportion of transiently quiescent cells increased. The parameters of the PC hypothesis were also examined in small axolotls at two different times during regeneration. During dedifferentiation and initial blastema formation, 61% of the cells in the proliferative fraction were actively cycling and 34% were transiently quiescent. During the rapid-growth phase of the blastema, 88% of the cells in the proliferative fraction were actively cycling and only 7% of the cells were transiently quiescent. It therefore appears that dedifferentiated cells do not immediately begin active cycling and that the transiently quiescent population is relatively large; however, during the period of rapid growth the proportion of transiently quiescent cells is small. In amputated/denervated limbs of small axolotls, the size of the proliferative fraction decreased as the length of the denervation interval increased. Furthermore, with prolonged denervation the total proportion of actively cycling blastema cells also declined (to about 15%). The failure of denervated limbs to regenerate was correlated with an increased nonproliferative fraction and a reduced proportion of actively cycling cells.  相似文献   

12.
A young tadpole of an anuran amphibian can completely regenerate an amputated limb, and it exhibits an ontogenetic decline in the ability to regenerate its limbs. However, whether mesenchymal or epidermal tissue is responsible for this decrease of the capacity remains unclear. Moreover, little is known about the molecular interactions between these two tissues during regeneration. The results of this study showed that fgf-10 expression in the limb mesenchymal cells clearly corresponds to the regenerative capacity and that fgf-10 and fgf-8 are synergistically reexpressed in regenerating blastemas. However, neither fgf-10 nor fgf-8 is reexpressed after amputation of a nonregenerative limb. Nevertheless, nonregenerative epidermal tissue can reexpress fgf-8 under the influence of regenerative mesenchyme, as was demonstrated by experiments using a recombinant limb composed of regenerative limb mesenchyme and nonregenerative limb epidermis. Taken together, our data demonstrate that the regenerative capacity depends on mesenchymal tissue and suggest that fgf-10 is likely to be involved in this capacity.  相似文献   

13.
Polyacrylamide slab gel electrophoresis and [35S]methionine fluorography were used to examine proteins in regenerating newt limbs, amputated denervated limbs, unamputated denervated limbs, and separated blastema mesodermal core and wound epidermis. A total of 27 protein electrophoretic bands were obtained from amputated limbs and 24 bands from unamputated limbs. Amputation resulted in the appearance of 4 new bands and the loss of 1 band as compared to unamputated limbs. These 5 banding differences were apparent on stained gels 3 days postamputation and were maintained through 10 weeks postamputation (complete regenerate stage). Only one band in unamputated limbs was always detectable on fluorographs, whereas virtually all of the stainable bands of amputated limbs were visible on fluorographs. Amputation clearly stimulated a marked, generalized increase in the synthesis of limb proteins. The 5 amputation induced changes were equally evident in stained gels of both innervated and denervated limbs. Amputated denervated limbs possessed a full set of fluorographic bands (including the 5 differences) through 18 days postamputation. However, denervation without amputation was not sufficient to alter the stainable banding pattern. Wound epidermis and mesodermal core both displayed the 5 banding differences and had identical banding patterns with the exception of one epidermal specific band. This band was also present in whole limb skin but was absent in unamputated mesodermal limb tissue. This was the only band of unamputated limbs that was consistently detectable by fluorography. It is concluded that amputation induces nerve independent changes in protein synthesis that are common to both mesodermal core and wound epidermis. These changes may represent preparation for cellular proliferation.  相似文献   

14.
15.
Cells of amputated, denervated larval Ambystoma forelimbs dedifferentiate and enter the cell cycle but do not subsequently proliferate sufficiently to form a blastema. The denervated limb stump resorbs slowly until reinnervation stimulates regeneration. We used this system to investigate the fate of cells in denervated limbs which undergo early but limited cycling in response to amputation. In Experiment 1, cells were labeled with [3H]thymidine (3H-T) on Day 4 postamputation (PA)/Day 3 postdenervation (PD). Labeled cells were still present on Day 7 PA, but were less frequently observed on Day 13 PA when the limbs were reinnervated and beginning to regenerate. In Experiment 2 we denervated 1 day preamputation to obtain earlier reinnervation and prevent loss of Day 4 PA labeled cells. Cells labeled with 3H-T on Day 4 PA/Day 5 PD were present throughout the denervation period and most were still present on Day 13 PA. Little or no mitotic activity was found among the labeled cells after the initial round of cycling. The apparent cell cycle block was released upon reinnervation on Days 12 and 13 PA when cycling resumed. Labeled mitotic figures were present on Day 13 PA, and the mitotic index of the labeled population increased as a result of reinnervation. These results demonstrate that blocked cells are rescued by nerves, re-enter the cell cycle, and thus contribute to the reinnervation blastema.  相似文献   

16.
To clarify the roles of fibroblast growth factors (FGF) in limb cartilage pattern formation, the effects of various FGF on recombinant limbs that were composed of dissociated and reaggregated mesoderm and ectodermal jackets were examined. Fibroblast growth factor-soaked beads were inserted just under the apical ectodermal ridge (AER) of recombinant limbs and the recombinant limbs were grafted and allowed to develop. Control recombinant limbs without FGF beads formed one or two cartilage elements. Recombinants with FGF-4 beads formed up to five cartilage elements, which were aligned along the anteroposterior (AP) axis. Each cartilage element showed digit-like segmentation. In contrast, recombinants with FGF-2 beads showed formation of multiple thick and unsegmented cartilage rods, which elongated inside and outside the AP plane from the distal end of the recombinants. Recombinants with FGF-8 beads formed a truncated cartilage pattern and recombinants with FGF-10 beads formed a cartilage pattern similar to that of the control recombinants. The expression of the Fgf-8, Msx-1 and Hoxa-13 genes in the developing recombinant limbs were examined. FGF-4 induced extension of the length of the Fgf-8-positive epidermis, or AER, along the AP axis 5 days after grafting, at which time the digits are specified. FGF-2 induced expansion of the Msx-1-positive area, first in the proximal direction and then along the dorsoventral axis. The functions of these FGF in recombinant and normal limb patterning are discussed in this paper.  相似文献   

17.
The regenerative capacity of larval Xenopus laevis hindlimbs amputated through the tarsalia at different stages of development and explanted in vitro was tested. In the first experimental series hindlimb stumps from stage 53, 54, 55, and 57 larvae (according to Nieuwkoop and Faber, '56) were cultured in Leibovitz's L-15 medium supplemented with 10% FCS, and 0.04 U of insulin and 10(-8) mg of L-thyroxine per ml of medium. Results showed that the distal part of the limb stumps from stages 53, 54, and 55 formed a regeneration blastema composed of proliferating mesenchymal cells beneath a typical apical cap. No blastema was formed in the proximal part of the stump. In limb stumps from stage 57, a regeneration blastema did not form either in the proximal or in the distal part of the stump. In a second experimental series, hindlimb stumps from stage 55 larvae, denervated 5 days prior to amputation in order to eliminate any residual neurotrophic factor, were cultured in a simplified L-15 medium containing 2% FCS and lacking insulin and thyroxine. Results showed that also in these experimental conditions the stumps from stage 55 formed a conical regeneration blastema at the distal tip. The blastema cells duplicated their own DNA and divided. At the proximal extremity no regeneration blastema was formed. In the same culture medium, the stumps of larvae at stage 57 did not form a regeneration blastema.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Previous studies have shown that both fibroblast growth factor (FGF)-1 and nerves play an important function during limb regeneration, but no correlation between these two regeneration factors has yet been demonstrated. In the present study we first establish that exogenous FGF-2, a member of the FGF family that binds to the same high-affinity receptors as FGF-1, is able to stimulate both [3H]-thymidine incorporation and the mitotic index in the mesenchyme and the epidermal cells of denervated blastemas. We then use cocultures of spinal cord and blastema on heparin-coated dishes, an in vitro system mimicking the in vivo interactions during limb regeneration, to show that interactions between nerve fibers from the spinal cord and the blastema enhance the release of bioactive FGF-1. Release of this growth factor seemed to correlate with nerve fiber regeneration, as it decreased in the presence of the dipeptide Leu-Ala, known to inhibit neurite outgrowth, while the inverse dipeptide Ala-Leu was inactive. Therefore, these results support our hypothesis that the interaction between nervous tissue and blastema is permissive for the release of FGF-1, which in turn stimulates blastema cell proliferation.  相似文献   

19.
Dorsal iris from the eyes of adult Notophthalmus viridescens was transplanted into the blastema of regenerating limbs, subcutaneously in the limb or shoulder region, into the dorsal fin of larval newts and into the hindbrain of larval Ambystoma maculatum. The iris implants into the blastema regenerated lens vesicles or lenses with fibers in 40–75% of the cases. Multiple lenses were found in a few instances. No lenses developed from iris implants into the dorsal fin. Twenty percent of subcutaneous implants of iris formed lenses or lens vesicles, but lens regeneration from implants into the brain occurred only rarely. Denervation of the limb at the time of iris transplantation into the blastema greatly reduced the number of lenses regenerated. Studies on nerve fiber distribution in dorsal fin, subcutaneous areas, and denervated and innervated regenerating limbs, using the Bodian method, showed a general correlation between density of nerve fibers in the implant site and the incidence of lens regeneration from iris implants into that site. These results provide some evidence for a trophic action of nerve fibers on lens regeneration from the iris.  相似文献   

20.
This research was designed to follow up the observation of Thornton and Kraemer ('51) that regressed, denervated limbs of Ambystoma larvae will not regenerate upon reinnervation if all digits on the limbs were not completely resorbed. The object of this experiment was to determine whether the presence of an apical structure, protruding past the amputation surface, would affect the regenerative process. Both forearms of adult newts were amputated midway between the elbow and the wrist. One limb served as a normal regeneration control, and in the other limb the third digit from the removed hand was implanted in place of the removed radius, so that the three distal phalangeal segments protruded past the plane of amputation. Blastema formation in the experimental limbs was delayed by several weeks as compared with control limbs. Approximately one third of the experimental limbs did not regenerate. The regenerates that did form were strongly deviated (45–90°) radially from the longitudinal axis of the limb. Experimental analysis showed that the delay in regeneration is due largely to the projecting part of the digit. The radial deviation of the regenerates is not due to the digital implant, but rather to the removal of the radius. Trauma alone does not account for this phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号