首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The anterior pituitary is under a constant cell turnover modulated by gonadal steroids. In the rat, an increase in the rate of apoptosis occurs at proestrus whereas a peak of proliferation takes place at estrus. At proestrus, concomitant with the maximum rate of apoptosis, a peak in circulating levels of prolactin is observed. Prolactin can be cleaved to different N-terminal fragments, vasoinhibins, which are proapoptotic and antiproliferative factors for endothelial cells. It was reported that a 16 kDa vasoinhibin is produced in the rat anterior pituitary by cathepsin D. In the present study we investigated the anterior pituitary production of N-terminal prolactin-derived fragments along the estrous cycle and the involvement of estrogens in this process. In addition, we studied the effects of a recombinant vasoinhibin, 16 kDa prolactin, on anterior pituitary apoptosis and proliferation. We observed by Western Blot that N-terminal prolactin-derived fragments production in the anterior pituitary was higher at proestrus with respect to diestrus and that the content and release of these prolactin forms from anterior pituitary cells in culture were increased by estradiol. A recombinant preparation of 16 kDa prolactin induced apoptosis (determined by TUNEL assay and flow cytometry) of cultured anterior pituitary cells and lactotropes from ovariectomized rats only in the presence of estradiol, as previously reported for other proapoptotic factors in the anterior pituitary. In addition, 16 kDa prolactin decreased forskolin-induced proliferation (evaluated by BrdU incorporation) of rat total anterior pituitary cells and lactotropes in culture and decreased the proportion of cells in S-phase of the cell cycle (determined by flow cytometry). In conclusion, our study indicates that the anterior pituitary production of 16 kDa prolactin is variable along the estrous cycle and increased by estrogens. The antiproliferative and estradiol-dependent proapoptotic actions of this vasoinhibin may be involved in the control of anterior pituitary cell renewal.  相似文献   

3.
Pituitary tumors are commonly encountered, and result from clonal expansion of a single mutated cell. Hypothalamic hormones, local growth factors and circulating sex steroid hormones promote pituitary tumor growth and expansion into large invasive tumors. Estrogen acting directly through its receptor and by stimulation of fibroblast growth factor regulates prolactin synthesis and secretion. Fibroblast growth factor-2 (bFGF) modulates angiogenesis, tumor formation and progression in many tissues, including the anterior pituitary. A pituitary tumor-derived transforming gene (PTTG) has been isolated, which is tumorigenic in vivo, regulates bFGF secretion, and inhibits chromatid separation. The human PTTG family consists of at least three homologous genes, of which PTTG1 is located on chromosome 5q33 and is expressed at low levels in most normal human tissues but is highly expressed in malignant human cell lines and in pituitary tumors. We report here that pituitary pttg is regulated in vivo and in vitro by estrogen. Maximal induction of rat pituitary pttg mRNA in vivo occurred early in pituitary transformation (normal cell to hypertrophic/hyperplastic cell), coincident with bFGF and vascular endothelial growth factor induction and pituitary angiogenesis. We also demonstrate that pttg expression is induced by bFGF, and show concordant pttg and bFGF expression in experimental and human pituitary adenomas. As bFGF and estrogen both induce pttg, and pttg expression coincides with the early lactotrophic hyperplastic response, angiogenesis and prolactinoma development, we propose a previously unknown paracrine growth factor-mediated mechanism for pituitary tumor pathogenesis and potentially other estrogen-regulated tumors.  相似文献   

4.
5.
Pituitary tumors are the third most common intracranial tumor in humans and can cause altered hormone secretions leading to hypercortisolism, acromegaly, and infertility. Reduced expression of the cell adhesion molecule N-cadherin has been linked with the formation of pituitary tumors, but its role in normal pituitary gland physiology or tumor initiation is unknown. In the murine pituitary, N-cadherin expression is detected in virtually all cells of the posterior, intermediate, and anterior lobes. N-cadherin may function to initiate important cues such as controlling proliferation, directing cell placement, and promoting formation of cell networks that coordinately release hormones into the bloodstream. To address this, we generated mice lacking N-cadherin in proopiomelanocortin-expressing melanotrope and corticotrope cells of the intermediate and anterior lobes of the pituitary. We observed that intermediate lobe cells can aberrantly displace SOX2-containing progenitor cells in the N-cadherin conditional knockout mice at postnatal d 1. By postnatal d 30, although a reduction in α- and β-catenin membrane staining occurs, there is little effect on intermediate lobe architecture with N-cadherin loss. Also, despite these changes in adherens junction molecules, no alterations in cell proliferation occur. In contrast, loss of N-cadherin in the corticotropes leads to aberrant cell clustering and a reduction in Pomc mRNA. Taken together, our data reveal important roles of N-cadherin in pituitary cell placement and that loss of N-cadherin alone does not lead to pituitary tumor formation.  相似文献   

6.
7.
《Endocrine practice》2011,17(6):941-948
ObjectiveTo review the expression of the glucocorticoid receptor (GR) in anterior pituitary and adrenocortical cells and tumors derived from these tissues as well as factors that may influence its expression.MethodsWe present an overview of the relevant literature, with a focus on data generated from our studies.ResultsThe expression of the GR is an essential element of the negative feedback that closes the loop formed by corticotropin-releasing hormone, adrenocorticotropic hormone, and cortisol in the context of the hypothalamicpituitary-adrenal (HPA) axis. Although the GR expression in anterior pituitary cells—and in particular the corticotrophs—was first demonstrated several years ago, it was not known until relatively recently where, by what cells, and in what form the GR is expressed in the adrenal cortex.The variability in the expression of the GR in pituitary and adrenocortical cells may underlie the substantial differences in HPA axis function across individuals, especially when testing for tumors associated with hypercortisolemia. This expression is influenced by a multitude of tissue-specific factors, which may explain why it is so difficult to interpret (or reproduce) studies that are based on GR functional polymorphisms on different cohorts of patients or even different sets of laboratory animals.ConclusionThis review highlights the variability in expression and function of the GR in pituitary and adrenocortical cells as one of the reasons for the appreciable differences in HPA axis function across individuals. Particular attention was paid to interactions that may affect the interpretation of diagnostic testing of the HPA axis in patients with pituitary adenomas (Cushing disease) or adrenocortical tumors (Cushing syndrome). (Endocr Pract. 2011;17:941-948)  相似文献   

8.
Humanin (HN) is a 24-amino acid peptide with cytoprotective action in several cell types such as neurons and testicular germ cells. Rattin (HNr), a homologous peptide of HN expressed in several adult rat tissues, also has antiapoptotic action. In the present work, we demonstrated by immunocytochemical analysis and flow cytometry the expression of HNr in the anterior pituitary of female and male adult rats as well as in pituitary tumor GH3 cells. HNr was localized in lactotropes and somatotropes. The expression of HNr was lower in females than in males, and was inhibited by estrogens in pituitary cells from both ovariectomized female and orquidectomized male rats. However, the expression of HNr in pituitary tumor cells was not regulated by estrogens. We also evaluated HN action on the proapoptotic effect of TNF-α in anterior pituitary cells assessed by the TUNEL method. HN (5 µM) per se did not modify basal apoptosis of anterior pituitary cells but completely blocked the proapoptotic effect of TNF-α in total anterior pituitary cells, lactotropes and somatotropes from both female and male rats. Also, HN inhibited the apoptotic effect of TNF-α on pituitary tumor cells. In summary, our results demonstrate that HNr is present in the anterior pituitary gland, its expression showing sexual dimorphism, which suggests that gonadal steroids may be involved in the regulation of HNr expression in this gland. Antiapoptotic action of HN in anterior pituitary cells suggests that this peptide could be involved in the homeostasis of this gland. HNr is present and functional in GH3 cells, but it lacks regulation by estrogens, suggesting that HN could participate in the pathogenesis of pituitary tumors.  相似文献   

9.
10.
Neural cell adhesion molecules (NCAMs) can undergo post-translational modifications, such as the addition of polysialic acid chains, thus generating PSANCAMs, which are expressed mainly during development. Since polysialylation considerably modifies NCAM adhesivity, expression of NCAMs and PSANCAMs has been investigated in the developing hypophysis by immunohistochemistry. At embryonic day 13 (E13), an antibody against NCAM outlined all cellular profiles in the entire Rathke's pouch; this labelling persisted until adulthood. NCAM expression increased in all lobes during development and concerned all pituitary cell types. In contrast, at E13, PSA-NCAMs were only detected in the neural lobe, solely constituted of pituicytes at this stage, and the tuberal lobe, the only lobe expressing hormonal mRNA at the same stage. PSA-NCAMs expression increased in the neural lobe at E17 with the arrival of the neurosecretory fibres and persisted into adulthood. In the anterior lobe, PSA-NCAMs appeared at E15 where their distribution was similar to that of the differentiating corticotrophic cells; at subsequent stages, their expression extended to the whole anterior lobe. Only two cell types, corticotrophic and somatotrophic cells, remained labelled in the adult gland. In the intermediate lobe, melanotrophic cells never expressed PSA-NCAMs but these were expressed on folliculo-stellate cells at birth, preceding the onset of innervation. These results suggest that NCAMs and PSA-NCAMs play a role in pituitary histogenesis, cell differentiation and neurointermediate lobe innervation.  相似文献   

11.
12.
13.
Folliculo-stellate cells (FS-cells) in the anterior pituitary gland are star-shaped cells and form tiny follicles. FS-cells are positive for S-100 protein and produce many cytokines or growth factors, such as interleukin-6 (IL-6), leukemia inhibitory factor (LIF), basic fibroblastic growth factor (bFGF) and vascular endothelial cell growth factor (VEGF). Therefore, it is generally accepted that FS-cells regulate endocrine cells through these growth factors. FS-cells also exhibit a phagocytotic activity and are known to work as scavenger cells. In addition to these functions, FS-cells are considered to have some unknown functions. In order to reveal the biological significance of FS-cells in the anterior pituitary gland, we performed a morphological study and obtained some new findings. First, we were interested in the colloid formation in the senescent porcine pituitary gland. We analyzed the colloids and found that clusterin is a major protein in them. We also found that the accumulation of clusterin in the colloids is related to the phagocytotic activity of FS-cells. In our next study, we found that FS-cells have the potential to differentiate into striated muscle cells. From FS-cells show multi-potent cell character and other cytological evidence, we propose that FS-cells are candidate of organ-specific stem cells in the anterior pituitary gland.  相似文献   

14.
Since anterior pituitary expresses prolactin receptors, prolactin secreted by lactotropes could exert autocrine or paracrine actions on anterior pituitary cells. In fact, it has been observed that prolactin inhibits its own expression by lactotropes. Our hypothesis is that prolactin participates in the control of anterior pituitary cell turnover. In the present study, we explored the action of prolactin on proliferation and apoptosis of anterior pituitary cells and its effect on the expression of the prolactin receptor. To determine the activity of endogenous prolactin, we evaluated the effect of the competitive prolactin receptor antagonist Δ1-9-G129R-hPRL in vivo, using transgenic mice that constitutively and systemically express this antagonist. The weight of the pituitary gland and the anterior pituitary proliferation index, determined by BrdU incorporation, were higher in transgenic mice expressing the antagonist than in wild-type littermates. In addition, blockade of prolactin receptor in vitro by Δ1-9-G129R-hPRL increased proliferation and inhibited apoptosis of somatolactotrope GH3 cells and of primary cultures of male rat anterior pituitary cells, including lactotropes. These results suggest that prolactin acts as an autocrine/paracrine antiproliferative and proapoptotic factor in the anterior pituitary gland. In addition, anterior pituitary expression of the long isoform of the prolactin receptor, measured by real-time PCR, increased about 10-fold in transgenic mice expressing the prolactin receptor antagonist, whereas only a modest increase in the S3 short-isoform expression was observed. These results suggest that endogenous prolactin may regulate its own biological actions in the anterior pituitary by inhibiting the expression of the long isoform of the prolactin receptor. In conclusion, our observations suggest that prolactin is involved in the maintenance of physiological cell renewal in the anterior pituitary. Alterations in this physiological role of prolactin could contribute to pituitary tumor development.  相似文献   

15.
Pituitary tumors develop in about one-quarter of the population, and most arise from the anterior lobe (AL). The pituitary gland is particularly sensitive to genetic alteration of genes involved in the cyclin-dependent kinase (CDK) inhibitor (CKI)–CDK-retinoblastoma protein (Rb) pathway. Mice heterozygous for the Rb mutation develop pituitary tumors, with about 20% arising from the AL. Perplexingly, none of the CKI-deficient mice reported thus far develop pituitary AL tumors. In this study, we show that deletion of p19Ink4d (p19), a CKI gene, in mice results in spontaneous development of tumors in multiple organs and tissues. Specifically, more than one-half of the mutant mice developed pituitary hyperplasia or tumors predominantly in the AL. Tumor development is associated with increased cell proliferation and enhanced activity of Cdk4 and Cdk6 and phosphorylation of Rb protein. Though Cdk4 is indispensable for postnatal pituitary cell proliferation, it is not required for the hyperproliferative pituitary phenotype caused by p19 loss. Loss of p19 phosphorylates Rb in Cdk4−/− pituitary AL cells and mouse embryonic fibroblasts (MEFs) and rescues their proliferation defects, at least partially, through the activation of Cdk6. These results provide the first genetic evidence that p19 is a tumor suppressor and the major CKI gene that controls pituitary AL cell proliferation.  相似文献   

16.
17.
Flow cytometry is a suitable technique for studying in vivo and in vitro the cell cycle kinetics of different animal and human tissues, both in normal and tumoral conditions. The rat anterior pituitary gland is a model to investigate cell growth and replication of differentiated, neuroendocrine cells, and we report current evidence on its cell cycle kinetics as well as on the role played by flow cytometry in this type of study. The proliferation potential of normal anterior pituitary cells is related to a number of different conditions, including heterogeneity of cell types, age and sex of donors, and circadian influences. In addition, the trend of cell proliferation in both in vivo and in vitro studies is similar, suggesting that cultured anterior pituitary elements may, at least in part, retain growth features analogous to those of the intact gland. Sorting of selective cell types and analysis of the relation between proliferating anterior pituitary cells and the light-dark cycle have shown that flow cytometry may be useful to investigate the replication process of the gland. By using a combination of flow cytometry, light microscopic immunocytochemistry and morphometry, we have reported a peculiar trend of proliferation in primary monolayer cultures of rat anterior pituitary gland, characterized by a non-linear reduction in their proliferation rate with advancing age, primarily dependent on a reduced transition of cells from the G0/G1- to the early S-phase pool. These studies indicate that flow cytometry offers insights into cell cycle check points of anterior pituitary cells, and suggest that it might be applied to the study of growth of selective pituitary elements, both in normal and tumoral conditions.  相似文献   

18.
19.
Male rat pituitary glands, diethylstilbestrol (DES)-induced rat pituitary tumors and 12 human pituitary adenomas were immunostained with antibodies raised against AT1 and AT2 angiotensin receptor proteins. Positive immunostaining of AT1 was observed in a subpopulation of anterior and intermediate pituitary lobe cells as well as in some nerve endings of the neurohypophysis. In the DES-induced rat pituiary tumors, the subpopulation of AT1-immunnopositive cells was smaller than in the non-tumoral anterior pituitary. In human pituitary adenomas, weak AT1 immunostaining was found in 5 tumors. In the remaining adenomas, the AT1 immunostaining was trace (doubtful) or absent. The AT1 immunostaining in the peritumoral non-neoplastic pituitary tissue was stronger than that observed in the tumors. The normal rat pituitaries and rat tumors did not show immunostaining with anti-AT2 antibody. In human pituitary adenomas, the tumoral cells were AT2- negative but moderate to strong AT2 immunostaining was observed in intratumoral blood vessel walls. The data suggest that the experimental (in rat) and spontaneous (in man) pituitary tumorigenesis is associated with the down-regulation of AT1 receptors. The expression of AT2 receptors, in turn, may be connected with the process of tumoral neo-angiogenesis.  相似文献   

20.
Recently we demonstrated that ACTH 1-17 infusion in normal subjects is able to stimulate growth hormone (GH) secretion. In order to study the mechanism by which ACTH 1-17 induces this hormonal secretory pattern, we examined the effects of ACTH 1-17 addition to primary cultures of rat anterior pituitary cells and of two human pituitary adenomas (a mixed GH- and PRL-secreting adenoma and a prolactinoma) on GH and PRL secretion. Normal rat pituitary cells responded to rGRF with a dose-dependent increase of rGH: ACTH 1-17 induced a slight not significant increase of rGH secretion even at micromolar concentrations. Furthermore no additive effect of ACTH 1-17 on rGRF-stimulated GH release was observed. No significant stimulatory effect was also documented in the human tumors studied. These results suggest that the GH releasing activity of ACTH 1-17 observed in vivo is mediated via a direct action on CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号