首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the role of modification in root exudation induced by colonization with Glomus intraradices and Glomus mosseae in the growth of Phytophthora nicotianae in tomato roots. Plants were grown in a compartmentalized plant growth system and were either inoculated with the AM fungi or received exudates from mycorrhizal plants, with the corresponding controls. Three weeks after planting, the plants were inoculated or not with P. nicotianae growing from an adjacent compartment. At harvest, P. nicotianae biomass was significantly reduced in roots colonized with G. intraradices or G. mosseae in comparison to non-colonized roots. Conversely, pathogen biomass was similar in non-colonized roots supplied with exudates collected from mycorrhizal or non-mycorrhizal roots, or with water. We cannot rule out that a mycorrhiza-mediated modification in root exudation may take place, but our results did not support that a change in pathogen chemotactic responses to host root exudates may be involved in the inhibition of P. nicotianae.  相似文献   

2.
Development of biological control for plant diseases is accepted as a durable and environmentally friendly alternative for agrochemicals. Arbuscular mycorrhizal fungi (AMF), which form symbiotic associations with root systems of most agricultural, horticultural and hardwood crop species, have been suggested as widespread potential bioprotective agents. In the present study the ability of two AMF (Glomus mosseae and Glomus intraradices) to induce local or systemic resistance to Phytophthora parasitica in tomato roots have been compared using a split root experimental system. Glomus mosseae was effective in reducing disease symptoms produced by P. parasitica infection, and evidence points to a combination of local and systemic mechanisms being responsible for this bioprotector effect. The biochemical analysis of different plant defence-related enzymes showed a local induction of mycorrhiza-related new isoforms of the hydrolytic enzymes chitinase, chitosanase and beta-1,3-glucanase, as well as superoxide dismutase, an enzyme which is involved in cell protection against oxidative stress. Systemic alterations of the activity of some of the constitutive isoforms were also observed in non-mycorrhizal roots of mycorrhizal plants. Studies on the lytic activity against Phytophthora cell wall of root protein extracts also corroborated a systemic effect of mycorrhizal symbiosis on tomato resistance to Phytophthora.  相似文献   

3.
A study was performed to determine the effect of the systemin polypeptide on the bio-protective effect of arbuscular mycorrhizal fungi (AMF) in tomato plants infected with Alternaria solani, Phytophthora infestans or P. parasitica. Before infection, tomato plants were colonized with two different AMF, Glomus fasciculatum or G. clarum. In addition, a group of inoculated plants was treated with systemin, just after emergence. The exogenous application of systemin marginally suppressed the resistance against A. solani leaf blight observed in G. fasciculatum mycorrhizal plants but significantly enhanced it in plants colonized with G. clarum. Systemin induced resistance to P. parasitica in leaves of G. fasciculatum mycorrhizal plants, in which AMF colonization alone was shown to have no protective effect. Conversely, none of the treatments led to resistance to root or stem rots caused by P. infestans or P. parasitica. The above effects did not correlate with changes in the activity levels of β-1,3-glucanase (BG), chitinase (CHI), peroxidase (PRX), and phenylalanine ammonium lyase (PAL) in leaves of infected plants. However, they corroborated previous reports showing that colonization by AMF can lead to a systemic resistance response against A. solani. Systemic resistance to A. solani was similarly observed in non-mycorrhizal systemin-treated plants, which, in contrast, showed increased susceptibility to P. infestans and P. parasitica. The results indicated that the pattern of systemic disease resistance conferred by mycorrhizal colonization was dependent on the AMF employed and could be altered by the exogenous application of systemin, by means of a still undefined mechanism.  相似文献   

4.
Tomato plants pre-colonised by the arbuscular mycorrhizal fungusGlomus mosseae showed decreased root damage by the pathogenPhytophthora nicotianae var.parasitica. In analyses of the cellular bases of their bioprotective effect, a prerequisite for cytological investigations of tissue interactions betweenG. mosseae andP. nicotianae v.parasitica was to discriminate between the hyphae of the two fungi within root tissues. We report the use of antibodies as useful tools, in the absence of an appropriate stain for distinguishing hyphae ofP. nicotianae v.parasitica from those ofG. mosseae inside roots, and present observations on the colonisation patterns by the pathogenic fungus alone or during interactions in mycorrhizal roots. Infection intensity of the pathogen, estimated using an immunoenzyme labelling technique on whole root fragments, was lower in mycorrhizal roots. Immunogold labelling ofP. nicotianae v.parasitica on cross-sections of infected tomato roots showed that inter or intracellular hyphae developed mainly in the cortex, and their presence induced necrosis of host cells, the wall and contents of which showed a strong autofluorescence in reaction to the pathogen. In dual fungal infections of tomato root systems, hyphae of the symbiont and the pathogen were in most cases in different root regions, but they could also be observed in the same root tissues. The number ofP. nicotianae v.parasitica hyphae growing in the root cortex was greatly reduced in mycorrhizal root systems, and in mycorrhizal tissues infected by the pathogen, arbuscule-containing cells surrounded by intercellularP. nicotianae v.parasitica hyphae did not necrose and only a weak autofluorescence was associated with the host cells. Results are discussed in relation to possible processes involved in the phenomenon of bioprotection in arbuscular mycorrhizal plants.  相似文献   

5.
The effects of 17 Paenibacillus strains on root colonization by Glomus intraradices or Glomus mosseae and plant growth parameters (shoot and root weight) of mycorrhizal cucumber plants were examined. The Paenibacillus strains were originally isolated from mycorrhizal (G. intraradices) and non-mycorrhizal cucumber rhizosphere and/or hyphosphere, except for strain EJP73, which originated from a Pinus sylvestris-Lactarius rufus ectomycorrhiza. Root colonization of cucumber plants by G. intraradices or G. mosseae was unaffected by all seven strains of Paenibacillus polymyxa, but was decreased or increased by four strains of Paenibacillus macerans and strain EJP73 of Paenibacillus sp. Overall, shoot dry weight of cucumber grown in symbioses with either G intraradices or G. mosseae was unaffected by inoculation with all of the Paenibacillus strains, except for strain MB02-429 of P. macerans, which increased the shoot dry weight in the cucumber-G. mosseae symbiosis. On the other hand, several Paenibacillus strains caused altered root growth. Three strains of P. polymyxa and four strains of P. macerans increased the root fresh weight of the cucumber–G. intraradices symbiosis, whereas three strains of P. polymyxa and one strain of P. macerans as well as Paenibacillus sp. EJP73, decreased the root fresh weight of the cucumber–G. mosseae symbiosis. In conclusion, our results show that bacteria from several species of Paenibacillus differentially affect cucumber mycorrhizas.  相似文献   

6.
R. Utkhede 《BioControl》2006,51(3):393-400
The arbuscular mycorrhizal fungi Glomus monosporum, G. vesiculiferum, G. deserticola, G. intraradices, G. mosseae, and two unidentified species were tested to determine their effect on plant growth and fruit production of tomato (Lycopersicon esculentum Mill.) cv. Trust inoculated with Fusarium oxysporum f. sp. radicis-lycopersici (FORL) under near-commercial greenhouse conditions. Inoculation with G. monosporum and G. mosseae significantly increased fruit yield and fruit number of tomato plants grown hydroponically in sawdust. Plant height and plant dry weight increased significantly when inoculated with G. monosporum and G. mosseae. Further, plants inoculated with G. monosporum and G. mosseae showed significantly lower FORL root infection than the untreated control plants.  相似文献   

7.
A full-length cDNA clone (LeST3), encoding a putative tomato sugar transporter, was isolated from mycorrhizal roots by using a PCR-based approach. Based on sequence similarity, conserved motifs and predicted membrane topology, LeST3 was classified as a putative monosaccharide transporter of the sugar transporter subgroup of the major facilitator superfamily. Southern blot analysis showed that LeST3 represents a single-copy gene in tomato. To investigate its function, LeST3 was expressed in a hexose transport-deficient mutant of Saccharomyces cerevisiae. Although LeST3 was correctly transcribed in yeast, it did not restore growth on hexoses of the S. cerevisiae mutant. LeST3 gene expression was increased in the leaves of plants colonised by the arbuscular mycorrhizal (AM) fungi Glomus mosseae or Glomus intraradices and in those of plants infected with the root pathogen Phytophthora parasitica. These data suggest that LeST3 plays a role in the transport of sugars into the sink tissues and responds to the increased demand for carbohydrates exerted by two AM fungi and by a root pathogen to cope with the increased metabolic activity of the colonised/infected tissues or to supply carbohydrates to the AM fungus.  相似文献   

8.
This study compared the effectiveness of four arbuscular mycorrhizal (AM) fungal isolates (two autochthonous presumably drought-tolerant Glomus sp and two allochthonous presumably drought-sensitive strains) on a drought-adapted plant (Lavandula spica) growing under drought conditions. The autochthonous AM fungal strains produced a higher lavender biomass, specially root biomass, and a more efficient N and K absorption than with the inoculation of similar allochthonous strains under drought conditions. The autochthonous strains of Glomus intraradices and Glomus mosseae increased root growth by 35% and 100%, respectively, when compared to similar allochthonous strains. These effects were concomitant with an increase in water content and a decline in antioxidant compounds: 25% glutathione, 7% ascorbate and 15% H2O2 by G. intraradices, and 108% glutathione, 26% ascorbate and 43% H2O2 by G. mosseae. Glutathione and ascorbate have an important role in plant protection and metabolic function under water deficit; the low cell accumulation of these compounds in plants colonized by autochthonous AM fungal strains is an indication of high drought tolerance. Non-significant differences between antioxidant activities such as glutathione reductase (GR), catalase (CAT) and superoxide dismutase (SOD) in colonized plants were found. Thus, these results do not allow the generalization that GR, CAT and SOD were correlated with the symbiotic efficiency of these AM fungi on lavender drought tolerance. Plants colonized by allochthonous G. mosseae (the less efficient strain under drought conditions) had less N and K content than those colonized by similar autochthonous strain. These ions play a key role in osmoregulation. The AM symbiosis by autochthonous adapted strains also produced the highest intraradical and arbuscular development and extraradical mycelial having the greatest fungal SDH and ALP-ase activities in the root systems. Inoculation of autochthonous drought tolerant fungal strains is an important strategy that assured the greatest tolerance water stress contributing to the best lavender growth under drought.  相似文献   

9.
Three arbuscular mycorrhizal (AM) fungi (Glomus mosseae, Glomus claroideum, and Glomus intraradices) were compared for their root colonizing ability and activity in the root of Astragalus sinicus L. under salt-stressed soil conditions. Mycorrhizal formation, activity of fungal succinate dehydrogenase, and alkaline phosphatase, as well as plant biomass, were evaluated after 7 weeks of plant growth. Increasing the concentration of NaCl in soil generally decreased the dry weight of shoots and roots. Inoculation with AM fungi significantly alleviated inhibitory effect of salt stress. G. intraradices was the most efficient AM fungus compared with the other two fungi in terms of root colonization and enzyme activity. Nested PCR revealed that in root system of plants inoculated with a mix of the three AM fungi and grown under salt stress, the majority of mycorrhizal root fragments were colonized by one or two AM fungi, and some roots were colonized by all the three. Compared to inoculation alone, the frequency of G. mosseae in roots increased in the presence of the other two fungal species and highest level of NaCl, suggesting a synergistic interaction between these fungi under salt stress.  相似文献   

10.
The aims of the present study are to find out whether the effects of arbuscular mycorrhizal (AM) symbiosis on plant resistance to water deficit are mediated by the endogenous abscisic acid (ABA) content of the host plant and whether the exogenous ABA application modifies such effects. The ABA-deficient tomato mutant sitiens and its near-isogenic wild-type parental line were used. Plant development, physiology, and expression of plant genes expected to be modulated by AM symbiosis, drought, and ABA were studied. Results showed that only wild-type tomato plants responded positively to mycorrhizal inoculation, while AM symbiosis was not observed to have any effect on plant development in sitiens plants grown under well-watered conditions. The application of ABA to sitiens plants enhanced plant growth both under well-watered and drought stress conditions. In respect to sitiens plants subjected to drought stress, the addition of ABA had a cumulative effect in relation to that of inoculation with G. intraradices. Most of the genes analyzed in this study showed different regulation patterns in wild-type and sitiens plants, suggesting that their gene expression is modulated by the plant ABA phenotype. In the same way, the colonization of roots with the AM fungus G. intraradices differently regulated the expression of these genes in wild-type and in sitiens plants, which could explain the distinctive effect of the symbiosis on each plant ABA phenotype. This also suggests that the effects of the AM symbiosis on plant responses and resistance to water deficit are mediated by the plant ABA phenotype.  相似文献   

11.
The effect of root exudates from mycorrhizal and non-mycorrhizal tomato plants on microconidia germination of the tomato pathogen Fusarium oxysporum f. sp. lycopersici was tested. Microconidia germination was enhanced in the presence of root exudates from mycorrhizal tomato plants. The more tomato plants were colonized by the arbuscular mycorrhizal fungus Glomus mosseae, the more microconidia germination was increased, indicating that alterations of the exudation pattern depended on the degree of root AM colonization. Moreover, alterations of the exudation pattern of mycorrhizal plants are not only local, but also systemic. Testing the exudates from plants with a high and a low P level revealed that the alterations of the root exudates from mycorrhizal plants, resulting in a changed effect on microconidia germination, are not due to an improved P status of mycorrhizal plants.  相似文献   

12.
A time course study was conducted to investigate disease development and molecular defense response in common bean (Phaseolus vulgaris L.) plants colonized by a mixture of five arbuscular mycorrhizal (AM) fungi, namely, Glomus mosseae, G. intraradices, G. clarum, Gigaspora gigantea, and Gigaspora margarita, and post-infected with the soil-borne pathogen Rhizoctonia solani. Results showed that pre-colonization of bean plants by AM fungi significantly reduced disease severity and disease incidence. DNA fingerprinting using the differential display technique revealed a genetic polymorphism (86.8 %) in bean plants that resulted from the colonization by AM fungi. Two genetic mechanisms were recorded: (1) switching on of new genes and (2) induction of other active genes, including the defense genes chitinase and β-1,3-glucanase, to a highly expressed state.  相似文献   

13.
The objective of this work was to study the influence of three Glomus species—Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe, Glomus intraradices (Schenck and Smith) and Glomus deserticola (Trappe, Bloss, and Menge)—on the development of Verticillium-induced wilt in Capsicum annuum cv. Piquillo. Results showed that the effectiveness of arbuscular mycorrhizal fungi (AMF) as biocontrol agents varied among different Glomus species. In pepper colonized by G. intraradices the severity of the disease was even higher than that observed in non-mycorrhizal plants in terms of plant growth and pepper yield. On the other hand, the high effectiveness exhibited by G. mosseae in improving plant growth and the early beginning of the reproductive stage in these plants was not associated with great plant protection and high pepper yield in diseased plants. Only plants associated with G. deserticola had greater yield than non-mycorrhizal ones despite the lower P fertilization applied to the mycorrhizal treatment and this fact was observed in both healthy and diseased plants. It is suggested that the higher specific phosphorus uptake in Verticillium-inoculated plants associated with G. deserticola could contribute to diminish the deleterious effect of pathogen on yield. On the other hand, the possible influence of endogenous phenolics in roots on the tolerance or resistance of pepper against wilt induced by Verticillium dahliae remains unclear.  相似文献   

14.
Greenhouse and field experiments were carried out in order to investigate the influence of mycorrhizal inoculation on total phenolic content (TPC) and antioxidant activity, expressed as antiradical power (ARP), of artichoke (Cynara cardunculus L. var. scolymus F.) leaves and flower heads extracts. The establishment of mycorrhizal symbiosis was monitored in pot and field grown plants, and the persistence of the inoculated AMF in roots after 2 years’ growth in the field was assessed by fungal ITS sequencing. Both in the greenhouse and in the field, marked increases in TPC and ARP were detected in leaves and flower heads of artichoke plants inoculated with the AM fungal species Glomus intraradices, either alone or in mixture with Glomus mosseae. In the field, plants inoculated with Glomus mix showed flower heads ARP content increases of 52.7 and 30.0% in the first and second year, respectively, compared with uninoculated plants. After 2 years’ growth in the field ITS rDNA sequences clustering with those of G. mosseae and G. intraradices were retrieved only from inoculated plant roots. Our data show that mycorrhizal inoculation may represent an efficient and sustainable strategy to improve productivity and enhance plant biosynthesis of secondary metabolites with health promoting activities.  相似文献   

15.
A field survey of the arbuscular mycorrhizal status of herbaceous plant species was conducted in a highly alkaline anthropogenic sediment resulting from the disposal of waste from an acetylene and polyvinyl chloride factory. Most plant species found at the site were mycorrhizal and the dominant mycotrophic plant species was Conyza bilbaoana. Fungal species richness was assessed by identification of spores extracted from the sediment and from continuously propagated trap pot cultures. All of the six species of arbuscular mycorrhizal fungi (AMF) found were from the genus Glomus. Glomus intraradices and G. mosseae were found in field-collected sediment samples and also occurred most frequently in trap cultures. To test the symbiotic effectiveness of these two fungi, seedlings of C. bilbaoana were inoculated with either native G. intraradices BEG163 or G. mosseae BEG198 and non-native G. intraradices BEG75 or G. mosseae BEG25 isolates in sterile and non-sterile sediment collected from the study site. All four isolates were able to colonise C. bilbaoana. However, AMF native to the target sediments were generally more effective than the non-native fungi in promoting plant establishment and growth under highly alkaline conditions. The non-native G. intraradices was, however, more effective than the non-native G. mosseae. The results of this study suggest the use of adapted AMF as inoculants for phytorestoration of alkaline anthropogenic-stressed sediments.  相似文献   

16.
A field study was done to assess the potential benefit of arbuscular mycorrhizal (AM) inoculation of elite strawberry plants on plant multiplication, under typical strawberry nursery conditions and, in particular, high soil P fertility (Mehlich-3 extractible P=498 mg kg−1). Commercially in vitro propagated elite plants of five cultivars (‘Chambly,’ ‘Glooscap,’ ‘Joliette,’ ‘Kent,’ and ‘Sweet Charlie’) were transplanted in noninoculated growth substrate or in substrate inoculated with Glomus intraradices or with a mixture of species (G. intraradices, Glomus mosseae, and Glomus etunicatum) at the acclimation stage and were grown for 6 weeks before transplantation in the field. We found that AM fungi can impact on plant productivity in a soil classified as excessively rich in P. Inoculated mother plants produced about 25% fewer daughter plants than the control in Chambly (P=0.03), and Glooscap produced about 50% more (P=0.008) daughter plants when inoculated with G. intraradices, while the productivity of other cultivars was not significantly decreased. Daughter plant shoot mass was not affected by treatments, but their roots had lower, higher, or similar mass, depending on the cultivar–inoculum combination. Root mass was unrelated to plant number. The average level of AM colonization of daughter plants produced by noninoculated mother plants did not exceed 2%, whereas plants produced from inoculated mothers had over 10% of their root length colonized 7 weeks after transplantation of mother plants and ∼6% after 14 weeks (harvest), suggesting that the AM fungi brought into the field by inoculated mother plants had established and spread up to the daughter plants. The host or nonhost nature of the crop species preceding strawberry plant production (barley or buckwheat) had no effect on soil mycorrhizal potential, on mother plant productivity, or on daughter plant mycorrhizal development. Thus, in soil excessively rich in P, inoculation may be the only option for management of the symbiosis.  相似文献   

17.
Vierheilig  Horst  Iseli  Beatrice  Alt  Monica  Raikhel  Natasha  Wiemken  Andres  Boller  Thomas 《Plant and Soil》1996,183(1):131-136
Roots of stinging nettle (Urtica dioica L.) were sampled at different sites around Basel (Switzerland) and examined under the microscope. They were completely devoid of mycorrhizal structures. Similarly, stinging nettle plants grown in the greenhouse in the presence of the arbuscular mycorrhizal fungusGlomus mosseae did not show any signs of mycorrhiza formation. Spread ofG. mosseae through the rhizosphere of stinging nettle plants was inhibited, and application of extracts of stinging nettle roots and rhizomes to hyphal tips ofG. mosseae reduced hyphal growth.Urtica dioica agglutinin, an antifungal protein present in the rhizomes of stinging nettle, inhibited hyphal growth in a similar way as the crude root extract. The possibility thatUrtica dioica agglutinin is at least partially responsible for the inability of stinging nettle to form the arbuscular mycorrhizal symbiosis withG. mosseae is discussed.  相似文献   

18.
The present study on efficacy of different Glomus species, an arbuscular mycorrhizal (AM) fungus (G. aggregatum, G. fasciculatum, G. mosseae, G. intraradices) on various growth parameters such as biomass, macro and micronutrients, chlorophyll, protein, cytokinin and alkaloid content and phosphatase activity of pink flowered Catharanthus roseus plants showed that all Glomus species except G. intraradices enhanced the chlorophyll, protein, crude alkaloid, phosphorus, sulphur, manganese and copper contents of C. roseus plants along with phosphatase activity significantly over uninoculated plants. However only G. mosseae and G. fasciculatum exhibited superior symbiotic relationship with the plant. G. mosseae was found to be the best for increasing the crude alkaloid content (8.19%) in leaf and also in increasing the quantity of important alkaloids vincristine and vinblastine.  相似文献   

19.
Isoforms of endochitinase in soybean were studied in relation to root symbiosis. Five selected cultivars differing in their nodulation potential were inoculated with two strains of Bradyrhizobium japonicum, the broad host-range Rhizobium sp. NGR234, and with the mycorrhizal fungus Glomus mosseae. Total chitinase activity in nodules was up to 7-fold higher than in uninoculated roots and in mycorrhizal roots. The chitinase activity in nodules varied depending on the strain-cultivar combination. On semi-native polyacrylamide gels, four acidic isoforms were identified. Two isoforms (CH 2 and CH 4) were constitutively present in al analysed tissues. The other two isoforms (CH 1 and CH 3) were strongly induced in nodules and were simulated in mycorrhizal roots as compared to uninoculated roots. The induction of CH 1 varied in nodules depending on the soybean cultivar. This isoform was also stimulated in uninfected roots when they were treated with tri-iodobenzoic acid, rhizobial lipochitooloigosaccharides (Nod factors) and chitotetraose. CH 3 was not affected by these stimuli indicating that this isoform could represent a marker for enzymes induced in later stages of the symbiotic interactions.Key words: (Brady)rhizobium, chitinase isoenzymes, mycorrhiza, (restricted) nodulation, Nod factors   相似文献   

20.
Field response of wheat to arbuscular mycorrhizal fungi and drought stress   总被引:3,自引:0,他引:3  
Al-Karaki G  McMichael B  Zak J 《Mycorrhiza》2004,14(4):263-269
Mycorrhizal plants often have greater tolerance to drought than nonmycorrhizal plants. This study was conducted to determine the effects of arbuscular mycorrhizal (AM) fungi inoculation on growth, grain yield and mineral acquisition of two winter wheat (Triticum aestivum L.) cultivars grown in the field under well-watered and water-stressed conditions. Wheat seeds were planted in furrows after treatment with or without the AM fungi Glomus mosseae or G. etunicatum. Roots were sampled at four growth stages (leaf, tillering, heading and grain-filling) to quantify AM fungi. There was negligible AM fungi colonization during winter months following seeding (leaf sampling in February), when soil temperature was low. During the spring, AM fungi colonization increased gradually. Mycorrhizal colonization was higher in well-watered plants colonized with AM fungi isolates than water-stressed plants. Plants inoculated with G. etunicatum generally had higher colonization than plants colonized with G. mosseae under both soil moisture conditions. Biomass and grain yields were higher in mycorrhizal than nonmycorrhizal plots irrespective of soil moisture, and G. etunicatum inoculated plants generally had higher biomass and grain yields than those colonized by G. mosseae under either soil moisture condition. The mycorrhizal plants had higher shoot P and Fe concentrations than nonmycorrhizal plants at all samplings regardless of soil moisture conditions. The improved growth, yield and nutrient uptake in wheat plants reported here demonstrate the potential of mycorrhizal inoculation to reduce the effects of drought stress on wheat grown under field conditions in semiarid areas of the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号