首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capabilities of capillary isoelectric focusing-based multidimensional separations for performing proteome analysis from minute samples create new opportunities in the pursuit of biomarker discovery using enriched and selected cell populations procured from tissue specimens. In this article, recent advances in online integration of capillary isoelectric focusing with nano-reversed phase liquid chromatography for achieving high-resolution peptide and protein separations prior to mass spectrometry analysis are reviewed, along with its potential application to tissue proteomics. These proteome technological advances combined with recently developed tissue microdissection techniques, provide powerful tools for those seeking to gain a greater understanding at the global level of the cellular machinery associated with human diseases such as cancer.  相似文献   

2.
A novel two-dimensional (2D) separation system for proteins was reported. In the system, a piece of dialysis hollow-fiber membrane was employed as the interface for on-line combination of capillary isoelectric focusing (CIEF) and capillary non-gel sieving electrophoresis (CNGSE). The system is similar equivalent to two-dimensional polyacrylamide gel electrophoresis (2D PAGE), by transferring the principal of 2D PAGE separation to the capillary format. Proteins were focused and separated in first dimension CIEF based on their differences in isoelectric points (pIs). Focused protein zones was transferred to the dialysis hollow-fiber interface, where proteins hydrophobically complexed with sodium dodecyl sulfate (SDS). The negatively charged proteins were electromigrated and further resolved by their differences in size in the second dimension CNGSE, in which dextran solution, a replaceable sieving matrix instead of cross-linked polyacrylamide gel was employed for size-dependent separation of proteins. The combination of the two techniques was attributed to high efficiency of the dialysis membrane interface. The feasibility and the orthogonality of the combined CIEF-CNGSE separation technique, an important factor for maximizing peak capacity or resolution elements, were demonstrated by examining each technique independently for the separation of hemoglobin and protein mixtures excreting from lung cancer cells of rat. The 2D separation strategy was found to greatly increase the resolving power and overall peak capacity over those obtained for either dimension alone.  相似文献   

3.
Two capillary electrophoretic methods were developed and evaluated for measurement of glycated hemoglobin A1c (HbA1c). First, a capillary electrophoresis analysis is performed with a sodium tetraborate buffer (pH 9.3) as background electrolyte in a neutrally coated capillary. HbA1c is separated from HbA0 due to specific interactions of borate anions with the cisdiol pattern in the saccharide moiety of glycohemoglobin. Second, a capillary isoelectric focusing method, which exploits a difference in pI values of HbA0 and HbA1c, is performed with Servalyt pH 6–8 or alternatively with Biolyte pH 6–8 carrier ampholytes spiked with a narrow pH cut of pH 7.2 prepared by preparative fractionation of Servalyt pH 4–9 carrier ampholytes. Both methods reflect recent developments in the methodology of capillary electrophoresis. They allow quantifying HbA1c in generic capillary electrophoresis analyzer with specificity that is consistent with previously reported electrophoretic assays in slab gels and capillaries.  相似文献   

4.
The integration of functional proteins in the phospholipid bilayer is one of the most crucial features of biological membrane architecture. Phospholipid-protein interactions play an important role in the functions of bounded proteins in the phospholipid membrane. When the phospholipid-protein interactions occur, the protein structure tends to alter, which can result in a change in the isoelectric points (pI) of protein. Capillary isoelectric focusing (cIEF) with whole-column imaging detection (WCID) is an attractive technique that has the features of simple operation, high resolution, and fast separation without focused band mobility for detection of amphoteric biomolecules. In this study, a cIEF-WCID method was developed to characterize the phospholipids-protein interactions by monitoring the protein cIEF profiles. Seven proteins with different pI and molecular mass , and a zwitterionic phosphatidylcholine (PC) with zwitterionic properties, were used to evaluate the feasibility of the cIEF-WCID approach in the study of phospholipid-protein interactions. The cIEF profiles changed in response to the changes in protein conformation, clearly exhibiting interactions between the PC vesicles and the targeted proteins. The formation of PC-protein complex was observed in the cIEF electropherograms. It was demonstrated that seven proteins displayed distinct interactions with the PC vesicles due to their different chemical and physical properties. The influences of the PC concentration, incubation time, and incubation temperature on the phospholipids-protein interactions were investigated. This study validated a novel analytical approach for the characterization of phospholipid-protein interactions.  相似文献   

5.
Capillary isoelectric focusing (CIEF) with liquid-core waveguide (LCW) laser-induced fluorescence (LIF) whole-column imaging detection (WCID) is a recently developed high-resolution, high-sensitivity, and high-speed analytical tool for protein analysis. Several potential applications of this system were demonstrated in this study. First, this system was employed to separate naturally fluorescent phycobiliproteins. Second, denaturing CIEF was suggested to study the conformational and chemical microheterogeneity and to characterize proteins with identical pI values. Third, a modified noncovalent fluorescent labeling procedure was presented, which allows the simple and effective labeling of proteins, antibodies, and viruses with reduced multiple labeling and preserved activity. Finally, extracellular proteins were suggested as signaling biomarkers for evaluation of cell viability. The separation of cyanobacteria and their extracellular phycoerythrins was demonstrated. The effectiveness of CIEF-LCW-LIF-WCID for the analysis of proteins, antibodies, viruses, and cells has been illustrated.  相似文献   

6.
An integrated protein concentration/separation platform, combining capillary isoelectric focusing (CIEF) with nano-reversed phase liquid chromatography (nano-RPLC), is developed to provide significant protein concentration and high resolving power for the analysis of complex protein mixtures. Upon completion of protein focusing, the proteins are sequentially and hydrodynamically loaded into individual trap columns using a group of microinjection and microselection valves. Repeated pro-tein loadings and injections into trap columns are carried out automatically until the entire CIEF cap-illary content is sampled and fractionated. Each CIEF fraction "parked" in separate trap columns is further resolved using nano-RPLC, and the eluants are analyzed using electrospray ionization-mass spectrometry.  相似文献   

7.
8.
Saliva is a readily available body fluid with great diagnostic potential. The foundation for saliva-based diagnostics, however, is the development of a complete catalog of secreted and "leaked" proteins detectable in saliva. By employing a capillary isoelectric focusing-based multidimensional separation platform coupled with electrospray ionization tandem mass spectrometry (MS), a total of 5338 distinct peptides were sequenced, leading to the identification of 1381 distinct proteins. A search of bacterial protein sequences also identified many peptides unique to several organisms and unique to the NCBI nonredundant database. To the best of our knowledge, this proteome study represents the largest catalog of proteins measured from a single saliva sample to date. Data analysis was performed on individual MS/MS spectra using the highly specific peptide identification algorithm, OMSSA. Searches were conducted against a decoyed SwissProt human database to control the false-positive rate at 1%. Furthermore, the well-curated SwissProt sequences represent perhaps the least redundant human protein sequence database (12,484 records versus the 50,009 records found in the International Protein Index human database), therefore minimizing multiple protein inferences from single peptides. This combined bioanalytical and bioinformatic approach has established a solid foundation for building up the human salivary proteome for the realization of the diagnostic potential of saliva.  相似文献   

9.
Commercially, lettuce (Lactuca sativa) is one of the most important leafy vegetables. Lettuce produces a milky latex of variable chemical compositions within its laticifers. As a step toward understanding the main physiological roles of this latex in higher plants, we embarked on its proteomic analysis. We investigated 587 latex proteins that were identified from the lettuce latex using multidimensional protein-identification technology. A bioinformatics analysis showed that the most frequently encountered proteins in the latex were organellar proteins from plastids and mitochondria, followed by nucleic and cytoplasmic proteins. Functional classification of the identified proteins showed that proteins related to metabolism, cell rescue, defense, and virulence were the most abundant in lettuce latex. Furthermore, numerous resistance proteins of lettuce and viral proteins were present in the latex suggesting for the first time a possible function of the lettuce latex in defense or pathogenesis. To the knowledge of the authors, this is the first large-scale proteome analysis of lettuce latex.  相似文献   

10.
Adenosine-secreting cellular brain implants constitute a promising therapeutic approach for the treatment of epilepsy. To engineer neural stem cells for therapeutic adenosine delivery, a reliable and fast analytical method is necessary to quantify cell-based adenosine release. Here we describe the development, optimization and validation of adenosine measurement using liquid chromatography–atmospheric pressure chemical ionization-tandem mass spectrometry (LC–APCI-MS/MS). LC–MS/MS in positive ion mode used selected reaction monitoring at m/z of 268.2/136.1 and 302.2/170.0 for adenosine and the internal standard, respectively. The bias was within 15% of the nominal value and evaluation of precision showed a relative standard deviation lower than 15% for all measured concentrations. The lower limit of quantification of adenosine was 15.6 ng/ml. Freeze and thaw stability and processed sample stability also fulfilled the acceptance criteria. Evaluation of the matrix effect showed that the method is not affected by relative matrix effects. The major advantages of this method are the absence of an extraction phase and the combination of the high selectivity and sensitivity characteristic for the LC–MS/MS technique, with a short run time of 4.5 min. These results demonstrate that this method is a useful tool to measure adenosine concentrations in culture medium released from stem cells in vitro.  相似文献   

11.
Schiffer E  Mischak H  Novak J 《Proteomics》2006,6(20):5615-5627
All organisms contain thousands of proteins and peptides in their body fluids. A deeper insight into the functional relevance of these polypeptides under different physiological and pathophysiological conditions and the discovery of specific peptide biomarkers would greatly enhance both diagnosis and therapy of specific diseases. Proteomic methods can provide means to accomplish this grand medical vision. In this review, we will focus on the potential use of proteome analysis for clinical applications, such as disease diagnosis and assessment of response to therapy. We focus on CE coupled with MS (CE-MS) and review in detail different aspects of CE-MS coupling and the results obtained using CE-MS analysis of clinically relevant samples. We also discuss clinical applications of the technology for the diagnosis of renal diseases, urogenital cancer, and arteriosclerosis as well as monitoring the responses to therapeutic interventions.  相似文献   

12.
Blood serum is a complex body fluid that contains various proteins ranging in concentration over at least 9 orders of magnitude. Using a combination of mass spectrometry technologies with improvements in sample preparation, we have performed a proteomic analysis with submilliliter quantities of serum and increased the measurable concentration range for proteins in blood serum beyond previous reports. We have detected 490 proteins in serum by on-line reversed-phase microcapillary liquid chromatography coupled with ion trap mass spectrometry. To perform this analysis, immunoglobulins were removed from serum using protein A/G, and the remaining proteins were digested with trypsin. Resulting peptides were separated by strong cation exchange chromatography into distinct fractions prior to analysis. This separation resulted in a 3-5-fold increase in the number of proteins detected in an individual serum sample. With this increase in the number of proteins identified we have detected some lower abundance serum proteins (ng/ml range) including human growth hormone, interleukin-12, and prostate-specific antigen. We also used SEQUEST to compare different protein databases with and without filtering. This comparison is plotted to allow for a quick visual assessment of different databases as a subjective measure of analytical quality. With this study, we have performed the most extensive analysis of serum proteins to date and laid the foundation for future refinements in the identification of novel protein biomarkers of disease.  相似文献   

13.
In the field of proteomic investigation, the analysis of membrane proteins still faces many technical challenges. A fundamental question in this puzzle is how to maintain a proper solvent environment to allow the hydrophobic proteins to remain solubilized. We propose that the denaturation of membrane proteins in a highly concentrated urea solution enables them to be ionized such that ionic exchange chromatography can be employed to separate them. The membrane proteins prepared from the mouse liver were dissolved in 6M guanidine hydrochloride, 20mM Tris-HCl, pH 9.0, and loaded onto a tandem chromatography apparatus coupled with Q-Sepharose FF and Sephacryl S-200HR. These columns were able to adsorb 97.87% of the membrane protein preparations. Using a linear NaCl (0-1.0M) gradient, the bound proteins were eluted out at 0.1-1.0M NaCl, and examined by SDS-PAGE. Furthermore the protein bands underwent excision and digestion with trypsin, followed by reverse-phase chromatography for the separation of the digested peptides and ionic-trap mass spectrometry for the identification of the proteins. From the SDS-PAGE gels, the overlap between proteins from neighboring bands was only 21.34%, indicating that the anionic-size exclusion coupling chromatography efficiently separated these membrane proteins. Of a total of 392 proteins identified, 306 were membrane proteins or membrane-associated proteins. Based on the calculation of hydrophobicity, the GRAVY scores of 83 proteins are greater than, or equal to, 0.00. Taking all of this evidence together, our results revealed that this approach is satisfactory for studies on the membrane proteome from the mouse liver.  相似文献   

14.
There is significant interest in characterization of the human plasma proteome due to its potential for providing biomarkers applicable to clinical diagnosis and treatment and for gaining a better understanding of human diseases. We describe here a strategy for comparative proteome analyses of human plasma, which is applicable to biomarker identifications for various disease states. Multidimensional liquid chromatography-mass spectrometry (LC-MS/MS) has been applied to make comparative proteome analyses of plasma samples from an individual prior to and 9 h after lipopolysaccharide (LPS) administration. Peptide peak areas and the number of peptide identifications for each protein were used to evaluate the reproducibility of LC-MS/MS and to compare relative changes in protein concentration between the samples following LPS treatment. A total of 804 distinct plasma proteins (not including immunoglobulins) were confidently identified with 32 proteins observed to be significantly increased in concentration following LPS administration, including several known inflammatory response or acute-phase mediators such as C-reactive protein, serum amyloid A and A2, LPS-binding protein, LPS-responsive and beige-like anchor protein, hepatocyte growth factor activator, and von Willebrand factor, and thus, constituting potential biomarkers for inflammatory response.  相似文献   

15.
Highly complex protein mixtures can be directly analyzed after proteolysis by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). In this paper, we have utilized the combination of strong cation exchange (SCX) and reversed-phase (RP) chromatography to achieve two-dimensional separation prior to MS/MS. One milligram of whole yeast protein was proteolyzed and separated by SCX chromatography (2.1 mm i.d.) with fraction collection every minute during an 80-min elution. Eighty fractions were reduced in volume and then re-injected via an autosampler in an automated fashion using a vented-column (100 microm i.d.) approach for RP-LC-MS/MS analysis. More than 162,000 MS/MS spectra were collected with 26,815 matched to yeast peptides (7,537 unique peptides). A total of 1,504 yeast proteins were unambiguously identified in this single analysis. We present a comparison of this experiment with a previously published yeast proteome analysis by Yates and colleagues (Washburn, M. P.; Wolters, D.; Yates, J. R., III. Nat. Biotechnol. 2001, 19, 242-7). In addition, we report an in-depth analysis of the false-positive rates associated with peptide identification using the Sequest algorithm and a reversed yeast protein database. New criteria are proposed to decrease false-positives to less than 1% and to greatly reduce the need for manual interpretation while permitting more proteins to be identified.  相似文献   

16.
The performances of five different ESI sources coupled to a polystyrene–divinylbenzene monolithic column were compared in a series of LC‐ESI‐MS/MS analyses of Escherichia coli outer membrane proteins. The sources selected for comparison included two different modifications of the standard electrospray source, a commercial low‐flow sprayer, a stainless steel nanospray needle and a coated glass Picotip. Respective performances were judged on sensitivity and the number and reproducibility of significant protein identifications obtained through the analysis of multiple identical samples. Data quality varied between that of a ground silica capillary, with 160 total protein identifications, the lowest number of high quality peptide hits obtained (3012), and generally peaks of lower intensity; and a stainless steel nanospray needle, which resulted in increased precursor ion abundance, the highest‐quality peptide fragmentation spectra (5414) and greatest number of total protein identifications (259) exhibiting the highest MASCOT scores (average increase in score of 27.5% per identified protein). The data presented show that, despite increased variability in comparative ion intensity, the stainless steel nanospray needle provides the highest overall sensitivity. However, the resulting data were less reproducible in terms of proteins identified in complex mixtures – arguably due to an increased number of high intensity precursor ion candidates.  相似文献   

17.
Shotgun proteomics, where a tryptic digest of a complex proteome sample is directly analyzed by either single dimensional or multidimensional liquid chromatography tandem mass spectrometry, has gained acceptance in the proteomics community at large and is widely used in core facilities. Here we review the development in our laboratory of an alternative first-dimension separation technique for shotgun proteomics, immobilized pH gradient isoelectric focusing (IPG-IEF). The key advantages of the technology over other multidimensional separation formats (simplicity, high resolution, and high sensitivity) are discussed. The concept of using peptide pI to filter large shotgun proteomics datasets generated by the IPG-IEF technique to minimize false positives and negatives is also introduced. Finally, an account of the comparison of the technique with the established gold standard for multidimensional separation of peptides, strong cation exchange chromatography, is presented, along with the prospects for the use of peptide pI along with accurate mass measurement for the identification of peptides.  相似文献   

18.
Proteomic profiling of membrane proteins is of vital importance in the search for disease biomarkers and drug development. However, the slow pace in this field has resulted mainly from the difficulty to analyze membrane proteins by mass spectrometry (MS). The objective of this investigation was to explore and optimize solubilization of membrane proteins for shotgun membrane proteomics of the CD14 human monocytes by examining different systems that rely on: i) an organic solvent (methanol) ii) an acid-labile detergent 3-[3-(1,1-bisalkyloxyethyl)pyridin-1-yl]propane-1-sulfonate (PPS), iii) a combination of both agents (methanol + PPS). Solubilization efficiency of different buffers was first compared using bacteriorhodopsin as a model membrane protein. Selected approaches were then applied on a membrane subproteome isolated from a highly enriched human monocyte population that was ~ 98% positive for CD14 expression as determined by FACS analysis. A methanol-based buffer yielded 194 proteins of which 93 (48%) were mapped as integral membrane proteins. The combination of methanol and acid-cleavable detergent gave similar results; 203 identified proteins of which 93 (46%) were mapped integral membrane proteins. However, employing PPS 216 proteins were identified of which 75 (35%) were mapped as integral membrane proteins. These results indicate that methanol alone or in combination with PPS yielded significantly higher membrane protein identification/enrichment than the PPS alone.  相似文献   

19.
Protein phosphorylation is one of the most important and common ways of regulating protein function in cells. However, phosphopeptides are difficult to analyse, ionising poorly under standard MALDI conditions. Several methods have been developed to deal with the low sensitivity and specificity of phosphopeptide analysis. Here, we show an approach using a simple one-step beta-elimination/Michael addition reaction for the derivatization of phosphoserine and phosphothreonine. The substitution of the negatively charged phosphate group by a positively charged S-ethylpyridyl group greatly improves the ionisation of the modified peptides, especially in MALDI MS, increasing the sensitivity of the analysis. The modification allows the formation of a unique fragment ion at m/z 106 under mild collisional activation conditions, which can be used for parent (precursor) ion scanning in order to improve both the sensitivity and the selectivity of the analysis. The optimisation of the approach is described for a standard model peptide and protein and then applied to phosphorylation analysis in two biologically derived proteins purified from different experimental systems.  相似文献   

20.
The identification and characterization of peptides from MS/MS data represents a critical aspect of proteomics. It has been the subject of extensive research in bioinformatics resulting in the generation of a fair number of identification software tools. Most often, only one program with a specific and unvarying set of parameters is selected for identifying proteins. Hence, a significant proportion of the experimental spectra do not match the peptide sequences in the screened database due to inappropriate parameters or scoring schemes. The Swiss protein identification toolbox (swissPIT) project provides the scientific community with an expandable multitool platform for automated in‐depth analysis of MS data also able to handle data from high‐throughput experiments. With swissPIT many problems have been solved: The missing standards for input and output formats (A), creation of analysis workflows (B), unified result visualization (C), and simplicity of the user interface (D). Currently, swissPIT supports four different programs implementing two different search strategies to identify MS/MS spectra. Conceived to handle the calculation‐intensive needs of each of the programs, swissPIT uses the distributed resources of a Swiss‐wide computer Grid (http://www.swing‐grid.ch).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号