共查询到6条相似文献,搜索用时 0 毫秒
1.
Binding of the Novel Serotonin Agonist 8-Hydroxy-2-(Di-n-Propylamino) Tetralin in Normal and Alzheimer Brain 总被引:3,自引:2,他引:3
Binding of [3H]8-hydroxy-2-(di-n-propylamino) tetralin, a putative ligand for the 5-hydroxytryptamine (5-HT, serotonin) 1A recognition site, was measured in neocortex from postmortem human brain. The substance was found to bind to a saturable site with a KD value and pharmacological profile similar to that of rat. Binding to membranes from normal human temporal cortex was found to significantly correlate (inversely) with age. A significant reduction in binding, reflecting decreased density of recognition sites, was observed in the frontal cortex of patients with Alzheimer's disease (48% loss). This region in the dement brains showed unaltered presynaptic 5-HT function (5-HT and 5-hydroxyindoleacetic acid content) whereas 5-HT concentration was reduced in the temporal cortex. 相似文献
2.
The effects of 5-hydroxytryptamine (5-HT) and 5-HT uptake inhibitors on the dissociation of [3H]paroxetine from rat brain membrane binding sites have been investigated. The dissociation induced by 5-HT (100 microM), paroxetine (0.15 microM), clomipramine (1 microM), citalopram (1 microM), imipramine (1 microM), or norzimeldine (1 microM) was consistent with first-order dissociation kinetics with half-life values of dissociation (t1/2) between 130 and 140 min. The dissociation induced by the combination of 5-HT (100 microM) with either citalopram (1 microM) or imipramine (1 microM) was not different from that initiated by either agent alone. These dissociation data, which are at variance with previous data on the 5-HT transporter labeled with [3H]imipramine, support a single-site model of the antidepressant binding/5-HT uptake site. 相似文献
3.
Abstract: Extracellular 5-hydroxytryptamine (5-HT) in the median raphe and dorsal hippocampus was measured using in vivo microdialysis. Administration of 60 m M K+ through the probe into the median raphe region significantly increased 5-HT output from the median raphe and the right dorsal hippocampus. Local infusion of 10 µ M tetrodotoxin into the median raphe region substantially decreased 5-HT in the median raphe and left and right dorsal hippocampus. Systemic administration (0.3 mg/kg s.c.) of 8-hydroxy-2-(di- n -propylamino)tetralin (8-OH-DPAT) decreased the 5-HT levels in the dialysates from both the median raphe region and dorsal hippocampus. Administration of 30 n M 8-OH-DPAT through the dialysis probe into the median raphe region decreased 5-HT output from the median raphe and dorsal hippocampus significantly, whereas at concentrations from 60 n M to 10 µ M , no significant effects were found in either region. With 100 µ M 8-OH-DPAT, a significant increase was seen in the median raphe region, but not in dorsal hippocampus. Similar findings were obtained following microinjections of different doses of the compound into the median raphe region. The results of this study indicate that the somatodendritic release of 5-HT is impulse flow-dependent. Moreover, the decrease of 5-HT in the median raphe region by low nanomolar concentrations of 8-OH-DPAT supports the notion that somatodendritic 5-HT release is subject to a local negative feedback mechanism through 5-HT1A autoreceptors. 相似文献
4.
[3 H]8-Hydroxy-2-(Di-n-Propylamino)Tetralin Binding to Pre- and Postsynaptic 5-Hydroxytryptamine Sites in Various Regions of the Rat Brain 总被引:4,自引:0,他引:4
M. D. Hall S. El Mestikawy M. B. Emerit L. Pichat M. Hamon H. Gozlan 《Journal of neurochemistry》1985,44(6):1685-1696
The specific binding of [3H]8-hydroxy-2-(di-n-propylamino)tetralin ([ 3H]8-OH-DPAT) to 5-hydroxytryptamine (5-HT)-related sites was investigated in several regions of the rat brain. Marked differences were observed in the characteristics of binding to membranes from hippocampus, striatum, and cerebral cortex. Hippocampal sites exhibited the highest affinity (KD approximately 2 nM) followed by the cerebral cortex (KD approximately 6 nM) and the striatum (KD approximately 10 nM). Ascorbic acid inhibited specific [3H]8-OH-DPAT binding in all three regions but millimolar concentrations of Ca2+, Mg2+, and Mn2+ enhanced specific binding to hippocampal membranes, whereas only Mn2+ increased it in the cerebral cortex and all three cations inhibited specific binding to striatal membranes. Guanine nucleotides (0.1 mM GDP, GTP) inhibited binding to hippocampal and cortical membranes only. As intracerebral 5,7-dihydroxytryptamine markedly decreased [3H]8-OH-DPAT binding sites in the striatum, but not in the hippocampus, the striatal sites appear to be on serotoninergic afferent fibers. In contrast, in the hippocampus the sites appear to be on postsynaptic 5-HT target cells, as local injection of kainic acid decreased their density. Both types of sites appear to be present in the cerebral cortex. The postsynaptic hippocampal [3H]8-OH-DPAT binding sites are probably identical to the 5-HT1A subsites, but the relationship between the presynaptic binding sites and the presynaptic autoreceptors controlling 5-HT release deserves further investigation. 相似文献
5.
B. Kenneth Koe Lorraine A. Lebel Carol B. Fox John E. Macor 《Journal of neurochemistry》1992,58(4):1268-1276
Abstract: 3-(1,2,5,6-Tetrahydro-4-pyridyl)-5- n -propoxyindole (CP-96,501) was found to be a more selective ligand at the serotonin 5-HT1B receptor than the commonly used 5-HT1B agonist, 3-(1,2,5,6-tetrahydro-4-pyridyl)-5-methoxyindole (RU 24969). In rat brain membranes, the tritiated derivative, [3 H]CP-96,501, was found to bind with a high affinity ( K D , 0.21 n M ) to a single binding site ( n H , 1.0). The receptor density of this site ( B max , 72 fmol/mg of protein) matched that of the 5-HT1B receptor determined with [3 H]5-HT. Competition curves of 16 serotonergic compounds in [3 H]CP-96,501 binding also indicated a single binding site. The rank order of their binding affinities with this new radioligand showed a high degree of correlation with their affinities at the 5-HT1B receptor determined with [3 H]5-HT or [125 I]iodocyanopindolol. Serotonergic compounds displayed competitive inhibition of [3 H]CP-96,501 binding. In the presence of 5'-guanylylimidodiphosphate [Gpp(NH)p], [3 H]CP-96,501 binding was reduced, while the potency of CP-96,501 to displace [125 I]iodocyanopindolol binding was also decreased. These findings are consistent with the agonist nature of CP-96,501. The results of this study suggest that [3 H]CP-96,501 is a useful agonist radioligand for the 5-HT1B receptor. 相似文献
6.
Abstract: We have proposed that a very early step in the pathogenesis of idiopathic Parkinson's disease is the elevated translocation of l -cysteine into neuromelanin-pigmented dopaminergic neurons in the substantia nigra. This influx of l -cysteine was proposed to divert the normal neuromelanin pathway by scavenging dopamine-o-quinone, formed by autoxidation of cytoplasmic dopamine, to give initially 5-S-cysteinyldopamine, which is further oxidized to 7 - (2 - aminoethyl) - 3,4 - dihydro - 5 - hydroxy - 2H - 1,4 - benzothiazine-3-carboxylic acid (DHBT-1). In a recent report, it was demonstrated that DHBT-1 evokes inhibition of complex I respiration when incubated with intact rat brain mitochondria and a time-dependent irreversible inhibition of NADH-coenzyme Q1 (CoQ1) reductase when incubated with mitochondrial membranes. In this study, it is established that the time dependence of NADH-CoQ1 reductase inhibition reflects the oxidation of DHBT-1, catalyzed by an unknown constituent of the inner mitochondrial membrane, to an o-quinone imine intermediate that rearranges to 7-(2-aminoethyl) - 5 - hydroxy - 1,4 - benzothiazine - 3 - carboxylic acid (BT-1) and decarboxylates to 7-(2-aminoethyl)-5-hydroxy-1,4-benzothiazine (BT-2), which are further catalytically oxidized to o-quinone imine intermediates. The electrophilic o-quinone imine intermediates formed in these mitochondria-catalyzed oxidations of DHBT-1, BT-1, and BT-2 are proposed to bind covalently to key sulfhydryl residues at the complex I site, thus evoking irreversible inhibition of NADH-CoQ1 reductase. Evidence for this mechanism derives from the fact that greater than equimolar concentrations of glutathione completely block inhibition of NADH-CoQ1 reductase by DHBT-1, BT-1, and BT-2 by scavenging their electrophilic o-quinone imine metabolites to form glutathionyl conjugates. The results of this investigation may provide insights into the irreversible loss of glutathione and decreased mitochondrial complex I activity, which are both anatomically specific to the substantia nigra and exclusive to Parkinson's disease. 相似文献