首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Different studies have shown that cellular enzymatic activities are able to self-organize spontaneously, forming a metabolic core of reactive processes that remain active under different growth conditions while the rest of the molecular catalytic reactions exhibit structural plasticity. This global cellular metabolic structure appears to be an intrinsic characteristic common to all cellular organisms. Recent work performed with dissipative metabolic networks has shown that the fundamental element for the spontaneous emergence of this global self-organized enzymatic structure could be the number of catalytic elements in the metabolic networks.

Methodology/Principal Findings

In order to investigate the factors that may affect the catalytic dynamics under a global metabolic structure characterized by the presence of metabolic cores we have studied different transitions in catalytic patterns belonging to a dissipative metabolic network. The data were analyzed using non-linear dynamics tools: power spectra, reconstructed attractors, long-term correlations, maximum Lyapunov exponent and Approximate Entropy; and we have found the emergence of self-regulation phenomena during the transitions in the metabolic activities.

Conclusions/Significance

The analysis has also shown that the chaotic numerical series analyzed correspond to the fractional Brownian motion and they exhibit long-term correlations and low Approximate Entropy indicating a high level of predictability and information during the self-regulation of the metabolic transitions. The results illustrate some aspects of the mechanisms behind the emergence of the metabolic self-regulation processes, which may constitute an important property of the global structure of the cellular metabolism.  相似文献   

2.

Background

Over many years, it has been assumed that enzymes work either in an isolated way, or organized in small catalytic groups. Several studies performed using “metabolic networks models” are helping to understand the degree of functional complexity that characterizes enzymatic dynamic systems. In a previous work, we used “dissipative metabolic networks” (DMNs) to show that enzymes can present a self-organized global functional structure, in which several sets of enzymes are always in an active state, whereas the rest of molecular catalytic sets exhibit dynamics of on-off changing states. We suggested that this kind of global metabolic dynamics might be a genuine and universal functional configuration of the cellular metabolic structure, common to all living cells. Later, a different group has shown experimentally that this kind of functional structure does, indeed, exist in several microorganisms.

Methodology/Principal Findings

Here we have analyzed around 2.500.000 different DMNs in order to investigate the underlying mechanism of this dynamic global configuration. The numerical analyses that we have performed show that this global configuration is an emergent property inherent to the cellular metabolic dynamics. Concretely, we have found that the existence of a high number of enzymatic subsystems belonging to the DMNs is the fundamental element for the spontaneous emergence of a functional reactive structure characterized by a metabolic core formed by several sets of enzymes always in an active state.

Conclusions/Significance

This self-organized dynamic structure seems to be an intrinsic characteristic of metabolism, common to all living cellular organisms. To better understand cellular functionality, it will be crucial to structurally characterize these enzymatic self-organized global structures.  相似文献   

3.
Han MJ  Lee SY 《Proteomics》2003,3(12):2317-2324
Proteome profiling of microorganisms makes it possible to generate valuable knowledge that can be used for the development of metabolic and cellular engineering strategies, which consequently are used to enhance the yield and productivity of native or foreign bioproducts and to modify cellular properties to improve mid-stream and down-stream processes. Advances in two-dimensional gel electrophoresis technology combined with mass spectrometry allow the creation of global scale proteome contents which can be used to elucidate valuable information on the dynamics of the metabolic, signaling and regulatory networks apart from understanding the physiological changes. In this paper, we review the approaches of exploiting the proteome profiling results to the development of the strategies for the metabolic and cellular engineering of microorganisms.  相似文献   

4.

Background  

The cellular responses of bacteria to superoxide stress can be used to model adaptation to severe environmental changes. Superoxide stress promotes the excessive production of reactive oxygen species (ROS) that have detrimental effects on cell metabolic and other physiological activities. To antagonize such effects, the cell needs to regulate a range of metabolic reactions in a coordinated way, so that coherent metabolic responses are generated by the cellular metabolic reaction network as a whole. In the present study, we have used a quantitative metabolic flux analysis approach, together with measurement of gene expression and activity of key enzymes, to investigate changes in central carbon metabolism that occur in Escherichia coli in response to paraquat-induced superoxide stress. The cellular regulatory mechanisms involved in the observed global flux changes are discussed.  相似文献   

5.
This review discusses metabolic engineering research with an emphasis on evolutionary (whole cell and protein) engineering, which is an inverse metabolic engineering approach. For each section on metabolic, inverse metabolic and evolutionary engineering research, a general review of the major global studies in the literature is made and research examples from Turkey are given and discussed. It is expected that with the rapid development in systems biology and the novel powerful analytical technologies to identify the genetic basis of cellular phenotypes, metabolic and evolutionary engineering research will become widespread and increasingly important in Turkey, following global scientific trends.  相似文献   

6.
Fourier transform mass spectrometry has recently been introduced into the field of metabolomics as a technique that enables the mass separation of complex mixtures at very high resolution and with ultra high mass accuracy. Here we show that this enhanced mass accuracy can be exploited to predict large metabolic networks ab initio, based only on the observed metabolites without recourse to predictions based on the literature. The resulting networks are highly information-rich and clearly non-random. They can be used to infer the chemical identity of metabolites and to obtain a global picture of the structure of cellular metabolic networks. This represents the first reconstruction of metabolic networks based on unbiased metabolomic data and offers a breakthrough in the systems-wide analysis of cellular metabolism.  相似文献   

7.

Background

Different studies show evidence that several unicellular organisms display a cellular metabolic structure characterized by a set of enzymes which are always in an active state (metabolic core), while the rest of the molecular catalytic reactions exhibit on-off changing states. This self-organized enzymatic configuration seems to be an intrinsic characteristic of metabolism, common to all living cellular organisms. In a recent analysis performed with dissipative metabolic networks (DMNs) we have shown that this global functional structure emerges in metabolic networks with a relatively high number of catalytic elements, under particular conditions of enzymatic covalent regulatory activity.

Methodology/Principal Findings

Here, to investigate the mechanism behind the emergence of this supramolecular organization of enzymes, we have performed extensive DMNs simulations (around 15,210,000 networks) taking into account the proportion of the allosterically regulated enzymes and covalent enzymes present in the networks, the variation in the number of substrate fluxes and regulatory signals per catalytic element, as well as the random selection of the catalytic elements that receive substrate fluxes from the exterior. The numerical approximations obtained show that the percentages of DMNs with metabolic cores grow with the number of catalytic elements, converging to 100% for all cases.

Conclusions/Significance

The results show evidence that the fundamental factor for the spontaneous emergence of this global self-organized enzymatic structure is the number of catalytic elements in the metabolic networks. Our analysis corroborates and expands on our previous studies illustrating a crucial property of the global structure of the cellular metabolism. These results also offer important insights into the mechanisms which ensure the robustness and stability of living cells.  相似文献   

8.

Background

The experimental observations and numerical studies with dissipative metabolic networks have shown that cellular enzymatic activity self-organizes spontaneously leading to the emergence of a Systemic Metabolic Structure in the cell, characterized by a set of different enzymatic reactions always locked into active states (metabolic core) while the rest of the catalytic processes are only intermittently active. This global metabolic structure was verified for Escherichia coli, Helicobacter pylori and Saccharomyces cerevisiae, and it seems to be a common key feature to all cellular organisms. In concordance with these observations, the cell can be considered a complex metabolic network which mainly integrates a large ensemble of self-organized multienzymatic complexes interconnected by substrate fluxes and regulatory signals, where multiple autonomous oscillatory and quasi-stationary catalytic patterns simultaneously emerge. The network adjusts the internal metabolic activities to the external change by means of flux plasticity and structural plasticity.

Methodology/Principal Findings

In order to research the systemic mechanisms involved in the regulation of the cellular enzymatic activity we have studied different catalytic activities of a dissipative metabolic network under different external stimuli. The emergent biochemical data have been analysed using statistical mechanic tools, studying some macroscopic properties such as the global information and the energy of the system. We have also obtained an equivalent Hopfield network using a Boltzmann machine. Our main result shows that the dissipative metabolic network can behave as an attractor metabolic network.

Conclusions/Significance

We have found that the systemic enzymatic activities are governed by attractors with capacity to store functional metabolic patterns which can be correctly recovered from specific input stimuli. The network attractors regulate the catalytic patterns, modify the efficiency in the connection between the multienzymatic complexes, and stably retain these modifications. Here for the first time, we have introduced the general concept of attractor metabolic network, in which this dynamic behavior is observed.  相似文献   

9.
The advent of high throughput genome-scale bioinformatics has led to an exponential increase in available cellular system data. Systems metabolic engineering attempts to use data-driven approaches – based on the data collected with high throughput technologies – to identify gene targets and optimize phenotypical properties on a systems level. Current systems metabolic engineering tools are limited for predicting and defining complex phenotypes such as chemical tolerances and other global, multigenic traits. The most pragmatic systems-based tool for metabolic engineering to arise is the in silico genome-scale metabolic reconstruction. This tool has seen wide adoption for modeling cell growth and predicting beneficial gene knockouts, and we examine here how this approach can be expanded for novel organisms. This review will highlight advances of the systems metabolic engineering approach with a focus on de novo development and use of genome-scale metabolic reconstructions for metabolic engineering applications. We will then discuss the challenges and prospects for this emerging field to enable model-based metabolic engineering. Specifically, we argue that current state-of-the-art systems metabolic engineering techniques represent a viable first step for improving product yield that still must be followed by combinatorial techniques or random strain mutagenesis to achieve optimal cellular systems.  相似文献   

10.
Cells constantly adapt to unpredictably changing extracellular solute concentrations. A cornerstone of the cellular osmotic stress response is the metabolic supply of energy and building blocks to mount appropriate defenses. Yet, the extent to which osmotic stress impinges on the metabolic network remains largely unknown. Moreover, it is mostly unclear which, if any, of the metabolic responses to osmotic stress are conserved among diverse organisms or confined to particular groups of species. Here we investigate the global metabolic responses of twelve bacteria, two yeasts and two human cell lines exposed to sustained hyperosmotic salt stress by measuring semiquantitative levels of hundreds of cellular metabolites using nontargeted metabolomics. Beyond the accumulation of osmoprotectants, we observed significant changes of numerous metabolites in all species. Global metabolic responses were predominantly species-specific, yet individual metabolites were characteristically affected depending on species’ taxonomy, natural habitat, envelope structure or salt tolerance. Exploiting the breadth of our dataset, the correlation of individual metabolite response magnitudes across all species implicated lower glycolysis, tricarboxylic acid cycle, branched-chain amino acid metabolism and heme biosynthesis to be generally important for salt tolerance. Thus, our findings place the global metabolic salt stress response into a phylogenetic context and provide insights into the cellular phenotype associated with salt tolerance.  相似文献   

11.
Metabolic networks of many cellular organisms share global statistical features. Their connectivity distributions follow the long-tailed power law and show the small-world property. In addition, their modular structures are organized in a hierarchical manner. Although the global topological organization of metabolic networks is well understood, their local structural organization is still not clear. Investigating local properties of metabolic networks is necessary to understand the nature of metabolism in living organisms. To identify the local structural organization of metabolic networks, we analysed the subgraphs of metabolic networks of 43 organisms from three domains of life. We first identified the network motifs of metabolic networks and identified the statistically significant subgraph patterns. We then compared metabolic networks from different domains and found that they have similar local structures and that the local structure of each metabolic network has its own taxonomical meaning. Organisms closer in taxonomy showed similar local structures. In addition, the common substrates of 43 metabolic networks were not randomly distributed, but were more likely to be constituents of cohesive subgraph patterns.  相似文献   

12.
全局转录调控是一种全新的改进细胞表型的定向进化方法,通过error-prone PCR、DNA shuffling等技术对细胞中的σ因子和其他转录元件进行多轮突变修饰,改变RNA聚合酶的转录效率和对启动子的亲和能力,使细胞的转录在整体水平上发生改变,导致许多由多种基因控制的细胞表型得以改进。全局转录调控可以对代谢途径快速优化,在代谢工程中已被成功地应用于各种代谢产物的生物合成中。随着全局转录调控理论的不断完善,其应用前景也将越来越广阔。  相似文献   

13.
Most studies of Alzheimer's disease (AD) have focused on a single precipitating alteration as the etiological event rather than global changes closely linked to aging. Recent evidence suggests that the most significant of these global changes are metabolic. Here we present data indicating that metabolic rate, nutrition, and neuronal size are all early indicators of AD. Understanding the cellular and molecular basis for these changes may open a new dimension to understanding AD.  相似文献   

14.
Nicotinamide phosphoribosyltransferase (NAMPT) plays an important role in cellular bioenergetics. It is responsible for converting nicotinamide to nicotinamide adenine dinucleotide, an essential molecule in cellular metabolism. NAMPT has been extensively studied over the past decade due to its role as a key regulator of nicotinamide adenine dinucleotide–consuming enzymes. NAMPT is also known as a potential target for therapeutic intervention due to its involvement in disease. In the current study, we used a global mass spectrometry–based metabolomic approach to investigate the effects of FK866, a small molecule inhibitor of NAMPT currently in clinical trials, on metabolic perturbations in human cancer cells. We treated A2780 (ovarian cancer) and HCT-116 (colorectal cancer) cell lines with FK866 in the presence and absence of nicotinic acid. Significant changes were observed in the amino acids metabolism and the purine and pyrimidine metabolism. We also observed metabolic alterations in glycolysis, the citric acid cycle (TCA), and the pentose phosphate pathway. To expand the range of the detected polar metabolites and improve data confidence, we applied a global metabolomics profiling platform by using both non-targeted and targeted hydrophilic (HILIC)-LC-MS and GC-MS analysis. We used Ingenuity Knowledge Base to facilitate the projection of metabolomics data onto metabolic pathways. Several metabolic pathways showed differential responses to FK866 based on several matches to the list of annotated metabolites. This study suggests that global metabolomics can be a useful tool in pharmacological studies of the mechanism of action of drugs at a cellular level.  相似文献   

15.
16.
The autoimmune process in rheumatoid arthritis depends on activation of immune cells, which utilize intracellular kinases to respond to external stimuli such as cytokines, immune complexes, and antigens. CD4+ T cells comprise a large proportion of the inflammatory cells that invade the synovial tissue and may therefore be a cell type of pathogenic importance. Both methotrexate and infliximab are effective in the treatment of inflammatory arthritis; however, the biological effects triggered by these treatments and the biochemical mechanisms underlining the cell response are still not fully understood. Thus, in this study the global metabolic changes associated with methotrexate or infliximab treatment of isolated human CD4+ T cells were examined using gas chromatography/mass spectrometry or liquid chromatography/mass spectrometry. In total 148 metabolites involved in selective pathways were found to be significantly altered. Overall, the changes observed are likely to reflect the effort of CD4+ cells to increase the production of cellular reducing power to offset the cellular stress exerted by treatment. Importantly, analysis of the global metabolic changes associated with MTX or infliximab treatment of isolated human CD4+ T cells suggested that the toxicity associated with these agents is minimal when used at clinically relevant concentrations.  相似文献   

17.
The physiology of animal cells is characterized by constantly changing environmental conditions and adapting cellular responses. Applied dynamic metabolic flux analysis captures metabolic dynamics and can be applied to industrially relevant cultivation conditions. We investigated the impact of glutamine availability or limitation on the physiology of CHO K1 cells in eight different batch and fed-batch cultivations. Varying glutamine availability resulted in global metabolic changes. We observed dose-dependent effects of glutamine in batch cultivation. Identifying metabolic links from the glutamine metabolism to specific metabolic pathways, we show that glutamine feeding results in its coupling to tricarboxylic acid cycle fluxes and in its decoupling from metabolic waste production. We provide a mechanistic explanation of the cellular responses upon mild or severe glutamine limitation and ammonia stress. The growth rate of CHO K1 decreased with increasing ammonia levels in the supernatant. On the other hand, growth, especially culture longevity, was stimulated at mild glutamine-limiting conditions. Flux rearrangements in the pyruvate and amino acid metabolism compensate glutamine limitation by consumption of alternative carbon sources and facilitating glutamine synthesis and mitigate ammonia stress as result of glutamine abundance.  相似文献   

18.
19.
20.
Tissues of the mucosa are lined by an epithelium that provides barrier and transport functions. It is now appreciated that inflammatory responses in inflammatory bowel diseases are accompanied by striking shifts in tissue metabolism. In this paper, we examined global metabolic consequences of mucosal inflammation using both in vitro and in vivo models of disease. Initial analysis of the metabolic signature elicited by inflammation in epithelial models and in colonic tissue isolated from murine colitis demonstrated that levels of specific metabolites associated with cellular methylation reactions are significantly altered by model inflammatory systems. Furthermore, expression of enzymes central to all cellular methylation, S-adenosylmethionine synthetase and S-adenosylhomocysteine hydrolase, are increased in response to inflammation. Subsequent studies showed that DNA methylation is substantially increased during inflammation and that epithelial NF-κB activity is significantly inhibited following treatment with a reversible S-adenosylhomocysteine hydrolase inhibitor, DZ2002. Finally, these studies demonstrated that inhibition of cellular methylation in a murine model of colitis results in disease exacerbation while folate supplementation to promote methylation partially ameliorates the severity of murine colitis. Taken together, these results identify a global change in methylation, which during inflammation, translates to an overall protective role in mucosal epithelia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号