共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cell calcium》2018
Calcium release-activated calcium (CRAC) channels are unique among ion channels that are activated in response to depletion of intracellular calcium stores and are highly permeable to Ca2+ compared to other cations. CRAC channels mediate an important calcium signal for a wide variety of cell types and are well studied in the immune system. They have been implicated in a number of disorders such as immunodeficiency, musculosketal disorders and cancer. There is growing evidence showing that CRAC channels are expressed in the nervous system and are involved in pathological conditions including pain. This review summarizes the expression, distribution, and function of the CRAC channel family in the dorsal root ganglion, spinal cord and some brain regions, and discusses their functional significance in neurons and glial cells and involvement in nociception and chronic pain. Although further studies are needed to understand how these channels are activated under physiological conditions, the recent findings indicate that the CRAC channel Orai1 is an important player in pain modulation and could represent a new target for pathological pain. 相似文献
2.
Zhang SL Kozak JA Jiang W Yeromin AV Chen J Yu Y Penna A Shen W Chi V Cahalan MD 《The Journal of biological chemistry》2008,283(25):17662-17671
We evaluated currents induced by expression of human homologs of Orai together with STIM1 in human embryonic kidney cells. When co-expressed with STIM1, Orai1 induced a large inwardly rectifying Ca(2+)-selective current with Ca(2+)-induced slow inactivation. A point mutation of Orai1 (E106D) altered the ion selectivity of the induced Ca(2+) release-activated Ca(2+) (CRAC)-like current while retaining an inwardly rectifying I-V characteristic. Expression of the C-terminal portion of STIM1 with Orai1 was sufficient to generate CRAC current without store depletion. 2-APB activated a large relatively nonselective current in STIM1 and Orai3 co-expressing cells. 2-APB also induced Ca(2+) influx in Orai3-expressing cells without store depletion or co-expression of STIM1. The Orai3 current induced by 2-APB exhibited outward rectification and an inward component representing a mixed calcium and monovalent current. A pore mutant of Orai3 inhibited store-operated Ca(2+) entry and did not carry significant current in response to either store depletion or addition of 2-APB. Analysis of a series of Orai1-3 chimeras revealed the structural determinant responsible for 2-APB-induced current within the sequence from the second to third transmembrane segment of Orai3. The Orai3 current induced by 2-APB may reflect a store-independent mode of CRAC channel activation that opens a relatively nonselective cation pore. 相似文献
3.
Jaime S Horton Cadie L Buckley Ernest M Alvarez Anita Schorlemmer Alexander J Stokes 《Channels (Austin, Tex.)》2014,8(1):35-43
As exceptionally calcium selective store-operated channels, Orai channels play a prominent role in cellular calcium signaling. While most studied in the immune system, we are beginning to recognize that Orai1 provides unique calcium signaling pathways in numerous tissue contexts. To assess the involvement of Orai1 in cardiac hypertrophy we used transverse aortic constriction to model pressure overload cardiac hypertrophy and heart failure in Orai1 deficient mice. We demonstrate that Orai1 deficient mice have significantly decreased survival in this pressure overload model. Transthoracic echocardiography reveals that Orai1 deficient mice develop rapid dilated cardiomyopathy, with greater loss of function, and histological and molecular data indicate that this pathology is associated with significant apoptosis, but not major differences in cellular hypertrophy, fibrosis, and some major hypertrophic makers. Orai1 represents a crucial calcium entry mechanism in the compensation of the heart to pressure overload over-load, and the development of dilated cardiomyopathy. 相似文献
4.
《Channels (Austin, Tex.)》2013,7(1):35-43
As exceptionally calcium selective store-operated channels, Orai channels play a prominent role in cellular calcium signaling. While most studied in the immune system, we are beginning to recognize that Orai1 provides unique calcium signaling pathways in numerous tissue contexts. To assess the involvement of Orai1 in cardiac hypertrophy we used transverse aortic constriction to model pressure overload cardiac hypertrophy and heart failure in Orai1 deficient mice. We demonstrate that Orai1 deficient mice have significantly decreased survival in this pressure overload model. Transthoracic echocardiography reveals that Orai1 deficient mice develop rapid dilated cardiomyopathy, with greater loss of function, and histological and molecular data indicate that this pathology is associated with significant apoptosis, but not major differences in cellular hypertrophy, fibrosis, and some major hypertrophic makers. Orai1 represents a crucial calcium entry mechanism in the compensation of the heart to pressure overload over-load, and the development of dilated cardiomyopathy. 相似文献
5.
Calcium, calcium channels, and calcium channel antagonists 总被引:3,自引:0,他引:3
D J Triggle 《Canadian journal of physiology and pharmacology》1990,68(11):1474-1481
Voltage-dependent Ca2+ channels are an important pathway for Ca2+ influx in excitable cells. They also represent an important site of action for a therapeutic group of agents, the Ca2+ channel antagonists. These drugs enjoy considerable use in the cardiovascular area including angina, some arrhythmias, hypertension, and peripheral vascular disorders. The voltage-dependent Ca2+ channels exist in a number of subclasses characterized by electrophysiologic, permeation, and pharmacologic criteria. The Ca2+ channel antagonists, including verapamil, nifedipine, and diltiazem, serve to characterize the L channel class. This channel class has been characterized as a pharmacologic receptor, since it possesses specific drug-binding sites for both antagonists and activators and it is regulated by homologous and heterologous influences. The Ca2+ channels of both voltage- and ligand-regulated classes are likely to continue to be major research targets for new drug design and action. 相似文献
6.
Mercer JC Dehaven WI Smyth JT Wedel B Boyles RR Bird GS Putney JW 《The Journal of biological chemistry》2006,281(34):24979-24990
The molecular nature of store-operated Ca(2+)-selective channels has remained an enigma, due largely to the continued inability to convincingly demonstrate Ca(2+)-selective store-operated currents resulting from exogenous expression of known genes. Recent findings have implicated two proteins, Stim1 and Orai1, as having essential roles in store-operated Ca(2+) entry across the plasma membrane. However, transient overexpression of these proteins on their own results in little or no increase in store-operated entry. Here we demonstrate dramatic synergism between these two mediators; co-transfection of HEK293 cells with Stim1 and Orai1 results in an approximate 20-fold increase in store-operated Ca(2+) entry and Ca(2+)-selective current. This demonstrates that these two proteins are limiting for both the signaling and permeation mechanisms for Ca(2+)-selective store-operated Ca(2+) entry. There are three mammalian homologs of Orai1, and in expression experiments they all produced or augmented store-operated Ca(2+) entry with efficacies in the order Orai1 > Orai2 > Orai3. Stim1 apparently initiates the signaling process by acting as a Ca(2+) sensor in the endoplasmic reticulum. This results in rearrangement of Stim1 within the cell and migration toward the plasma membrane to regulate in some manner Orai1 located in the plasma membrane. However, we demonstrate that Stim1 does not incorporate in the surface membrane, and thus likely regulates or interacts with Orai1 at sites of close apposition between the plasma membrane and an intracellular Stim1-containing organelle. 相似文献
7.
Mapping the interacting domains of STIM1 and Orai1 in Ca2+ release-activated Ca2+ channel activation 总被引:1,自引:0,他引:1
STIM1 and Orai1 are essential components of Ca(2+) release-activated Ca(2+) channels (CRACs). After endoplasmic reticulum Ca(2+) store depletion, STIM1 in the endoplasmic reticulum aggregates and migrates toward the cell periphery to co-localize with Orai1 on the opposing plasma membrane. Little is known about the roles of different domains of STIM1 and Orai1 in protein clustering, migration, interaction, and, ultimately, opening CRAC channels. Here we demonstrate that the coiled-coil domain in the C terminus of STIM1 is crucial for its aggregation. Amino acids 425-671 of STIM1, which contain a serine-proline-rich region, are important for the correct targeting of the STIM1 cluster to the cell periphery after calcium store depletion. The polycationic region in the C-terminal tail of STIM1 also helps STIM1 targeting but is not essential for CRAC channel activation. The cytoplasmic C terminus but not the N terminus of Orai1 is required for its interaction with STIM1. We further identify a highly conserved region in the N terminus of Orai1 (amino acids 74-90) that is necessary for CRAC channel opening. Finally, we show that the transmembrane domain of Orai1 participates in Orai1-Orai1 interactions. 相似文献
8.
9.
10.
Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels 总被引:1,自引:0,他引:1
Mungai PT Waypa GB Jairaman A Prakriya M Dokic D Ball MK Schumacker PT 《Molecular and cellular biology》2011,31(17):3531-3545
AMP-activated protein kinase (AMPK) is an energy sensor activated by increases in [AMP] or by oxidant stress (reactive oxygen species [ROS]). Hypoxia increases cellular ROS signaling, but the pathways underlying subsequent AMPK activation are not known. We tested the hypothesis that hypoxia activates AMPK by ROS-mediated opening of calcium release-activated calcium (CRAC) channels. Hypoxia (1.5% O(2)) augments cellular ROS as detected by the redox-sensitive green fluorescent protein (roGFP) but does not increase the [AMP]/[ATP] ratio. Increases in intracellular calcium during hypoxia were detected with Fura2 and the calcium-calmodulin fluorescence resonance energy transfer (FRET) sensor YC2.3. Antioxidant treatment or removal of extracellular calcium abrogates hypoxia-induced calcium signaling and subsequent AMPK phosphorylation during hypoxia. Oxidant stress triggers relocation of stromal interaction molecule 1 (STIM1), the endoplasmic reticulum (ER) Ca(2+) sensor, to the plasma membrane. Knockdown of STIM1 by short interfering RNA (siRNA) attenuates the calcium responses to hypoxia and subsequent AMPK phosphorylation, while inhibition of L-type calcium channels has no effect. Knockdown of the AMPK upstream kinase LKB1 by siRNA does not prevent AMPK activation during hypoxia, but knockdown of CaMKKβ abolishes the AMPK response. These findings reveal that hypoxia can trigger AMPK activation in the apparent absence of increased [AMP] through ROS-dependent CRAC channel activation, leading to increases in cytosolic calcium that activate the AMPK upstream kinase CaMKKβ. 相似文献
11.
12.
13.
Cai X 《Journal of molecular biology》2007,368(5):1284-1291
Depletion of intracellular Ca(2+) stores evokes Ca(2+) entry across the plasma membrane by inducing Ca(2+) release-activated Ca(2+) (CRAC) currents in many cell types. Recently, Orai and STIM proteins were identified as the molecular identities of the CRAC channel subunit and the endoplasmic reticulum Ca(2+) sensor, respectively. Here, extensive database searching and phylogenetic analysis revealed several lineage-specific duplication events in the Orai protein family, which may account for the evolutionary origins of distinct functional properties among mammalian Orai proteins. Based on similarity to key structural domains and essential residues for channel functions in Orai proteins, database searching also identifies a putative primordial Orai sequence in hyperthermophilic archaeons. Furthermore, modern Orai appears to acquire new structural domains as early as Urochodata, before divergence into vertebrates. The evolutionary patterns of structural domains might be related to distinct functional properties of Drosophila and mammalian CRAC currents. Interestingly, Orai proteins display two conserved internal repeats located at transmembrane segments 1 and 3, both of which contain key amino acids essential for channel function. These findings demonstrate biochemical and physiological relevance of Orai proteins in light of different evolutionary origins and will provide novel insights into future structural and functional studies of Orai proteins. 相似文献
14.
《Cell calcium》2017
We have studied in HeLa cells the molecular nature of the 2-APB induced ER Ca2+ leak using synthetic Ca2+ indicators that report changes in both the cytoplasmic ([Ca2+]i) and the luminal ER ([Ca2+]ER) Ca2+ concentrations. We have tested the hypothesis that Orai channels participate in the 2-APB-induced ER Ca2+ leak that was characterized in the companion paper. The expression of the dominant negative Orai1 E106A mutant, which has been reported to block the activity of all three types of Orai channels, inhibited the effect of 2-APB on the [Ca2+]ER but did not decrease the ER Ca2+ leak after thapsigargin (TG). Orai3 channel, but neither Orai1 nor Orai2, colocalizes with expressed IP3R and only Orai3 channel supported the 2-APB-induced ER Ca2+ leak, while Orai1 and Orai2 inhibited this type of ER Ca2+ leak. Decreasing the expression of Orai3 inhibited the 2-APB-induced ER Ca2+ leak but did not modify the ER Ca2+ leak revealed by inhibition of SERCA pumps with TG. However, reducing the expression of Orai3 channel resulted in larger [Ca2+]i response after TG but only when the ER store had been overloaded with Ca2+ by eliminating the acidic internal Ca2+ store with bafilomycin. These data suggest that Orai3 channel does not participate in the TG-revealed ER Ca2+ leak but forms an ER Ca2+ leak channel that is limiting the overloading with Ca2+ of the ER store. 相似文献
15.
Voets T Prenen J Fleig A Vennekens R Watanabe H Hoenderop JG Bindels RJ Droogmans G Penner R Nilius B 《The Journal of biological chemistry》2001,276(51):47767-47770
The calcium release-activated calcium channel (CRAC) is a highly Ca(2+)-selective ion channel that is activated on depletion of inositol triphosphate (IP(3))-sensitive intracellular Ca(2+) stores. It was recently reported that CaT1, a member of the TRP family of cation channels, exhibits the unique biophysical properties of CRAC, which led to the conclusion that CaT1 comprises all or part of the CRAC pore (Yue, L., Peng, J. B., Hediger, M. A., and Clapham, D. E. (2001) Nature 410, 705-709). Here, we directly compare endogenous CRAC with heterologously expressed CaT1 and show that they manifest several clearly distinct properties. CaT1 can be distinguished from CRAC in the following features: sensitivity to store-depleting agents; inward rectification in the absence of divalent cations; relative permeability to Na(+) and Cs(+); effect of 2-aminoethoxydiphenyl borate (2-APB). Moreover, CaT1 displays a mode of voltage-dependent gating that is fully absent in CRAC and originates from the voltage-dependent binding/unbinding of Mg(2+) inside the channel pore. Our results imply that the pores of CaT1 and CRAC are not identical and indicate that CaT1 is a Mg(2+)-gated channel not directly related to CRAC. 相似文献
16.
17.
18.
Xuexin Zhang Wei Zhang José C. González-Cobos Isaac Jardin Christoph Romanin Khalid Matrougui Mohamed Trebak 《The Journal of general physiology》2014,143(3):345-359
Orai proteins contribute to Ca2+ entry into cells through both store-dependent, Ca2+ release–activated Ca2+ (CRAC) channels (Orai1) and store-independent, arachidonic acid (AA)-regulated Ca2+ (ARC) and leukotriene C4 (LTC4)-regulated Ca2+ (LRC) channels (Orai1/3 heteromultimers). Although activated by fundamentally different mechanisms, CRAC channels, like ARC and LRC channels, require stromal interacting molecule 1 (STIM1). The role of endoplasmic reticulum–resident STIM1 (ER-STIM1) in CRAC channel activation is widely accepted. Although ER-STIM1 is necessary and sufficient for LRC channel activation in vascular smooth muscle cells (VSMCs), the minor pool of STIM1 located at the plasma membrane (PM-STIM1) is necessary for ARC channel activation in HEK293 cells. To determine whether ARC and LRC conductances are mediated by the same or different populations of STIM1, Orai1, and Orai3 proteins, we used whole-cell and perforated patch-clamp recording to compare AA- and LTC4-activated currents in VSMCs and HEK293 cells. We found that both cell types show indistinguishable nonadditive LTC4- and AA-activated currents that require both Orai1 and Orai3, suggesting that both conductances are mediated by the same channel. Experiments using a nonmetabolizable form of AA or an inhibitor of 5-lipooxygenase suggested that ARC and LRC currents in both cell types could be activated by either LTC4 or AA, with LTC4 being more potent. Although PM-STIM1 was required for current activation by LTC4 and AA under whole-cell patch-clamp recordings in both cell types, ER-STIM1 was sufficient with perforated patch recordings. These results demonstrate that ARC and LRC currents are mediated by the same cellular populations of STIM1, Orai1, and Orai3, and suggest a complex role for both ER-STIM1 and PM-STIM1 in regulating these store-independent Orai1/3 channels. 相似文献
19.
A critical role for arachidonic acid in the regulation of calcium entry during agonist activation of calcium signals has become increasingly apparent in numerous studies over the past 10 years or so. In particular, low concentrations of this fatty acid, generated as a result of physiologically relevant activation of appropriate receptors, induces the activation of a unique, highly calcium-selective conductance now known as the ARC channel. Activation of this channel is specifically dependent on arachidonic acid acting at the intracellular surface of the membrane, and is entirely independent of any depletion of internal calcium stores. Importantly, a specific role of this channel in modulating the frequency of oscillatory calcium signals in various cell types has been described. Recent studies, subsequent to the discovery of STIM1 and the Orai proteins and their role in the store-operated CRAC channels, have revealed that these same proteins are also integral components of the ARC channels and their activation. However, unlike the CRAC channels, activation of the ARC channels depends on the pool of STIM1 that is constitutively resident in the plasma membrane, and the pore of these channels is comprised of both Orai1 and Orai3 subunits. The clear implication is that CRAC channels and ARC channels are closely related, but have evolved to play unique roles in the modulation of calcium signals—largely as a result of their entirely distinct modes of activation. Given this, although the precise details of how arachidonic acid acts to activate the channels remain unclear, it seems likely that the specific molecular features of these channels that distinguish them from the CRAC channels – namely Orai3 and/or plasma membrane STIM1 – will be involved. 相似文献
20.
The receptor-evoked Ca(2+) signal includes activation of the store-operated channels (SOCs) TRPCs and the Orais. Although both are gated by STIM1, it is not known how STIM1 gates the channels and whether STIM1 gates the TRPCs and Orais by the same mechanism. Here, we report the molecular mechanism by which STIM1 gates TRPC1, which involves interaction between two conserved, negatively charged aspartates in TRPC1((639)DD(640)) with the positively charged STIM1((684)KK(685)) in STIM1 polybasic domain. Charge swapping and functional analysis revealed that exact orientation of the charges on TRPC1 and STIM1 are required, but all positive-negative charge combinations on TRPC1 and STIM1, except STIM1((684)EE(685))+TRPC1((639)RR(640)), are functional as long as they are reciprocal, indicating that STIM1 gates TRPC1 by intermolecular electrostatic interaction. Similar gating was observed with TRPC3((697)DD(698)). STIM1 gates Orai1 by a different mechanism since the polybasic and S/P domains of STIM1 are not required for activation of Orai1 by STIM1. 相似文献