首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between community complexity and stability has been the subject of an enduring debate in ecology over the last 50 years. Results from early model communities showed that increased complexity is associated with decreased local stability. I demonstrate that increasing both the number of species in a community and the connectance between these species results in an increased probability of local stability in discrete-time competitive communities, when some species would show unstable dynamics in the absence of competition. This is shown analytically for a simple case and across a wider range of community sizes using simulations, where individual species have dynamics that can range from stable point equilibria to periodic or more complex. Increasing the number of competitive links in the community reduces per-capita growth rates through an increase in competitive feedback, stabilising oscillating dynamics. This result was robust to the introduction of a trade-off between competitive ability and intrinsic growth rate and changes in species interaction strengths. This throws new light on the discrepancy between the theoretical view that increased complexity reduces stability and the empirical view that more complex systems are more likely to be stable, giving one explanation for the relative lack of complex dynamics found in natural systems. I examine how these results relate to diversity-biomass stability relationships and show that an analytical solution derived in the region of stable equilibrium dynamics captures many features of the change in biomass fluctuations with community size in communities including species with oscillating dynamics.  相似文献   

2.
两种群相互竞争的SIRS传染病模型的稳定性   总被引:11,自引:3,他引:8  
研究了一类两种群相互竞争的SIRS传染病模型,得到了一些平衡点稳定与否的阈值条件。揭示了两种群共存时,交叉传染对疾病传播的本质影响,即在无交叉传染疾病绝灭的情况下(一定条件时),若引入交叉传染,在相同的条件下,疾病就可能流行起来。  相似文献   

3.
We study the properties of a n2-dimensional Lotka-Volterra system describing competing species that include behaviorally adaptive abilities. We indicate as behavioral adaptation a mechanism, based on a kind of learning, which is not viewed in the evolutionary sense but is intended to occur over shorter time scales. We consider a competitive adaptive n species Lotka-Volterra system, n > or = 3, in which one species is made ecologically differentiated with respect to the others by carrying capacity and intrinsic growth rate. The symmetry properties of the system and the existence of a certain class of invariant subspaces allow the introduction of a 7-dimensional reduced model, where n appears as a parameter, which gives full account of existence and stability of equilibria in the complete system. The reduced model is effective also in describing the time-dependent regimes for a large range of parameter values. The case in which one species has a strong ecological advantage (i.e. with a carrying capacity higher than the others), but with a varying growth rate, has been analyzed in detail, and time-dependent behaviors have been investigated in the case of adaptive competition among four species. Relevant questions, as species survival/exclusion, are addressed focusing on the role of adaptation. Interesting forms of species coexistence are found (i.e. competitive stable equilibria, periodic oscillations, strange attractors).  相似文献   

4.
When two species compete with each other, one is likely to displace or exclude the other. Several circumstances under which they may coexist indefinitely have been presented in the literature; the present contribution presents examples of one more. Under circumstances where both populations are repeatedly decreased (for example because of annual environmental changes) then subsequent to each decrease both species grow unrestrictedly and then interact with each other in a competitive fashion. If the species that grows more rapidly under unrestricted conditions is at a disadvantage during competitive phases of growth, this effect prolongs coexistence but may not prevent eventual extinction of one or the other species. However, it is shown that there are certain broad ranges of conditions for population growth that lead to permanent cyclical stability. The stability described here is such that the ecosystem will return to the same dynamic balance even when severely perturbed. It is also shown that this kind of stability can be either favored or prevented in certain cases by random fluctuations in the environment affecting season length, kill factor, etc.  相似文献   

5.
6.
A deterministic model for assessing the dynamics of mixed species malaria infections in a human population is presented to investigate the effects of dual infection with Plasmodium malariae and Plasmodium falciparum. Qualitative analysis of the model including positivity and boundedness is performed. In addition to the disease free equilibrium, we show that there exists a boundary equilibrium corresponding to each species. The isolation reproductive number of each species is computed as well as the reproductive number of the full model. Conditions for global stability of the disease free equilibrium as well as local stability of the boundary equilibria are derived. The model has an interior equilibrium which exists if at least one of the isolation reproductive numbers is greater than unity. Among the interesting dynamical behaviours of the model, the phenomenon of backward bifurcation where a stable boundary equilibrium coexists with a stable interior equilibrium, for a certain range of the associated invasion reproductive number less than unity is observed. Results from analysis of the model show that, when cross-immunity between the two species is weak, there is a high probability of coexistence of the two species and when cross-immunity is strong, competitive exclusion is high. Further, an increase in the reproductive number of species i increases the stability of its boundary equilibrium and its ability to invade an equilibrium of species j. Numerical simulations support our analytical conclusions and illustrate possible behaviour scenarios of the model.  相似文献   

7.
The symmetric equilibria of the three-locus symmetric viability model are determined and their stability analyzed. For tight linkage there may be four stable equilibria, each characterized by having one pair of complementary chromosomes in high frequencies, with all others low. For looser linkage the only stable symmetric equilibrium is that with complete linkage equilibrium. For intermediate recombination values both types of equilibria may be stable. A new class of equilibria with all pairwise linkage disequilibria zero, but with third order linkage disequilibrium, has been discovered. It may be stable for tight linkage.  相似文献   

8.
Chai C  Jiang J 《PloS one》2011,6(2):e16467
A sexually-transmitted disease model for two strains of pathogen in a one-sex, heterogeneously-mixing population has been studied completely by Jiang and Chai in (J Math Biol 56:373-390, 2008). In this paper, we give a analysis for a SIS STD with two competing strains, where populations are divided into three differential groups based on their susceptibility to two distinct pathogenic strains. We investigate the existence and stability of the boundary equilibria that characterizes competitive exclusion of the two competing strains; we also investigate the existence and stability of the positive coexistence equilibrium, which characterizes the possibility of coexistence of the two strains. We obtain sufficient and necessary conditions for the existence and global stability about these equilibria under some assumptions. We verify that there is a strong connection between the stability of the boundary equilibria and the existence of the coexistence equilibrium, that is, there exists a unique coexistence equilibrium if and only if the boundary equilibria both exist and have the same stability, the coexistence equilibrium is globally stable or unstable if and only if the two boundary equilibria are both unstable or both stable.  相似文献   

9.
This paper analyses a bionomic model of two competitive species in the presence of toxicity with different harvesting efforts. An interesting dynamics in the first quadrant is analysed and two saddle-node bifurcations are detected for different bifurcation parameters. It is noted that under certain parametric restrictions, the model has a unique positive equilibrium point that is globally asymptotically stable whenever it is locally stable. It is also noted that the model can have zero, one or two feasible equilibria appearing through saddle-node bifurcations. The non-existence of a limit cycle in the interior of the first quadrant is also discussed using the Poincare–Dulac criteria. The saddle-node bifurcations are studied using Sotomayor's theorem. Numerical simulations are carried out to validate the analytical findings. The conditions for the existence of bionomic equilibria are discussed and an optimal harvesting policy is derived using Pontryagin's maximum principle.  相似文献   

10.
This paper analyses a bionomic model of two competitive species in the presence of toxicity with different harvesting efforts. An interesting dynamics in the first quadrant is analysed and two saddle-node bifurcations are detected for different bifurcation parameters. It is noted that under certain parametric restrictions, the model has a unique positive equilibrium point that is globally asymptotically stable whenever it is locally stable. It is also noted that the model can have zero, one or two feasible equilibria appearing through saddle-node bifurcations. The non-existence of a limit cycle in the interior of the first quadrant is also discussed using the Poincare-Dulac criteria. The saddle-node bifurcations are studied using Sotomayor's theorem. Numerical simulations are carried out to validate the analytical findings. The conditions for the existence of bionomic equilibria are discussed and an optimal harvesting policy is derived using Pontryagin's maximum principle.  相似文献   

11.
We consider a model in which the need to forage and the need to avoid a competitor are in conflict. The model is composed of two Lotka-Volterra patches. The system has two competitors; one can diffuse between two patches, but the other is confined to one of the patches and cannot diffuse. It is proved that the system can be made persistent under appropriate diffusion conditions that ensure the instability of boundary equilibria, even if the competitive patch is not persistent without diffusion. Further it is shown that the system is globally stable for any diffusion rate if the competition between the two species is weak.  相似文献   

12.
A haploid model is introduced and analyzed in which intraspecific competition is incorporated within a density dependent framework. It is assumed that each genotype has a unique carrying capacity corresponding to the equilibrium population size when fixed for that type. Each genotypic fitness at a single multi-allelic locus is a function of a distinctive effective population size formed by adding the numbers of each genotype present, weighted by an intraspecific competition coefficient. As a result, the fitnesses depend upon the relative frequencies of the various genotypes as well as the total population size. Intergenotypic interactions can have a profound effect upon the outcome of the population. In particular, when the density effect of one individual upon another depends upon their respective genotypes, a unique stable interior equilibrium is possible in which all alleles are present. This stands in contrast to the purely density dependent haploid system in which the only possible stable state corresponds to fixation for the type with the highest carrying capacity. In the present model selective advantage is determined by a balance between carrying capacity and sensitivity to density pressures from other genotypes. Fixation for the genotype with the highest carrying capacity, for instance, will not be stable if it exerts a sufficiently weak competitive effect upon the other genotypes. In the diallelic case, maintenance of both alleles at a stable equilibrium requires that the net intragenotypic competition between individuals of like genotype be stronger than that between unlike types. As for purely density regulated systems, there may be no stable equilibria and/or regular and chaotic cycling may occur. The results may also be interpreted in terms of a discrete time model of interspecific competition with each haplotype representing a different species.  相似文献   

13.
Chromosomal rearrangements may play an important role in how populations adapt to a local environment. The gene arrangement polymorphism on the third chromosome of Drosophila pseudoobscura is a model system to help determine the role that inversions play in the evolution of this species. The gene arrangements are the likely target of strong selection because they form classical clines across diverse geographic habitats, they cycle in frequency over seasons, and they form stable equilibria in population cages. A numerical approach was developed to estimate the fitness sets for 15 gene arrangement karyotypes in six niches based on a model of selection-migration balance. Gene arrangement frequencies in the six different niches were able to reach a stable meta-population equilibrium that matched the observed gene arrangement frequencies when recursions used the estimated fitnesses with a variety of initial inversion frequencies. These analyses show that a complex pattern of selection is operating in the six niches to maintain the D. pseudoobscura gene arrangement polymorphism. Models of local adaptation predict that the new inversion mutations were able to invade populations because they held combinations of two to 13 local adaptation loci together.  相似文献   

14.
In this paper, stability of two-prey, one-predator communities is investigated by Lyapunov's direct method and Hopf's bifurcation theory. Three patterns of three-species coexistence are possible. A globally stable non-negative equilibrium exists for the system even if two competing prey species without a predator cannot coexist. The stable equilibrium bifurcates to a periodic motion with a small amplitude when the predation rate increases. It is also shown that a chaotic motion emerges from the periodic motion when one of two prey has greater competitive abilities than the other. This predator-mediated coexistence can be realized by the intimate relationship between preferences of a predator and competitive abilities of two prey.  相似文献   

15.
The limits to cost-free signalling of need between relatives   总被引:3,自引:0,他引:3  
Theoretical models have demonstrated the possibility of stable cost-free signalling of need between relatives. The stability of these cost-free equilibria depends on the indirect fitness cost of cheating and deceiving a donor into giving away resources. We show that this stability is highly sensitive to the distribution of need among signallers and receivers. In particular, cost-free signalling is likely to prove stable only if there is very large variation in need (such that the least-needy individuals stand to gain much less than the most-needy individuals from additional resources). We discuss whether these conditions are likely to be found in altricial avian breeding systems--the most intensively studied instance of signalling of need between relatives. We suggest that cost-free signalling is more likely to prove stable and will provide parents with more information during the earlier phases of chick growth, when parents can more easily meet the demands of a brood (and chicks are more likely to reach satiation). Later, informative yet cost-free signalling is unlikely to persist.  相似文献   

16.
This paper considers the coevolution of phenotypic traits in a community comprising two competitive species subject to strong Allee effects. Firstly, we investigate the ecological and evolutionary conditions that allow for continuously stable strategy under symmetric competition. Secondly, we find that evolutionary suicide is impossible when the two species undergo symmetric competition, however, evolutionary suicide can occur in an asymmetric competition model with strong Allee effects. Thirdly, it is found that evolutionary bistability is a likely outcome of the process under both symmetric and asymmetric competitions, which depends on the properties of symmetric and asymmetric competitions. Fourthly, under asymmetric competition, we find that evolutionary cycle is a likely outcome of the process, which depends on the properties of both intraspecific and interspecific competition. When interspecific and intraspecific asymmetries vary continuously, we also find that the evolutionary dynamics may admit a stable equilibrium and two limit cycles or two stable equilibria separated by an unstable limit cycle or a stable equilibrium and a stable limit cycle.  相似文献   

17.
Multilocus genetics and the coevolution of quantitative traits   总被引:1,自引:0,他引:1  
We develop and analyze an explicit multilocus genetic model of coevolution. We assume that interactions between two species (mutualists, competitors, or victim and exploiter) are mediated by a pair of additive quantitative traits that are also subject to direct stabilizing selection toward intermediate optima. Using a weak-selection approximation, we derive analytical results for a symmetric case with equal locus effects and no mutation, and we complement these results by numerical simulations of more general cases. We show that mutualistic and competitive interactions always result in coevolution toward a stable equilibrium with no more than one polymorphic locus per species. Victim-exploiter interactions can lead to different dynamic regimes including evolution toward stable equilibria, cycles, and chaos. At equilibrium, the victim is often characterized by a very large genetic variance, whereas the exploiter is polymorphic in no more than one locus. Compared to related one-locus or quantitative genetic models, the multilocus model exhibits two major new properties. First, the equilibrium structure is considerably more complex. We derive detailed conditions for the existence and stability of various classes of equilibria and demonstrate the possibility of multiple simultaneously stable states. Second, the genetic variances change dynamically, which in turn significantly affects the dynamics of the mean trait values. In particular, the dynamics tend to be destabilized by an increase in the number of loci.  相似文献   

18.
The principle of competitive exclusion is investigated within the framework of the solvable model proposed earlier for two-species systems. The results elucidate the recent controversy over the interpretation of experimental data onDrosophila equilibrium. It is shown that the necessary and sufficient conditions for stable coexistence of competing species is that the product of intraspecific rate constants be greater than the product of interspecific rate constants. Inequalities between rate constants for the occurrence of stable equilibriumbelow andabove the line joining single species equilibria are derived. The availability of larger domain of coexistence suggests that the model presented here has the potential to accommodate a wider class of phenomena than the Gause—Volterra model according to which coexistence is possible only above the line of single species equilibrium.  相似文献   

19.
 The paper investigates the discrete frequency dynamics of two phenotype diploid models where genotypic fitness is an exponential function of the expected payoff in the matrix game. Phenotypic and genotypic equilibria are defined and their stability compared to frequency-dependent selection models based on linear fitness when there are two possible phenotypes in the population. In particular, it is shown that stable equilibria of both types can exist in the same nonlinear model. It is also shown that period-doubling bifurcations emerge when there is sufficient selection in favor of interactions between different phenotypes. Received: 22 October 1998  相似文献   

20.
Maintenance of a stable two-locus polymorphism is analyzed statistically by fitting a logistic regression with a quadratic function of genotypic fitnesses to the probability for a fitness set to maintain a polymorphism. The regression is fitted using a data set containing information on stable equilibria maintained by 32,00 randomly generated fitness sets with three recombination values (0. 005, 0.05, 0.5). Fitted logistic regressions discriminate with 88 to 90% accuracy between fitness sets maintaining and not maintaining a stable internal equilibrium, which implies the existence of a fitness structure (balance of fitnesses) maintaining a two-locus polymorphism. Aspects of the balance of fitnesses revealed by logistic regressions are discussed. It is demonstrated that logistic regression also discriminates between types of a stable polymorphism: globally stable polymorphism, several simultaneously stable polymorphisms, and stable equilibria in addition to a polymorphic one, which implies that different balances of fitnesses are responsible for the maintenance of different types of polymorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号