首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
D A Ross  R W Yen  C B Chae 《Biochemistry》1982,21(4):764-771
Nuclear matrix was prepared from both erythroblasts and erythrocytes of chicken red blood cells. Greater than 90% of the globin nuclear RNA remains bound to the erythroblast nuclear matrix. There are approximately 1000 copies of globin RNA in the nucleus per cell, and most of these contain a poly(A) tail. Precursor beta globin RNA exists in four high molecular weight forms, some of which are larger than the natural beta globin gene. Most of the ribosomal RNA is lost during the preparation of an erythroblast nuclear matrix. In contrast, some of the snRNAs are specifically enriched in the erythroblast nuclear matrix. There is little or no globin nuclear RNA in the erythrocyte nuclear matrix. There appears to be no selective attachment of the globin genes to the erythroblast nuclear matrix. The nuclear matrix is postulated to be a platform for the differential processing of nuclear RNA.  相似文献   

4.
The duck beta-globin gene cluster contains a single enhancer element   总被引:1,自引:0,他引:1  
An erythroid-specific enhancer was previously identified in the 3'-flanking region of the beta adult gene in chicken and duck, by transfection into AEV transformed chicken erythroblasts. Here we show that the duck enhancer is equally active in erythroid human K562 cells, presenting an embryonic/fetal program of globin gene expression. Furthermore, no other enhancer was found within the 20 kb of DNA including four beta-like globin genes as well as a 1.5 kb upstream and a 3 kb downstream sequence.  相似文献   

5.
6.
《Epigenetics》2013,8(12):1481-1488
The developmental switch of globin gene expression is a characteristic feature of vertebrate organisms. The switch of β-globin expression is believed to depend on reconfiguration of the active chromatin hub, which contains transcribed genes and regulatory elements. Mechanisms controlling the switch of α-globin gene expression are less clear. Here, we studied the mode of chromatin packaging of the chicken α-globin gene domain in red blood cells (RBCs) of primitive and definite lineages and the spatial configuration of this domain in RBCs of primitive lineage. It has been demonstrated that RBCs of primitive lineage already contain the adult-type active chromatin hub but the embryonal α-type globin π gene is not recruited to this hub. Distribution of active and repressive histone modifications over the α-globin gene domain in RBCs of definite and primitive lineages does not corroborate the hypothesis that inactivation of the π gene in RBCs of adult lineage is mediated via formation of a local repressed chromatin domain. This conclusion is supported by the demonstration that in chicken erythroblasts of adult lineage, the embryonal and adult segments of the α-globin gene domain show similar elevated sensitivities to DNase I.  相似文献   

7.
In vitro suspension culture procedures for erythroid progenitor cells make it possible for us to obtain large cultures of erythrocyte populations for the investigation of globin gene switching. In this study we aimed to establish optimized culture systems for neonatal and adult erythroblasts and to explore the globin expression patterns in these culture systems. To culture CD34+ cells purified from human umbilical cord blood (CB) and adult bone marrow (BM), we respectively replaced the fetal bovine serum (FBS) with human cord serum and human adult serum. These CD34+ cells were then induced to erythroid differentiation. All the globin mRNA (including alpha-, zeta-, beta-, gamma-and epsilon-globin), the hemoglobin (Hb)-producing erythroid cells and the cellular distribution of fetal hemoglobin (Hb F) were identified during the culture process. The results showed that the globin expression pattern during erythroid differentiation in our culture systems closely recapitulated neonatal and adult patterns of globin expression in vivo, suggesting that our specially optimized culture systems not only overcame the higher Hb F levels in the BM-derived CD34+ culture in FBS-containing medium but also eliminated the disadvantages of low cell proliferation rate and low globin mRNA levels in serum-free medium.  相似文献   

8.
J B Dodgson  J Strommer  J D Engel 《Cell》1979,17(4):879-887
A library of random chicken DNA fragments, 15-22 kb long, has been prepared in the vector lambda Charon 4A. This library was screened with combined adult and embryonic globin cDNA, and several independent globin gene-containing recombinants were isolated. One of these recombinants, lambda Chicken beta-globin 1 (lambda C beta G1), contains the adult chicken beta-globin gene and a closely linked embryonic beta-like globin gene. Both genes are transcribed in the same direction with the adult gene located 5' to the embryonic gene. Electron microscopic visualization of R loop structures generated by hybridization of globin RNA to lambda C beta G1 demonstrates that both globin genes contain major intervening sequences about 800 bp long, similar to those present in mammalian beta-globin genes. The adult beta-globin gene also contains a minor (approximately 100 bp long) intervening sequence analogous to the one observed in mammalian beta-globin genes. Restriction enzyme analysis of the adult beta-globin gene on lambda C beta G1 is consistent with the hypothesis that its two intervening sequences occur in the same positions with respect to the beta-globin amino acid sequence as do the corresponding mammalian intervening sequences.  相似文献   

9.
We have isolated the chicken β-type globin genes from a library of chicken DNA-λ Charon 4A recombinant bacteriophage. There are four β-type genes within this segment of the genome; we believe this represents all of the β-type genes of the chicken. The recombinant λCβG1 contains the embryonic ?- and adult β-globin genes. The hatching βH and embryonic p-globin genes are found in the recombinant λCβG2. Although λCβG1 and λCβG2 do not physically overlap, we present evidence that all four genes are closely linked and transcribed from the same DNA strand. These experiments demonstrate that the chromosomal regions represented by λCβG1 and λCβG2 lie approximately 1.6 kb apart in the chicken genome. A third recombinant λCβG3 extends the genomic locus studied in the vicinity of the β-type globin genes to approximately 39 kb. The physical order of the chicken β-type globin genes within this segment of the chromosome is 5′ … ?-βH-β-? … 3′. This arrangement is unique among the vertebrate β-type globin gene clusters thus far examined, in that embryonic genes are located at the 5′ and 3′ ends of the cluster while the hatching and adult genes occupy central positions.  相似文献   

10.
The developmental switch of globin gene expression is a characteristic feature of vertebrate organisms. The switch of β-globin expression is believed to depend on reconfiguration of the active chromatin hub, which contains transcribed genes and regulatory elements. Mechanisms controlling the switch of α-globin gene expression are less clear. Here, we studied the mode of chromatin packaging of the chicken α-globin gene domain in red blood cells (RBCs) of primitive and definite lineages and the spatial configuration of this domain in RBCs of primitive lineage. It has been demonstrated that RBCs of primitive lineage already contain the adult-type active chromatin hub but the embryonal α-type globin π gene is not recruited to this hub. Distribution of active and repressive histone modifications over the α-globin gene domain in RBCs of definite and primitive lineages does not corroborate the hypothesis that inactivation of the π gene in RBCs of adult lineage is mediated via formation of a local repressed chromatin domain. This conclusion is supported by the demonstration that in chicken erythroblasts of adult lineage, the embryonal and adult segments of the α-globin gene domain show similar elevated sensitivities to DNase I.  相似文献   

11.
12.
13.
We found an enhancer element placed at the 3' side of the adult duck alpha A globin gene. The duck alpha globin gene cluster contains three genes from the 5' to 3' side: the pi embryonic gene, the alpha D minor adult gene and the alpha A adult major gene. We analyzed a 16 kb genomic domain extending from 2 kb upstream of the pi gene to 5 kb downstream of the alpha A gene. This enhancer is active in AEV transformed chicken erythroblasts. Its is inactive both in HeLa cells and in the human erythroid cells K562 which express only embryonic genes. These findings are discussed in relation to previous results concerning the duck beta globin enhancer located at the 3' side of the beta A globin gene.  相似文献   

14.
Rapid reprogramming of globin gene expression in transient heterokaryons   总被引:52,自引:0,他引:52  
M H Baron  T Maniatis 《Cell》1986,46(4):591-602
Interspecific heterokaryons were formed by fusing adult mouse erythroleukemia (MEL) cells and human embryonic/fetal erythroid (K562) cells with each other, or with a variety of mouse and human nonerythroid cell types. Analysis of total cellular RNA isolated 24 hr after fusion revealed that normally inactive globin genes can be activated in these "transient" heterokaryons, in which the nuclei do not fuse. In general, the types of globin genes expressed in the donor erythroid cell are activated in the nucleus of the recipient cell. Therefore, erythroid cells contain transacting regulatory factors that are capable of activating the expression of globin genes in a stage- and tissue-specific manner. These observations also indicate that globin genes are not irreversibly repressed in differentiated cells and that their expression can be rapidly reprogrammed in the presence of the appropriate regulatory factors.  相似文献   

15.
16.
17.
Change in message sequences during erythrodifferentiation.   总被引:1,自引:0,他引:1       下载免费PDF全文
The change in the poly A(+) mRNA population during erythrodifferentiation was analyzed by cDNA-RNA hybridization. Poly A(+) RNA was isolated from spleen erythroblasts. When mice became anemic, the amount of globin mRNA increased to 50% of the total poly A(+) mRNA. cDNA from anemic spleen erythroblasts that did not contain globin mRNA sequences was cross-hybridized with mRNAs from mouse reticulocytes and cultured Friend leukemia (FL) cells. Only half the spleen cDNA hybridized with reticulocyte mRNA, whereas most of it hybridized with mRNA from FL cells. The results suggest that decrease in the complexity of the message population and increase in the concentration of globin mRNA are important in erythrodifferentiation.  相似文献   

18.
19.
20.
M Allan  W G Lanyon  J Paul 《Cell》1983,35(1):187-197
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号