首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: To develop a sporicidal reagent which shows potent activity against bacterial spores not only at ambient temperatures but also at low temperatures. METHODS AND RESULTS: Suspension tests on spores of Bacillus and Geobacillus were conducted with the reagent based on a previously reported agent (N. Kida, Y. Mochizuki and F. Taguchi, Microbiology and Immunology 2003; 47: 279-283). The modified reagent (tentatively designated as the KMT reagent) was composed of 50 mmol l(-1) EDTA-2Na, 50 mmol l(-1) ferric chloride hexahydrate (FeCl(3).6H(2)O), 50 mmol l(-1) potassium iodide (KI) and 50% ethanol in 0.85% NaCl solution at pH 0.3. The KMT reagent showed significant sporicidal activity against three species of Bacillus and Geobacillus spores over a wide range of temperature. The KMT reagent had many practical advantages, i.e. activity was much less affected by organic substances than was sodium hypochlorite, it did not generate any harmful gas and it was stable for a long period at ambient temperatures. The mechanism(s) of sporicidal activity of the KMT reagent was considered to be based on active iodine species penetrating the spores with enhanced permeability of the spore cortex by a synergistic effect of acid, ethanol and generated active oxygen. CONCLUSIONS: The data suggest that the KMT reagent shows potent sporicidal activity over a wide range temperatures and possesses many advantages for practical applications. SIGNIFICANCE AND IMPACT OF THE STUDY: The results indicate development of a highly applicable sporicidal reagent against Bacillus and Geobacillus spores.  相似文献   

2.
We developed a reagent which showed significant sporicidal activity against Bacillus subtilis spores. This reagent was composed of ethylenediaminetetraacetic acid, disodium salt (EDTA-2Na), ferric chloride hexahydrate (FeCl3 x 6H2O) and ethanol (tentatively designated as the ethanol reagent). The ethanol reagent showed pH- and temperature-dependent sporicidal activity. At pH 0.3, its activity was almost the same as that of 0.05% sodium hypochlorite at 20 C and was higher at 37 C than at 20 C. The activity of the ethanol reagent was similar both with and without 10% serum. The ethanol reagent might be applicable for disinfecting Bacillus spores.  相似文献   

3.
A method was developed to evaluate and measure the sporicidal activity of peracetic acid (PAA) and beta-propiolactone (BPL) at subzero temperatures as low as -40 C. Bacillus subtilis var. niger spores were used as the test organism. Both PAA and BPL were sporicidal at low temperatures, with PAA the more active. The temperature coefficients of the two chemicals are generally low over a range of 20 to -20 C, but increase significantly at temperatures below this. Results showed an initial lag in the PAA death rates that was directly dependent on the temperature. BPL did not show this lag time.  相似文献   

4.
Controlled formaldehyde fumigation system.   总被引:4,自引:2,他引:2       下载免费PDF全文
A comparative study of formaldehyde (HCHO) fumigation was carried out by controlled vaporization, using an electric vapor generator, and by the Formalin-permanganate method. Determination of vapor levels as well as bactericidal action showed the generator to be more effective. Maximum achievable fumigant levels were temperature dependent and related to the equilibrium vapor concentration of HCHO. At a room temperature of 21 degrees C, vaporization of more than 2,000 micrograms of HCHO per liter resulted in conversion of HCHO to paraformaldehyde, which condensed on surfaces and contributed to prolonged residual vapor levels. An electronic monitor is described which is capable of detecting HCHO levels as low as 10 microgram/liter and can be used to monitor the complete fumigation process.  相似文献   

5.
A method was developed to evaluate and measure the sporicidal activity of peracetic acid (PAA) and β-propiolactone (BPL) at subzero temperatures as low as -40 C. Bacillus subtilis var. niger spores were used as the test organism. Both PAA and BPL were sporicidal at low temperatures, with PAA the more active. The temperature coefficients of the two chemicals are generally low over a range of 20 to -20 C, but increase significantly at temperatures below this. Results showed an initial lag in the PAA death rates that was directly dependent on the temperature. BPL did not show this lag time.  相似文献   

6.
The effect of soil heat and autoclaving on labile inorganic P (Bray I), microbial P (P-flush) and on phosphatase activity was studied by heating five forest soils in the laboratory, which simulated the effects of heat during bushfires. Top soil was heated to 60 °C, 120 °C and 250 °C or autoclaved for 30 minutes. Soils were analysed immediately after heating and during seven months of incubation to assess immediate and longer-term effects of heating.Labile inorganic P increased immediately after heating and autoclaving soils, with the highest amount recorded for the 250 °C treatment. Phosphorus associated with microbial biomass decreased with heat, and none or small amounts were detected in soils heated to 250 °C and autoclaved, because high temperatures killed the microbial population. Most of the P released from microbes acted as a source of labile inorganic P in soils low in inorganic P, and some of the released P was fixed by the soil. In one soil high in inorganic labile P and with undetectable amounts of microbial-P, the increase in Bray P on heating could only be assigned to solubilisation of other sources of total P Because high temperatures denature enzymatic proteins, phosphatase activity diminished with the increase in temperature, and no activity was detected in 250 °C and autoclaved soils.Phosphorus released by heating decreased during incubation in three of the five soils studied, approaching values observed in unheated soils. Simultaneously, an increase in microbial P was observed in these heated soils, indicating that the partial recovery of microbial biomass acted as a sink for the decrease in Bray-P measured. Phosphatase activity recovered only partially during incubation of heated soils.  相似文献   

7.
The primary purpose of the present study was to compare the effectiveness of two forms of hand heating and to discuss specific trends that relate finger dexterity performance to variables such as finger skin temperature (T(fing)), finger blood flow (Q(fing)), forearm skin temperature (T(fsk)), forearm muscle temperature (Tfmus), mean weighted body skin temperature (Tsk), and change in body heat content (DeltaH(b)). These variables along with rate of body heat storage, toe skin temperature, and change in rectal temperature were measured during direct and indirect hand heating. Direct hand heating involved the use of electrically heated gloves to keep the fingers warm (heated gloves condition), whereas indirect hand heating involved warming the fingers indirectly by actively heating the torso with an electrically heated vest (heated vest condition). Seven men (age 35.6 +/- 5.6 yr) were subjected to each method of hand heating while they sat in a chair for 3 h during exposure to -25 degrees C air. Q(fing) was significantly (P < 0.05) higher during the heated vest condition compared with the heated gloves condition (234 +/- 28 and 33 +/- 4 perfusion units, respectively), despite a similar T(fing) (which ranged between 28 and 35 degrees C during the 3-h exposure). Despite the difference in Q(fing), there was no significant difference in finger dexterity performance. Therefore, finger dexterity can be maintained with direct hand heating despite a low Q(fing). DeltaH(b), Tsk, and T(fmus) reached a low of -472 +/- 18 kJ, 28.5 +/- 0.3 degrees C, and 29.8 +/- 0.5 degrees C, respectively, during the heated gloves condition, but the values were not low enough to affect finger dexterity.  相似文献   

8.
This study evaluated the ability of mutagenic antineoplastic agents to vaporize at room temperature (23 degrees C) and 37 degrees C. A bacterial mutagenicity assay was used to determine the mutagenicity of these agents in the vapor phase. Open plates of bacteria were exposed to varying amounts of drug solutions in sealed glass containers for 24h. The drug solutions were prepared as they would be for patient treatment and were tested at 0.25, 0.5 and 1.0 ml of each drug solution per 10 l of air. Following exposure, the plates exposed at 23 degrees C were incubated an additional 48 h at 37 degrees C to allow for expression of mutations. Those exposed at 37 degrees C were incubated for an additional 24h at 37 degrees C. Carmustine, cyclophosphamide, ifosfamide, thiotepa, and mustargen demonstrated vaporization at 37 degrees C. Carmustine and mustargen also demonstrated significant vaporization at 23 degrees C, while cyclophosphamide demonstrated a 50% increase in revertants at this temperature. In addition, sodium azide, a known mutagen used as a control was also mutagenic as a vapor at both temperatures. Doxorubicin, cisplatin, etoposide, 5-fluorouracil and mitomycin were not detected as vaporizing in this assay. The study found that vaporization of standard solutions of some antineoplastic agents is possible at room temperature and increases as the temperature increases. Therefore, vaporization of spilled antineoplastic agents may present an additional route of exposure to healthcare workers through inhalation.  相似文献   

9.
A theoretical model was developed and used to estimate quantitatively the "worst case", i.e., the longest, time to reach equilibrium temperature in the center of a clump of bacteria heated in fluid. For clumps with 10 to 10(6) cells heated in vapor, such as dry and moist air, and liquid fluids such as purees and juices, predictions show that temperature equilibrium will occur with sterilization temperatures up to 130 degrees C in under 0.02 s. Model development highlighted that the controlling influence on time for heating up the clump is the surface convection thermal resistance and that the internal conduction resistance of the clump mass is negligible by comparison. The time for a clump to reach equilibrium sterilization temperature was therefore decreased with relative turbulence (velocity) of the heating fluid, such as occurs in many process operations. These results confirm widely held suppositions that the heat-up time of bacteria in vapor or liquid is not significant with usual sterilization times.  相似文献   

10.
Equilibrium temperature in a clump of bacteria heated in fluid   总被引:1,自引:0,他引:1  
A theoretical model was developed and used to estimate quantitatively the "worst case", i.e., the longest, time to reach equilibrium temperature in the center of a clump of bacteria heated in fluid. For clumps with 10 to 10(6) cells heated in vapor, such as dry and moist air, and liquid fluids such as purees and juices, predictions show that temperature equilibrium will occur with sterilization temperatures up to 130 degrees C in under 0.02 s. Model development highlighted that the controlling influence on time for heating up the clump is the surface convection thermal resistance and that the internal conduction resistance of the clump mass is negligible by comparison. The time for a clump to reach equilibrium sterilization temperature was therefore decreased with relative turbulence (velocity) of the heating fluid, such as occurs in many process operations. These results confirm widely held suppositions that the heat-up time of bacteria in vapor or liquid is not significant with usual sterilization times.  相似文献   

11.
AIMS: To determine the mechanisms of Bacillus subtilis spore killing by and resistance to an acidic solution containing Fe(3+), EDTA, KI and ethanol termed the KMT reagent. METHODS AND RESULTS: Wild-type B. subtilis spores were not mutagenized by the KMT reagent but the wild-type and recA spores were killed at the same rate. Spores (alpha(-)beta(-)) lacking most DNA-protective alpha/beta-type small, acid-soluble spore proteins were less resistant to the KMT reagent than wild-type spores but were also not mutagenized, and alpha(-)beta(-) and alpha(-)beta(-)recA spores exhibited nearly identical resistance. Spore resistance to the KMT reagent was greatly decreased if spores had defective coats. However, the level of unsaturated fatty acids in the inner membrane did not determine spore sensitivity to the KMT reagent. Survivors in spore populations killed by the KMT reagent were sensitized to killing by wet heat or nitrous acid and to high salt in plating medium. KMT reagent-killed spores had not released their dipicolinic acid (DPA), although these killed spores released their DPA more readily when germinated with dodecylamine than did untreated spores. However, KMT reagent-killed spores did not germinate with nutrients or Ca(2+)-DPA and were recovered only poorly by lysozyme treatment in a hypertonic medium. CONCLUSIONS: The KMT reagent does not kill spores by DNA damage and a major factor in spore resistance to this reagent is the spore coat. KMT reagent treatment damages the spore's ability to germinate, perhaps by damaging the spore's inner membrane. However, this damage is not oxidation of unsaturated fatty acids. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide information on the mechanism of spore resistance to and killing by the KMT reagent developed for killing Bacillus spores.  相似文献   

12.
A low-pressure microwave-induced helium plasma serves as an excitation source for metal chlorides, nitrates, and sulfates vaporized from a filament, resulting in fractional vaporization and differential sensitivities of detection of the elements depending on the vapor pressures of their salts. The shapes of the single emission peaks, which are simple in the presence of potassium chloride, become complex and may double in number.  相似文献   

13.
Sporicidal Effect of Peracetic Acid Vapor   总被引:1,自引:1,他引:0  
The sporicidal activity of peracetic acid (PAA) vapor at 20, 40, 60, and 80% relative humidity (RH) and 25 C was determined on Bacillus subtilis var. niger spores on paper and glass surfaces. Appreciable activity occurred within 10 min of exposure to 1 mg of PAA per liter and 40% or higher RH. The sporicidal rate decreased from the optimum at 80% RH to a slight effect at 20% RH. Spores on an impermeable surface were more difficult to kill than those on a porous one, probably because the cells tend to pile up on an impermeable surface and the vapor penetrates poorly through the layer of covering cells.  相似文献   

14.
Flow cytometry was used to measure the fluorescence polarization of the lipid probe trimethylammonium-diphenylhexatriene as an indicator of plasma membrane fluidity of Chinese hamster ovary (CHO) cells heated under various conditions. Fluorescence polarization was measured at room temperature about 25 min after heating. When cells were heated for 45 min at temperatures above 42 degrees C, fluorescence polarization decreased progressively, signifying an increase in plasma membrane fluidity. The fluorescence polarization of cells heated at 42 degrees C for up to 55 h was nearly the same as for unheated control populations, despite a reduction in survival. The fluorescence polarization of cells heated at 45 degrees C decreased progressively with heating time, which indicated a progressive increase in membrane fluidity. The fluorescence polarization distributions broadened and skewed toward lower polarization values for long heating times at 45 degrees C. Thermotolerant cells resisted changes in plasma membrane fluidity when challenged with subsequent 45 degrees C exposures. Heated cells were sorted on the basis of their position in the fluorescence polarization distribution and plated to determine survival. The survival of cells which were subjected to various heat treatments and then sorted from high or low tails of the fluorescence polarization histograms was not significantly different. These results show that hyperthermia causes persistent changes in the membrane fluidity of CHO cells but that membrane fluidity is not directly correlated with cell survival.  相似文献   

15.
Research on the susceptibility of the spores of anaerobic bacteria such as Clostridium sporogenes or Clostridioides difficile is vital for assessing the sporicidal activity of disinfectants. The diverse susceptibility of anaerobic bacteria spores may lead to different disinfection parameters being determined by laboratories that prepare spore suspensions to test sporicidal effectiveness. The tests were performed using the suspension method according to PN-EN 13704:2018-09. In order to assess the susceptibility of the C. sporogenes spores, the criterion established for the C. difficile ribotype 027 spores was used in accordance with PN‑EN 17126:2019-01. The susceptibility of the C. sporogenes spores to glutardialdehyde corresponded to the susceptibility ranges established for the C. difficile ribotype 027 spores. The C. sporogenes spore suspension was susceptible to low concentrations of peracetic acid (0.01%). A disinfectant containing peracetic acid as the active substance showed high sporicidal activity at a low concentration (1%), a short contact time (15 minutes), and a high organic load (3.0 g/l bovine albumin + 3.0 ml/l sheep erythrocytes), as compared to a disinfectant with glutardialdehyde, which was sporicidal at a higher concentration (2.5%), at a longer contact time(60 minutes) and lower organic conditions (3.0 g/l bovine albumin). There is a need to define the minimum susceptibility criteria for the C. sporogenes spores to the reference substances most often found in disinfectants with sporicidal activity. Excessive susceptibility of the C. sporogenes spores to reference substances may result in low-performance parameters of disinfection products with sporicidal activity and lead to ineffective disinfection in practice. Open in a separate window  相似文献   

16.
Heat stability and species range of purified staphylococcal alpha-toxin   总被引:9,自引:0,他引:9  
Cooper, Louis Z. (New England Medical Center Hospital, Boston, Mass.), Morton A. Madoff, and Louis Weinstein. Heat stability and species range of purified staphylococcal alpha-toxin. J. Bacteriol. 91:1686-1692. 1966.-Heating of high-titer purified staphylococcal alpha-toxin at 60 and 80 C resulted in a double-sloped curve of inactivation of the hemolytic effect on rabbit erythrocytes. Early inactivation was less at the lower temperature, but activity persisted for a longer time at 80 C. Toxin inactivated at 60 C showed renewed activity when heated briefly at 80 C. A precipitate which formed during heating of alpha-toxin at 60 or 80 C yielded hemolytic activity when resuspended and heated at 80 but not at 60 C. Supernatant fluid of heat-precipitated toxin was heat-labile and did not regain activity when heated at 80 C. The results indicate that the "paradoxical effect" of heating of staphylococcal alpha-toxin is not due to a thermolabile inhibitor, but results from alteration of the toxin molecule to a heat-stable active form. Demonstration of renewed activity by 80 C heating of purified toxin requires potent toxin preparations and brief heating periods. Hemolysis of erythrocytes of several animal species by purified alpha-toxin was generally similar to that produced by impure toxin. Rabbit cells were most susceptible. Human and horse erythrocytes hemolyzed to less than 0.1% of the extent of rabbit cells. Blood cells of other species were intermediate in their response to the lytic effect of alpha-toxin.  相似文献   

17.
Hsp16.3, the alpha-crystallin-related small heat shock protein of Mycobacterium tuberculosis that is maximally expressed during the stationary phase and is a major membrane protein, has been reported to form specific trimer-of-trimers structure and to act as an effective molecular chaperone (Chang Z et al., 1996, J. Biol Chem 271:7218-7223). However, little is known about its action mechanism. In this study, Hsp16.3 conformational intermediates with dramatically increased chaperone activities were detected after treatment with very low concentrations of guanidine hydrochloride (0.05 M), urea (0.3 M), or mild heating (30 degrees C). The intermediates showed a significant increase in their capacity to bind the hydrophobic probe 1-anilino-8-naphthalene sulfonate (ANS), indicating an increased exposure of hydrophobic surfaces. Interestingly, the greatest chaperone activities of Hsp16.3 were observed in the presence of 0.3 M guanidine HCl or when heated to 35 degrees C. CD spectroscopy studies revealed no significant changes in protein secondary and tertiary structures at these mild treatments. Our in vitro studies also indicate that long-time-heated Hsp16.3, heated even to temperatures as high as 85 degrees C, has almost the same, if not a slightly greater, chaperone activities as the native protein when cooled to room temperature and its secondary structures also almost recovered. Together, these results suggest that Hsp16.3 modulates its chaperone activity by exposing hydrophobic surfaces and that the protein structure is highly stable and flexible, thus highly adapted for its function.  相似文献   

18.
Recently, we reported the presence of ice nucleating activity, apparently proteinaceous, in the plasma of a freeze-tolerant frog, Rana sylvatica, collected in autumn and spring. Although this protein has not been purified, its ice nucleating behavior can act as an internal reference for tests that attempt to modify its ability to nucleate ice formation. If the addition of a chemical reagent alters the temperature of ice crystallization compared with the control, it can be assumed that protein modification may have occurred. The ice nucleating protein in R. sylvatica showed resistance to proteolysis with four different proteases although there was a significant reduction in the temperatures of nucleation with these treatments (ANOVA P less than 0.001). However, ice nucleating activity was lost when plasma was treated with the addition of urea or N-bromosuccinimide. Modification of protein sulphydryl groups with iodoacetamide did not affect the crystallization temperature (Tc) but treatment with iodoacetic acid resulted in a significant increase in Tc of plasma. An abrupt loss of ice nucleating ability was observed in plasma samples after heating above 87 degrees C. Anomalous potentiation of ice nucleating activity occurred when the plasma was heated to and held at temperatures between 67-75 degrees C.  相似文献   

19.
The relationship between chymotrypsin-inhibitory and immunoenhancing activity of alpha-1-antichymotrypsin was studied. alpha-1-Antichymotrypsin was treated at 50 degrees C, 55 degrees C or 60 degrees C for 15 min. It was found that antichymotryptic activity was reduced by half when alpha-1-antichymotrypsin was heated at 55 degrees C and was not detected at all when heating was carried out at 60 degrees C. alpha-1-Antichymotrypsin which was heated at 60 degrees C did not form a complex with chymotrypsin, but became a substrate for chymotrypsin. The effect of native and heated alpha-1-antichymotrypsin on antibody response was studied in mice. alpha-1-Antichymotrypsin increased the number of anti-sheep erythrocytes antibody producing cells even when it was heated at 60 degrees C. Circular dichroism and single radial immunodiffusion were used to detect conformational changes. Circular dichroism in the region of side chain absorption showed that the intensities of the spectra at 296, 284, and 265 nm decreased with a rise in temperature from 50 to 60 degrees C. In single radial immunodiffusion analysis, alpha-1-antichymotrypsin did not form a halo after being heated at 60 degrees C. In conclusion, when alpha-1-antichymotrypsin was heated at 60 degrees C, the immunoenhancing activity remained intact while the antichymotryptic activity was lost with the conformational change.  相似文献   

20.
Time-temperature analyses of durations of heating required to achieve isosurvival were used to compare hyperthermic cell killing of synchronous Chinese hamster ovary (CHO) cells heated in G1 or S at temperatures of 42 to 45.5 degrees C. G1 populations were obtained by incubation of mitotic cells for 90 min at 37 degrees C. S phase populations were obtained by incubation of mitotic cells for 12 h at 37 degrees C in medium supplemented with 2 micrograms/ml aphidicolin, a reversible inhibitor of DNA alpha polymerase; S phase survival was also determined in an aphidicolin-free system by using high specific activity [3H]thymidine. In both systems, the thermosensitivity was similar and decreased as the cells progressed from early S phase, in agreement with earlier studies (R. A. Read, M. H. Fox, and J. S. Bedford. Radiat. Res. 98, 491-505 (1984]. A comparison of Arrhenius plots of the inverse of durations of heating required to achieve isosurvival for cells heated in G1 or S phase showed similar temperature dependence above 43.5 degrees C, yet the plots for heat-sensitive S phase cells were offset from those for heat-resistant G1 cells by about 1.5 degrees C, i.e., S phase cells respond to 43 degrees C with a rate similar to that observed in G1 cells heated at 44.5 degrees C. Using least-squares regression of the semilog plots, the curves were analyzed either as continually bending curves or as two straight lines with a break at 43.5 degrees C. When the data were analyzed using two straight lines, no significant differences in the slopes of the time-temperature plots of G1 or S phase cells were observed. A quantitative comparison between the two methods of data analysis demonstrated that in both phases the data were better fit with a continuously curving line, rather than two straight lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号