首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterogeneity of ginsenosides is an interesting and important issue because those structure-similar secondary metabolites have different or even totally opposite pharmacological activities. In this work, a new enzyme UDP-glucose:ginsenoside Rd glucosyltransferase (UGRdGT), which catalyzes the formation of ginsenoside Rb1 from ginsenoside Rd [Biotechnol. Bioeng. 89: 444–52, 2005], was purified approximately 145-fold from suspended cells of Panax notoginseng with an overall yield of 0.2%. Purification to apparent homogeneity, as judged by SDS-PAGE, was successfully achieved by using sequential ammonium sulphate precipitation, anion-exchange chromatography and native PAGE. The enzyme had a molecular mass of 36 kDa, and its activity was optimal at pH 8.5 and 35 °C. The enzyme activity was enhanced by Mn2+, Ca2+ and Mg2+, but strongly inhibited by Zn2+, Hg2+, Co2+, Fe2+ and Cu2+. The apparent Km value for UDP-glucose and ginsenoside Rd was 0.32 and 0.14 mM, respectively. The biotransformation yield from ginsenoside Rd to Rb1 by UGRdGT in 50 mM Tris–HCl buffer at pH 8.5 and 35 °C was over 80%. This work provides a basis for further molecular study on the ginsenoside Rb1 biosynthesis by P. notoginseng cells and it is also useful for potential application to in vitro biotransformation from ginsenoside Rd to Rb1.  相似文献   

2.
An intracellular nitrilase was purified from a Fusarium solani O1 culture, in which the enzyme (up to 3000 U L−1) was induced by 2-cyanopyridine. SDS-PAGE revealed one major band corresponding to a molecular weight of approximately 40 kDa. Peptide mass fingerprinting suggested a high similarity of the protein with the putative nitrilase from Gibberella moniliformis. Electron microscopy revealed that the enzyme molecules associated into extended rods. The enzyme showed high specific activities towards benzonitrile (156 U mg−1) and 4-cyanopyridine (203 U mg−1). Other aromatic nitriles (3-chlorobenzonitrile, 3-hydroxybenzonitrile) also served as good substrates for the enzyme. The rates of hydrolysis of aliphatic nitriles (methacrylonitrile, propionitrile, butyronitrile, valeronitrile) were 14–26% of that of benzonitrile. The nitrilase was active within pH 5–10 and at up to 50 °C with optima at pH 8.0 and 40–45 °C. Its activity was strongly inhibited by Hg2+ and Ag+ ions. More than half of the enzyme activity was preserved at up to 50% of n-hexane or n-heptane or at up to 15% of xylene or ethanol. Operational stability of the enzyme was examined by the conversion of 45 mM 4-cyanopyridine in a continuous and stirred ultrafiltration-membrane reactor. The nitrilase half-life was 277 and 10.5 h at 35 and 45 °C, respectively.  相似文献   

3.
Cordyceps militaris mycelium produced mainly Cu, Zn containing superoxide dismutase (Cu, Zn-SOD). Cu, Zn-SOD activity was detectable in the culture filtrates, and intracellular Cu, Zn-SOD activity as a proportion protein was highest in early log phase culture. The effects of Cu2+, Zn2+, Mn2+ and Fe2+ on enzyme biosynthesis were studied. The Cu, Zn-SOD was isolated and purified to homogeneity from C. militaris mycelium and partially characterized. The purification was performed through four steps: (NH4)2SO4 precipitation, DEAE-sepharose™ fast flow anion-exchange chromatography, CM-650 cation-exchange chromatography, and Sephadex G-100 gel filtration chromatography. The purified enzyme had a molecular weight of 35070 ± 400 Da and consisted of two equal-sized subunits each having a Cu and Zn element. Isoelectric point value of 7.0 was obtained for the purified enzyme. The N-terminal amino acid sequence of the purified enzyme was determined for 12 amino acid residues and the sequences was compared with other Cu, Zn-SODs. The optimum pH of the purified enzyme was obtained to be 8.2–8.8. The purified enzyme remained stable at pH 5.8–9.8, 25 °C and up to 50 °C at pH 7.8 for 1.5 h incubation. The purified enzyme was sensitive to H2O2, KCN. 2.5 mM NaN3, PMSF, Triton X-100, β-mercaptoethanol and DTT showed no significant inhibition effect on the purified enzyme within 5 h incubation period.  相似文献   

4.
A novel protease produced by Bacillus cereus grown on wool as carbon and nitrogen source was purified. B. cereus protease is a neutral metalloprotease with a molecular mass of 45.6 kDa. The optimum activity was at 45 °C and pH 7.0. The substrate specificity was assessed using oxidized insulin B-chain and synthetic peptide substrates. The cleavage of the insulin B-chain was determined to be Asn3, Leu6, His10-Leu11, Ala14, Glu21, after 12 h incubation. Among the peptide substrates, the enzyme did not exhibit activity towards ester substrates; with p-nitroanilide, the kinetic data indicate that aliphatic and aromatic amino acids were the preferred residues at the P1 position. For furylacryloyl peptides substrates, which are typical substrates for thermolysin, the enzyme exhibited high hydrolytic activity with a Km values of 0.858 and 2.363 mM for N-(3-[2-Furyl]acryloyl)-Ala-Phe amide and N-(3-[2-Furyl]acryloyl)-Gly-Leu amide, respectively. The purified protease hydrolysed proteins substrates such as azocasein, azocoll, keratin azure and wool.  相似文献   

5.
Purification and characterization of xylanase from Aspergillus ficuum AF-98   总被引:1,自引:0,他引:1  
Lu F  Lu M  Lu Z  Bie X  Zhao H  Wang Y 《Bioresource technology》2008,99(13):5938-5941
The purification and characterization of xylanase from Aspergillus ficuum AF-98 were investigated in this work. The extracellular xylanase from this fungal was purified 32.6-fold to homogeneity throughout the precipitation with 50–80% (NH4)2SO4, DEAE-Sephadex A-50 ion exchange chromatography and Sephadex G-100 chromatography. The purified xylanase (specific activity at 288.7 U/ mg protein) was a monomeric protein with a molecular mass of 35.0 kDa as determined by SDS-PAGE. The optimal temperature and pH for the action of the enzyme were at 45 °C and 5.0, respectively. The xylanase was activated by Cu2+ up to 115.8% of activity, and was strongly inhibited by Hg2+, Pb2+ up to 52.8% and 89%, respectively. The xylanase exhibited Km and Vmax values of 3.267 mg/mL, 18.38 M/min/mg for beechwood xylan and 3.747 mg/mL, 11.1 M/min/mg for birchwood xylan, respectively.  相似文献   

6.
A protease-producing bacterium, strain TKU010, was isolated from infant vomited milk and identified as Lactobacillus paracasei subsp. paracasei. A surfactant-stable protease, purified 64-fold from the third day culture supernatant to homogeneity in an overall yield of 11%, has a molecular weight of about 49,000. The enzyme degraded casein and gelatin, but did not degrade albumin, fibrin, and elastin. The enzyme activity was increased about 1.5-fold by the addition of 5 mM Ba2+. However, Fe2+ and Cu2+ ions strongly inhibited the enzyme. The enzyme was maximally active at pH 10 and 60 °C and retained 94% and 71% activity in the presence of Tween 20 (2% w/v) and SDS (2 mM), respectively. The result of identification of TKU010 protease showed that nine tryptic peptides were identical to Serratia protease (serralysin) (GenBank accession number gi999638) with 35% sequence coverage. In comparison with the tryptic peptides of L. paracasei subsp. paracasei TKU012 protease, TKU010 protease possessed two additional peptides with sequences of AATTGYDAVDDLLHYHER and QTFTHEIGHALGLSHPGDYNAGEGNPTYR. The fourth day culture supernatant of TKU010 showed maximal activity of about 5-fold growth enhancing effect on lettuce weight, which was not shown with L. paracasei subsp paracasei TKU012.  相似文献   

7.
Immobilized Microcystis aeruginosa in a flow-through sorption column was evaluated for the potential to remove Pb2+, Cd2+ and Hg2+ from aqueous solutions. M. aeruginosa showed high affinity for the three heavy metals with removal efficiency of 90% for Cd2+ and Hg2+, and 80% for Pb2+ at saturation conditions. Competitive sorption experiments conducted in paired and ternary systems indicated that Pb2+ was sequestered preferentially over Cd2+ and Hg2+. The presence of Cd2+ interfered only slightly with the uptake of Hg2+, as Pb2+ and Hg2+ did with Cd2+. In contrast, Hg2+ sorption was affected by Pb2+ to a great extent. Desorption with 1 M HCl was completed within 25 min with high efficiency and effectiveness for the three metals. The results of this study indicate that M. aeruginosa is to be a potential biosorbent material except when Hg2+ and Pb2+ are in the same contaminated solution.  相似文献   

8.
Solid-state culture of the white-rot fungus Phanerochaete chrysosporium BKMF-1767 (ATCC 24725) has been carried out, using an inert support, polystyrene foam. Suitable medium and culture conditions have been chosen to favor the secretion of manganese peroxidase (MnP). The enzyme was isolated and purified from immobilized P. chrysosporium and partially characterized. Partial protein precipitation in crude enzyme was affected using ammonium sulphate, polyethylene glycol, methanol, and ethanol methods. Fractionation of MnP was performed by DEAE-Sepharose ion exchange chromatography followed by Ultragel AcA 54 gel filtration chromatography. This purification attained 23.08% activity yield with a purification factor of 5.8. According to data on gel filtration chromatography and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), the molecular weight of the enzyme was 45 000±1000 Da. The optimum pH and temperature of purified MnP were 4.5 and 30 °C, respectively. This enzyme was stable in the pH range 4.5–6.0, at 25 °C and also up to 35 °C at pH 4.5 for 1 h incubation period. MnP activity was inhibited by 2 mM NaN3, ascorbic acid, β-mercaptoethanol and dithreitol. The Km values of MnP for hydrogen peroxide and 2.6-dimetoxyphenol were 71.4 and 28.57 μM at pH 4.5, respectively. The effects of possible inhibitors and activators of enzyme activity were investigated.  相似文献   

9.
The methylotrophic yeast Pichia pastoris is an attractive heterologous protein expression host, mainly for genes from higher eukaryotes. However, no successful examples for the expression of bacterial gene encoding pectate lyase in P. pastoris have been reported. The present study reports for the first time the cloning and functional expression of the bacterial Bacillus subtilis gene encoding alkaline pectate lyase in P. pastoris. A molecular weight of 43,644 Da was calculated from the deduced amino acid sequence. A pectate lyase activity as high as 100 U/ml was attained in the fermentation broth of P. pastoris GS 115, which was about 10 times higher than when the gene is expressed in Escherichia coli. The recombinant pectate lyase was purified to homogeneity and maximal activity of the enzyme was observed at 65 °C, and pH 9.4. The recombinant enzyme showed a wider pH and thermal stability spectrum than the purified pectate lyase from B. subtilis WSHB04-02. Pectate lyase activity slightly increased in the presence of Mg2+ (ion) but decreased in the presence of other metal ions. Analysis of polygalacturonic acid degradation products by electrospray ionization-mass spectrometry revealed that the degradation products were unsaturated trigalacturonic acid and unsaturated bigalacturonic acid, which confirms that the enzyme catalyzes a trans-elimination reaction.  相似文献   

10.
A thermostable, alkaline active xylanase was purified to homogeneity from the culture supernatant of an alkaliphilic Bacillus halodurans S7, which was isolated from a soda lake in the Ethiopian Rift Valley. The molecular weight and the pI of this enzyme were estimated to be around 43 kDa and 4.5, respectively. When assayed at 70 °C, it was optimally active at pH 9.0–9.5. The optimum temperature for the activity was 75 °C at pH 9 and 70 °C at pH 10. The enzyme was stable over a broad pH range and showed good thermal stability when incubated at 65 °C in pH 9 buffer. The enzyme activity was strongly inhibited by Mn2+. Partial inhibition was also observed in the presence of 5 mM Cu2+, Co2+ and EDTA. Inhibition by Hg2+ and dithiothreitol was insignificant. The enzyme was free from cellulase activity and degraded xylan in an endo-fashion.  相似文献   

11.
A thermophilic Bacillus sp. strain AN-7, isolated from a soil in India, produced an extracellular pullulanase upon growth on starch–peptone medium. The enzyme was purified to homogeneity by ammonium sulfate precipitation, anion exchange and gel filtration chromatography. The optimum temperature and pH for activity was 90 °C and 6.0. With half-life time longer than one day at 80 °C the enzyme proves to be thermostable in the pH range 4.5–7.0. The pullulanase from Bacillus strain lost activity rapidly when incubated at temperature higher than 105 °C or at pH lower than 4.5. Pullulanase was completely inhibited by the Hg2+ ions. Ca2+, dithiothreitol, and Mn2+ stimulated the pullulanase activity. Kinetic experiments at 80 °C and pH 6.0 gave Vmax and Km values of 154 U mg−1 and 1.3 mg ml−1. The products of pullulan were maltotriose and maltose. This proved that the purified pullulanase (pullulan-6-glucanohydrolase, EC 3.2.1.41) from Bacillus sp. AN-7 is classified under pullulanase type I. To our knowledge, this Bacillus pullulanase is the most highly thermostable type I pullulanase known to date.  相似文献   

12.
The role of the Ca2+ ion that is present in the structure of Burkholderia glumae lipase was investigated. Previously, we demonstrated that the denatured lipase could be refolded in vitro into an active enzyme in the absence of calcium. Thus, an essential role for the ion in catalytic activity or in protein folding can be excluded. Therefore, a possible role of the Ca2+ ion in stabilizing the enzyme was considered. Chelation of the Ca2+ ion by EDTA severely reduced the enzyme activity and increased its protease sensitivity, however, only at elevated temperatures. Furthermore, EDTA induced unfolding of the lipase in the presence of urea. From these results, it appeared that the Ca2+ ion in B. glumae lipase fulfils a structural role by stabilizing the enzyme under denaturing conditions. In contrast, calcium appears to play an additional role in the Pseudomonas aeruginosa lipase, since, unlike B. glumae lipase, in vitro refolding of this enzyme was strictly dependent on calcium. Besides the role of the Ca2+ ion, also the role of the disulfide bond in B. glumae lipase was studied. Incubation of the native enzyme with dithiothreitol reduced the enzyme activity and increased its protease sensitivity at elevated temperatures. Therefore, the disulfide bond, like calcium, appears to stabilize the enzyme under detrimental conditions.  相似文献   

13.
Extracellular thermostable lipase produced by the thermophilic Bacillus stearothermophilus MC 7 was purified to 19.25-fold with 10.2% recovery. The molecular weight of the purified enzyme determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was shown to be 62 500 Da. The purified enzyme expressed maximum activity at 75–80 °C and its half life was 30 min at 70 °C. The Km and Vmax were calculated to be, respectively, 0.33 mM and 188 μM min−1 mg−1 with p-nitrophenyl palmitate (pNPP) as a substrate. Enzyme activity was inhibited by divalent ions of heavy metals, thiol and serine inhibitors, whereas calcium ion stimulated its activity. The most advantageous method for immobilization was found to be ionic binding to DEAE Cellulose. The enzyme was able to hydrolyze both soluble and insoluble emulsified substrates and was classified as a lipase, expressing some esterase activity as well.  相似文献   

14.
A genetically engineered Pichia pastoris FPHY34 strain containing a 1.3 kb thermostable phytase gene (fphy) evolved by DNA shuffling was constructed and screened. Expression and purification conditions for the recombinant phytase were developed in this study. The effect of Pi on recombinant phytase expression and cell growth of P. pastoris FPHY34 was tested in shake flask culture. Optimization of carbon sources for cell growth and methanol feeding strategies for phytase expression in P. pastoris FPHY34 was carried out in a 50-L fermenter by fed-batch fermentation. The purification of phytase was investigated by micro-filtration and ultra-filtration followed by desalting, ion-exchange chromatography, and gel filtration in the ÄKTA system. It showed that the optimum inorganic phosphorus is 13.6 g L−1 and that glucose can be used as a substrate for P. pastoris cell growth instead of glycerol; the biomass yield of glycerol (YX/S) is slightly higher than that of glucose. Different profiles of lag phase and respiratory quotient (RQ) displayed between glucose and glycerol as the sole carbon source. The maximum phytase activity in per millimetre reached 2508 U mL−1 at a methanol feed rate of 3.0 mL L−1 h−1 after 80 h period of induction. A purification factor of 41.1 with a 32% yield was achieved after chromatographic purification. The specific enzyme activity was 80 U mg−1 and 3281 U mg−1 in that supernatant fraction and after gel filtration purification, respectively. The strain P. pastoris FPHY34 showed a promising application in phytase industrial production.  相似文献   

15.
Chaetomium thermophilum CT2 produced endocellulases at 50 °C, when grown on 2% microcrystalline cellulose, 1% soluble starch, and 0.4% yeast extract medium. A major endocellulase component was purified to homogeneity by fractional ammonium sulphate precipitation, ion-exchange chromatography on DEAE-Sepharose, Phenyl-Sepharose hydrophobic interaction chromatography and gel filtration on Sephacryl S-100. The molecular weight of the enzyme was estimated to be 67.8 kDa and the enzyme was found to be a glycoprotein containing 18.9% carbohydrate. The Km of the purified enzyme for carboxymethyl cellulose, sodium salt (CMC), was 4.6 mg ml−1. The enzyme displayed highest activity towards CMC and significantly lower activities towards phosphoric acid swollen cellulose and filter paper. The activity was enhanced in the presence of Na+, K+ and Ca2+ but inhibited by Hg2+, Zn2+, Ag+, Mn2+, Ba2+, Fe2+, Cu2+, Mg2+ and NH4+. Optimum activity was at 60 °C and pH 4.0. The enzyme was stable over 60 min incubation at 60 °C and half-life at 70, 80 and 90 °C was approximately 45, 24 and 7 min, respectively.  相似文献   

16.
The β-fructofuranosidase from Kluyveromyces fragilis was purified to one band on electrophoresis by 3 different methods. Two of the preparations were found to be impure by isoelectric focusing. This demonstrates the need for more than one criteria of homogeneity when purifying this enzyme. The enzyme was found to be a glycoprotein, stable at 50°C, with a pH optimum of 4.5. The cations Hg2+, Ag+, Cu2+ and Cd2+ exhibited a marked inhibition of the enzyme. Competitive inhibition was observed with the fructose analog 2,5-anhydro-D-mannitol suggesting that the enzyme is inhibited by the furanose form of fructose.  相似文献   

17.
A series of cephalosporins, 2-isocephems, and 2-oxaisocephems with C-3′ catechol-containing (pyridinium-4-thio)methyl groups and 2-isocephems with C-7 catechol related aromatics have been prepared and evaluated for antimicrobial activity. It turns out that these compounds have highly potent activity against Gram-negative bacteria, especially resistant pathogens such as Pseudomonas aeruginosa. The most active compound of the series was (6S,7S)-7-[2-(2-aminothiazol-4-yl)-2-[(Z)-[(1,5-dihydroxy-4-pyridon-2-yl)methoxy] imino]acetamido]-3-[[[(4-methyl-5-carboxymethyl)thiazol-2-yl]thio]methyl]-8-oxo-1-aza-4-thiabicyclo [4.2.0] oct-2-ene-2-carboxylic acid which exhibited potent in vitro activity against clinically isolated P. aeruginosa and Acinetobacter baumanii which is also resistant to many anti-infectives, and good in vivo efficacy against clinically isolated P. aeruginosa.

A series of cephalosporins, 2-isocephems, and 2-oxaisocephems and C-3′ or C-7 catechol or related aromatics have been prepared and evaluated for antibacterial activity.  相似文献   


18.
An alginate lyase with high specific enzyme activity was purified from Vibrio sp. YKW-34, which was newly isolated from turban shell gut. The alginate lyase was purified by in order of ion exchange, hydrophobic and gel filtration chromatographies to homogeneity with a recovery of 7% and a fold of 25. This alginate lyase was composed of a single polypeptide chain with molecular mass of 60 kDa and isoelectric point of 5.5–5.7. The optimal pH and temperature for alginate lyase activity were pH 7.0 and 40 °C, respectively. The alginate lyase was stable over pH 7.0–10.0 and at temperature below 50 °C. The alginate lyase had substrate specificity for both poly-guluronate and poly-mannuronate units. The kcat/Km value for alginate (heterotype) was 1.7 × 106 s−1 M−1. The enzyme activity was completely lost by dialysis and restored by addition of Na+ or K+. The optimal activity exhibited in 0.1 M of Na+ or K+. This enzyme was resistant to denaturing reagents (SDS and urea), reducing reagents (β-mercaptoethanol and DTT) and chelating reagents (EGTA and EDTA).  相似文献   

19.
Biodegradation of cellouronate (β-1,4-linked polyglucuronic acid sodium salt, β-1,4-linked glucuronan), which was prepared from regenerated cellulose by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) mediated oxidation, was investigated. A bacterial strain with the ability to degrade cellouronate was isolated from soil collected in a natural environment, and identified as Brevundimonas sp. SH203 by comparing the nucleotide sequences of its 16S rDNA with those registered in the GenBank database. Cellouronate lyase-I (CUL-I), being responsible for the depolymerization of cellouronate, was purified to homogeneity from cell-free extracts. CUL-I was a monomeric protein with the molecular mass of 39 kDa by SDS–PAGE and 37 KDa by size exclusion chromatography (SEC). The enzyme activity was optimum at pH 7.5 and was inhibited by some divalent metal ions such as Mg2+, Fe2+ and Mn2+. The enzymatic reaction products were analyzed by SEC, TLC and 13C NMR. The results indicated that CUL-I catalyzed to depolymerize cellouronate endolytically to oligocellouronates and monomeric uronate.  相似文献   

20.
A chitosanase was purified from the culture supernatant of Serratia marcescens TKU011 with shrimp shell wastes as the sole carbon/nitrogen source. Zymogram analysis revealed the presence of chitosanolytic activity corresponding to one protein, which was purified by a combination of ion-exchange and gel-filtration chromatography. The molecular weight of the chitosanase was 21 kDa and 18 kDa estimated by SDS–PAGE and gel-filtration, respectively. The optimum pH, optimum temperature, pH stability, and thermal stability of the chitosanase were 5, 50 °C, pH 4–8, and <50 °C, respectively. The chitosanase was inhibited completely by EDTA, Mn2+, and Fe2+. The results of peptide mass mapping showed that three tryptic peptides of the chitosanase were identical to a chitin-binding protein Cbp21 from S. marcescens (GenBank accession number gi58177632) with 63% sequence coverage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号