首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ornithine decarboxylase (ODC; EC4.1.1.17), the key enzyme in polyamine biosynthesis, and intracellular polyamines increase rapidly and markedly in tissues and cells that are actively proliferating as well as differentiating and decrease as these processes cease. ODC activity has also been implicated as playing a role in the proliferation and differentiation of cells derived from the developing palate. Ornithine decarboxylase activity was thus quantified and ODC localized in the developing murine palate in vivo. Levels of ODC activity showed little variation during the ontogeny of the palate, averaging 126 pmol CO2/mg protein/hr. When difluoromethylornithine (DFMO), an irreversible inhibitor of ODC activity, was administered to pregnant mice throughout the period of palate development (days 11-14), palatal tissue ODC activity was reduced by 85%. No craniofacial malformations were observed, however. The lack of a teratogenic effect by DFMO treatment could be due to sufficient remaining ODC activity in craniofacial tissue and/or maintenance of intracellular polyamine levels by the activity of a polyamine transport system. The activity of this system was demonstrated by the ability of palatal tissue in vivo to take up radiolabeled putrescine. The presence of a polyamine transport system was previously suggested by the demonstration of such a system in palate mesenchymal cells in vitro. Dramatic temporal and spatial shifts in tissue patterns of immunolocalization for ODC in developing palatal tissue were also seen. Immunostaining for ODC was evenly distributed in oral, nasal, and medial edge palate epithelial cells on day 12 of gestation. The basal aspects of epithelial cells were, however, more intensely stained. Mesenchymal cells exhibited a peri-nuclear immunostaining pattern. On days 12 and 13 of gestation, the staining patterns for ODC in palate epithelial and mesenchymal cells were comparable. On day 14 of gestation, all regions of the palate epithelium, particularly the medial edge epithelia, were immunostained for ODC, whereas the intensity of staining in the mesenchymal cells was significantly reduced. This study represents essential initial observations toward understanding the role that ODC may play in normal craniofacial development.  相似文献   

2.
3.
The transforming growth factor-beta (TGFbeta) family represents a class of signaling molecules that plays a central role in morphogenesis, growth, and cell differentiation during normal embryonic development. Members of this growth factor family are particularly vital to development of the mammalian secondary palate where they regulate palate mesenchymal cell proliferation and extracellular matrix synthesis. Such regulation is particularly critical since perturbation of either cellular process results in a cleft of the palate. While the cellular and phenotypic effects of TGFbeta on embryonic craniofacial tissue have been extensively catalogued, the specific genes that function as downstream mediators of TGFbeta action in the embryo during palatal ontogenesis are poorly defined. Embryonic palatal tissue in vivo and murine embryonic palate mesenchymal (MEPM) cells in vitro secrete and respond to TGFbeta. In the current study, elements of the Smad component of the TGFbeta intracellular signaling system were identified and characterized in cells of the embryonic palate and functional activation of the Smad pathway by TGFbeta1, TGFbeta2, and TGFbeta3 was demonstrated. TGFbeta-initiated Smad signaling in cells of the embryonic palate was found to result in: (1) phosphorylation of Smad 2; (2) nuclear translocation of the Smads 2, 3, and 4 protein complex; (3) binding of Smads 3 and 4 to a consensus Smad binding element (SBE) oligonucleotide; (4) transactivation of transfected reporter constructs, containing TGFbeta-inducible Smad response elements; and (4) increased expression of gelatinases A and B (endogenous genes containing Smad response elements) whose expression is critical to matrix remodeling during palatal ontogenesis. Collectively, these data point to the presence of a functional Smad-mediated TGFbeta signaling system in cells of the developing murine palate.  相似文献   

4.
A morphological, electron microscopic, and biochemical study was undertaken to analyze the genesis of hadacidin-induced cleft palate in hamster fetuses. Gross and light microscopic observations indicated that hadacidin affected the growth of vertical palatal shelves to induce cleft palate. Electron microscopic observations showed that initial hadacidin-induced changes were seen in the mesenchymal cells. Within 12 hr of drug administration, the perinuclear space was swollen and a lysosomal response injury was evident in the mesenchymal cells. Subsequently, 24 hr after hadacidin treatment, lysosomes appeared in the epithelial cells; changes were also seen in the basal lamina which included separation of the lamina densa from the basal cells, duplication of lamina densa, and complete loss of basal lamina. Between 36 and 42 hr post-treatment, the cellular and basal lamina changes subsided, and the epithelium of vertical shelves underwent stratification. Biochemical determination of enzyme acid phosphatase indicated that the levels of enzyme activity in both the control and treated palatal tissues corresponded to the appearance of lysosomes. Measurement of cAMP levels suggested that the peak activity of cAMP corresponded to that of enzyme acid phosphatase and cell injury. The cAMP activity in hadacidin-injured cells, however, was significantly lower in comparison to that of the dying cells of control palates. Hadacidin treatment also affected DNA synthesis in the developing primordia of the palate. It was suggested that hadacidin injures the precursor cells of the palate prior to the appearance of the primordia, and subsequently affects their proliferative behavior, stunting the vertical growth of the palatal shelves and inducing a cleft palate.  相似文献   

5.
The expression of some members of the TGF beta family of genes in embryonic craniofacial tissue suggests a functional role for these molecules in orofacial development. In other systems, TGF beta 1 and TGF beta 2 have been shown to regulate cell proliferation and extracellular matrix metabolism, processes critical to normal development of the secondary palate. We have thus determined the amount and tissue distribution of both TGF beta 1 and TGF beta 2 in embryonic palatal tissue. Cellular extracts of murine embryonic palatal tissue from days 12, 13 and 14 of gestation were assayed for the presence of TGF beta 1 and TGF beta 2 by immunoprecipitation. Physiological levels, ranging from 0.05-20 ng/micrograms protein, of both growth factors were detected in all tissues examined. Immunostaining with antibodies directed against either TGF beta 1 or TGF beta 2 demonstrated the presence of these growth factors in palatal epithelium and mesenchyme early during palatal development (gestational day [GD] 12) a period characterized by tissue growth. On GDs 13 and 14, characterized by palate epithelial differentiation, immunostaining for both growth factors predominated in epithelial tissue. Immunostaining for TGF beta 1 and TGF beta 2 was also intense in mesenchyme surrounding tooth germs and in perichondrium. Chondrocytes and cartilage extracellular matrix did not stain for either TGF beta 1 or beta 2. Combined with existing evidence for the presence of functional receptors for the transforming growth factor-beta s in the developing palate, these results provide rationale for studies designed to clarify a specific role for these signalling molecules in palate epithelial differentiation and/or epithelial-mesenchymal interactions.  相似文献   

6.
Indirect immunofluorescence was used to determine the distribution of calmodulin in the mitotic apparatus of rat kangaroo PtK2 and Chinese hamster ovary (CHO) cells. The distribution of calmodulin in PtK2 cells was compared to the distribution of tubulin, also as revealed by indirect immunofluorescence. During mitosis, calmodulin was found to be a dynamic component of the mitotic apparatus. Calmodulin first appeared in association with the forming mitotic apparatus during midprophase. In metaphase and anaphase, calmodulin was found between the spindle poles and the chromosomes. While tubulin was found in the interzonal region throughout anaphase, calmodulin appeared in the interzone region only at late anaphase. The interzonal calmodulin of late anaphase condensed during telophase into two small regions, one on each side of the midbody. Calmodulin was not detected in the cleavage furrow. In view of the differences in the localization of calmodulin, tubulin, and actin in the mitotic apparatus, experiments were designed to determine the effects of various antimitotic drugs on calmodulin localization. Cytochalasin B, an inhibitor of actin microfilaments, had no apparent effect on calmodulin or tubulin localization in the mitotic apparatus of CHO cells. Microtubule inhibitors, such as colcemid and N2O, altered the appearance of tubulin- and calmodulin-specific fluorescence in mitotic CHO cells. Cold temperature (0 degrees C) altered tubulin-specific fluorescence of metaphase PtK2 cells but did not alter calmodulin-specific fluorescence. From these studies, it is concluded that calmodulin is more closely associated with the kinetichore-to-pole microtubules than other components of the mitotic apparatus.  相似文献   

7.
An immunohistochemical study analyzing the pattern of distribution of some intermediate filament proteins, keratin and vimentin and, one adhesion molecule, cadherin in different stages of developing secondary palate in two strains of mice with different H-2 backgrounds was undertaken to investigate differences between a strain that is susceptible to glucocorticoid-induced cleft palate (A/Sn) and one that is resistant to glucocorticoid-induced cleft palate (C57/BL). The heads of embryos were processed by standard immunohistochemistry with antipancytokeratin (KAE1), antikeratins 18 (K18) and 19 (K19), antivimentin, and anti E-cadherin antibodies. Immunostaining with KAE1 antibody showed differences between the strains. The reaction was stronger in the medial edge epithelia of palatal processes in the A/Sn strain at all stages of palatogenesis. The C57/BL strain showed a weak immunostain to KAE1. Antivimentin antibody stained the mesenchymal cells of palatal processes and K18 and K19 showed no reaction in either strain of mice. Anti E-cadherin antibody was detected in the medial palatal epithelium of both strains of mice and in all stages of palate development. No differences were observed in E-cadherin and vimentin immunostain in palatal epithelium between the strains. The different expression of some cytokeratins in the embryonic palatal epithelium suggests that these intermediate filament proteins may be involved in different susceptibility to glucocorticoid-induced cleft palate in the mouse. The decreased immunoreaction of cytokeratins observed in the resistant strain would facilitate the disappearance of this molecule during the transformation from an epithelial to a mesenchymal phenotype that takes place during the development of the palate. These results may be related to the loss of cytokeratin expression observed during epithelial-mesenchymal transformation in the embryonic palate.  相似文献   

8.
BACKGROUND: The mycotoxin, secalonic acid D (SAD), a known animal and potential human cleft palate (CP)-inducing agent, is produced by Pencillium oxalicum in corn. SAD selectively inhibits proliferation of murine embryonic palatal mesenchymal (MEPM) cells leading to a reduction in cell numbers. These effects can explain the reduction in shelf size and the resulting CP seen in the offspring of SAD-exposed mice. Ability of SAD to inhibit proliferation as well as to block the progression of cells from G1- to S-phase of the cell-cycle were also shown in the human embryonic palatal mesenchymal (HEPM) cells suggesting the potential CP-inducing effect of SAD in human beings METHODS: Gestation day (GD) 12 mouse embryos and HEPM cells were used to test the hypothesis that the cell-cycle block induced by SAD results from a disruption of stage-specific regulatory components both in vivo and in vitro. The effects of SAD on the activity of various cyclin dependent kinases (CDK) and on the levels of various positive (cyclins and CDK) and negative (CDK inhibitors p15, 16, 18, 19, 21, 27, 57) cell-cycle regulators were assessed by performing kinase assays and immunoblots, respectively. RESULTS: In the murine embryonic palates, SAD specifically inhibited G1/S-phase-specific CDK2 activity, reduced the level of cyclin E and tended to increase the level of the CIP/kip CDK inhibitor, p21. In the HEPM cell cultures, exposure to IC50 of SAD significantly affected all of the above targets. In addition, a reduction in the levels/activity of CDK 4/6, a reduction in the levels of cyclins D1, D2, D3, E, A, and all INK4 family proteins, and an increase in the level of the CIP/kip CDK inhibitor, p57, were also seen. CONCLUSIONS: These results suggest that the S-phase-specific cell-cycle proteins CDK2, cyclin E and possibly p21 are the common targets of SAD in murine palatal shelves in vivo and in human embryonic palatal mesenchymal cells in vitro and may be relevant to the pathogenesis of SAD-induced CP.  相似文献   

9.
Msx-1 gene expression and regulation in embryonic palatal tissue   总被引:2,自引:0,他引:2  
Summary The palatal cleft seen in Msx-1 knock-out mice suggests a role for this gene in normal palate development. The cleft is presumed secondary to tooth and jaw malformations, since in situ hybridization suggests that Msx-1 mRNA is not highly expressed in developing palatal tissue. In this study we demonstrate, by Northern blot analysis, the expression of Msx-1, but not Msx-2, in the developing palate and in primary cultures of murine embryonic palate mesenchymal cells. Furthermore, we propose a role for Msx-1 in retinoic acid-induced cleft palate, since retinoic acid inhibits Msx-1 mRNA expression in palate mesenchymal cells. We also demonstrate that transforming growth factor beta inhibits Msx-1 mRNA expression in palate mesenchymal cells, with retinoic acid and transforming growth factor beta acting synergistically when added simultaneously to these cells. These data suggest a mechanistic interaction between retinoic acid, transforming growth factor beta, and Msx-1 in the etiology of retinoic acid-induced cleft palate.  相似文献   

10.
During embryonic development, facial and palate mesenchymal cells exhibit differential growth rates. Normal palatal growth is regulated in part by hormones and growth factors. Because hormonal responsiveness of some cells correlates with their cell density, we have investigated the relationship between embryonic palate mesenchymal cell population density and their ability to synthesize prostaglandins (PGs) and cyclic AMP. Primary cultures of palate mesenchymal cells exhibited typical lag, log, and stationary phases of growth with a doubling time of 32-34 hrs. The ability of cells to produce PGE2 in response to a calcium ionophore (A23187), an activator of phospholipase A2 (melittin), arachidonic acid, or serum was maximal during the period of early exponential growth. Prostaglandin F2 alpha synthesis in response to A23187 or arachidonic acid showed a similar transient increase also corresponding temporally to the period of early exponential growth. The ability to synthesize PGF2 alpha in response to melittin, however, failed to diminish after early exponential growth. The pattern of cAMP synthesis in response to isoproterenol and PGE1 was different from that seen for induced prostaglandin synthesis. A transient increase in sensitivity to isoproterenol and PGE1 was seen that corresponded temporally to the period of late exponential growth just prior to attainment of confluency. Decreased sensitivity to stimulation of either prostaglandin or cAMP production as the cells became confluent was shown to be a density-dependent phenomenon; confluent cultures that were subcultured to reestablish logarithmic growth exhibited density-dependent hormonal responses identical to those seen in primary cultures. The ability of palate mesenchymal cells to synthesize both prostaglandins and cAMP, thought to be critical for proper palatal development, might thus be related to local differential craniofacial growth rates.  相似文献   

11.
12.
Calmodulin was localized in Saccharomyces cerevisiae by indirect immunofluorescence using affinity-purified polyclonal antibodies. Calmodulin displays an asymmetric distribution that changes during the cell cycle. In unbudded cells, calmodulin concentrates at the presumptive site of bud formation approximately 10 min before bud emergence. In small budded cells, calmodulin accumulates throughout the bud. As the bud grows, calmodulin concentrates at the tip, then disperses, and finally concentrates in the neck region before cytokinesis. An identical staining pattern is observed when wild-type calmodulin is replaced with mutant forms of calmodulin impaired in binding Ca2+. Thus, the localization of calmodulin does not depend on its ability to bind Ca2+ with a high affinity. Double labeling of yeast cells with affinity-purified anti-calmodulin antibody and rhodamine-conjugated phalloidin indicates that calmodulin and actin concentrate in overlapping regions during the cell cycle. Furthermore, disrupting calmodulin function using a temperature-sensitive calmodulin mutant delocalizes actin, and act1-4 mutants contain a random calmodulin distribution. Thus, calmodulin and actin distributions are interdependent. Finally, calmodulin localizes to the shmoo tip in cells treated with alpha-factor. This distribution, at sites of cell growth, implicates calmodulin in polarized cell growth in yeast.  相似文献   

13.
The mechanism by which retinoids (RA) induce cleft palate is not known. During normal palatogenesis, the medial epithelia of opposing palatal shelves cease DNA synthesis, come into contact, adhere, and undergo programmed cell death (PCD). In organ cultures of day 12 embryonic mouse palatal shelves, epidermal growth factor (EGF) blocks PCD, and DNA synthesis continues. In the present study, the effects of trans-RA, 13-cis-RA, EGF, and combinations of EGF and RA on surface morphology, DNA synthesis, and cellular ultrastructure are determined for CD-1 embryonic mouse palatal shelves cultured on day 12 of gestation. DNA synthesis in the medial cells was sustained and PCD was blocked by EGF, trans-RA, and 13-cis-RA. Exposure to trans-RA, but not to 1-cis-RA, induced the medial epithelia to undergo hyperplasia, and addition of EGF enhanced the effect. In the presence of RA, particularly trans-RA, medial epithelial cells acquired nasal cell characteristics, and EGF enhanced this effect. Expansion of the mesenchymal extracellular spaces was blocked by trans-RA and to a lesser degree by 13-cis-RA. The RA-induced alterations in normal epithelial and mesenchymal cell differentiation may be relevant to the etiology of RA-induced cleft palate in vivo.  相似文献   

14.
The present work studied the induction of cleft palate formation in embryos developed from pregnant BALB/c mice treated orally with retinoic acid (RA). Previous studies on mature somatic cell types showed that RA exerted inhibitory effects on inducible nitric oxide synthase (iNOS) production. For the first time, our study has shown that RA actually stimulates significant expression of iNOS at specific zones of the affected embryonic palatal tissues at three consecutive stages, from gestation day 13 (GD13) to day 16 (GD16). Enzymatically, iNOS facilitates intracellular nitric oxide (NO) synthesis from L-arginine. When NO reacts with reactive superoxides it may result in irreparable cell injury. NO was also reported to induce apoptosis in some mammalian cell systems. Based on our findings, we propose that such an increase in NO production might be associated with apoptosis in the embryonic palatal tissues in the RA-treated mice. The detrimental effects of NO resulted in a reduction in proliferating palatal cells and therefore disturbed the normal plasticity of the palatal shelves. With iNOS overexpression, our findings also showed that there was significant concomitant down-regulation in the expressions of Bone Morphogenetic Proteins (BMPs) -2, 4, and 7 with regional variations particularly in the palatal mesenchymal cells for those embryos developing cleft palate. Since specific spatial and temporal expressions of BMPs -2, 4, and 7 are critical during normal palatal morphogenesis, any deficiency in the epithelial-mesenchymal interaction may result in retarding growth at the embryonic palatal shelves. Taken together, our study has demonstrated cleft palate formation in the BALB/c embryos involved overexpression of iNOS and down-regulation of BMPs-2, 4 and 7.  相似文献   

15.
In the present study, the morphological, histochemical, biochemical, and cellular aspects of the pathogenesis of bromodeoxyuridine (BrdU)-induced cleft palate in hamster fetuses were analyzed. Morphological observations indicated that BrdU interferes with the growth of the vertical shelves and thus induces cleft palate. At an ultrastructural level, BrdU-induced changes were first seen in the mesenchymal cells. Eighteen hours after drug administration, the initial alterations were characterized by swelling of the nuclear membrane and the appearance of lysosomes in the mesenchymal cells of the roof of the oronasal cavity. During the next 6 hr, as the palatal primordia developed, lysosomes were also seen in the overlying epithelial cells. The appearance of lysosomal activity, which was verified by acid phosphatase histochemistry, was temporally abnormal and was interpreted as a sublethal response to BrdU treatment. Later the cellular alterations subsided; 48 hr after BrdU treatment, they were absent in both the epithelial and mesenchymal cells of the vertically developing palatal shelves. Subsequently, unlike controls (in which the palatal shelves undergo reorientation and fusion), the BrdU-treated shelves remained vertical until term. Biochemical determination of DNA synthesis indicated that although there was an inhibition of DNA synthesis at the time of appearance of palatal primordia, a catch-up growth during the ensuing 12 hr may have restored the number of cells available for the formation of a vertical palatal shelf. It was suggested that BrdU affected cytodifferentiation in the palatal tissues during the critical phase of early vertical development to induce a cleft palate.  相似文献   

16.
We investigated the effects of calcitonin (CT) and parathyroid hormone (PTH) on the distribution of actin, tubulin, vimentin, and on cell size in cultured chick osteoclasts. In addition, we studied the effects of colchicine on intracellular acidity. Osteoclasts were isolated from the endosteum of 2-3-week chick tibias and were maintained under culture conditions for 5 days. The cells were treated with CT for 30 min or PTH for 60 min and were observed after immunocytochemical staining of cytoskeletal proteins. In untreated cells, actin was found in both a filamentous and a punctate staining pattern, with indented or invaginated regions free of punctate spots. The tubulin distribution in untreated cells was characterized by a pattern of microtubules radiating from the cell center and running parallel to the cell edge. Vimentin staining was usually localized to the perinuclear area. There were no changes in cytoskeletal element distribution or morphology attributable to PTH treatment. Osteoclasts treated with CT were more irregularly shaped, contained more retraction fibers, and were more rounded, with a denser array of cytoskeletal elements in the cell center. In addition, the mean area of the CT-treated cells was significantly less than that of the untreated cells. The actin distribution after CT treatment was still characterized by both a filamentous and a punctate pattern. After CT treatment, vimentin staining appeared more centrally localized than in untreated cells and tubulin staining revealed microtubules which now extended to the retracted cell margin. These results indicate that isolated osteoclasts respond to CT by significant morphological changes which are reflected in the distribution of the major cytoskeletal elements. Disruption of the microtubular system by colchicine treatment also resulted in an initial increase in intracellular acidity, suggesting the involvement of microtubules in the movement of acid-laden vesicles to the exterior.  相似文献   

17.
Cleft palate is one of the most common craniofacial deformities. The fibroblast growth factor (FGF) plays a central role in reciprocal interactions between adjacent tissues during palatal development, and the FGF signaling pathway has been shown to be inhibited by members of the Sprouty protein family. In this study, we report the incidence of cleft palate, possibly caused by failure of palatal shelf elevation, in Sprouty2-deficient (KO) mice. Sprouty2-deficient palates fused completely in palatal organ culture. However, palate mesenchymal cell proliferation estimated by Ki-67 staining was increased in Sprouty2 KO mice compared with WT mice. Sprouty2-null palates expressed higher levels of FGF target genes, such as Msx1, Etv5, and Ptx1 than WT controls. Furthermore, proliferation and the extracellular signal-regulated kinase (Erk) activation in response to FGF was enhanced in palate mesenchymal cells transfected with Sprouty2 small interfering RNA. These results suggest that Sprouty2 regulates palate mesenchymal cell proliferation via FGF signaling and is involved in palatal shelf elevation.  相似文献   

18.
Prostaglandins E2 and F2 alpha (PGE2 and PGF2 alpha) have been shown to cause changes in adenosine 3',5'-cyclic monophosphate (cAMP) levels in a wide variety of tissues. In particular, murine palatal mesenchyme responds to PGE2 stimulation with dose-dependent increases in intracellular cAMP levels. These same mesenchymal cells also synthesize PGE2 and PGF2 alpha. The purpose of this study is to localize PGE and PGF2 alpha in the developing murine palate by using immunohistochemical techniques. Fresh frozen cryostat sections of murine C57BL/6J embryo palates (days 12-14 of gestation) were incubated with anti-PGE or PGF2 alpha monoclonal antibodies. On day 12 of gestation, PGE and PGF2 alpha, identified as 3',3-diaminobenzidine (DAB) reaction products, were localized throughout palatal mesenchyme and epithelium; on day 13 of gestation, reaction product indicative of both PGE and PGF2 alpha was detectable primarily in mesenchyme subjacent to palatal epithelium. Extracellular spaces of the adjacent mesenchyme in the central region of the day 13 palate exhibited less reaction product. Palatal epithelium, particularly the medial edge epithelium, exhibited a diminished amount of reaction product for both prostaglandins on day 13 as compared to the underlying mesenchyme. After formation of a midline epithelial seam between homologous palatal processes on day 14 of gestation, medial edge, oral, and nasal epithelium exhibited light staining for PGE or PGF2 alpha. Palate mesenchymal cells subjacent to the midline seam exhibited a diminished amount of reaction product for both PGE and PGF2 alpha as compared to day 13 of gestation. Overall, the results show local and temporal changes in the distribution of prostaglandins in the developing murine palate.  相似文献   

19.
The disappearance of palatal medial edge epithelium (MEE) after fusion of secondary palatal shelves is often cited as a classical example of embryonic remodeling by programmed cell death. We reinvestigated this phenomenon in 16-day rat embryos, using light and electron microscopy. We confirm reports that the periderm of the two-layered MEE begins to slough after shelves assume horizontal positions. In vitro, peridermal cells are not able to slough and are trapped during the adhesion process. In vivo, however, surface cells shed before the shelves in the anterior palate adhere, allowing junctions to form between opposing basal epithelial cells. Midline seams so formed consist of two layers of basal cells, all of which appear healthy. Even though its cells are dividing, growth of the seam fails to keep pace with palatal growth and it thins to one layer of cells, and then breaks up into small islands. The basal lamina disappears and elongating MEE cells extend filopodia into adjacent connective tissue. Electron micrographs reveal transitional steps in loss of epithelial characteristics and gain of fibroblast-like features by transforming MEE cells. One such feature, observed with the aid of immunofluorescence, is the turn of the mesenchymal cytoskeletal protein, vimentin. No cell death or macrophages are observed after adhesion and thinning over most of the palate. These data indicate that MEE is an ectoderm that retains the ability to transform into mesenchymal cells. Epithelial-mesenchymal transformation may be expressed in other embryonic remodelings (R.L. Trelstad, A. Hayashi, K. Hayashi, and P.K. Donahue, 1982, Dev. Biol. 92, 27), resulting in heretofore unsuspected conservation of embryonic cell populations.  相似文献   

20.
Although considered a pericellular matrix component, hyaluronan was recently localized in the cytoplasm and nucleus of proliferating cells, supporting earlier reports that hyaluronan was present in locations such as the nucleus, rough endoplasmic reticulum, and caveolae. This suggests that it can play roles both inside and outside the cell. Hyaluronan metabolism is coupled to mitosis and cell motility, but it is not clear if intracellular hyaluronan associates with cytoskeletal elements or plays a structural role. Here we report the distribution of intracellular hyaluronan, microtubules, and RHAMM in arterial smooth muscle cells in vitro. The general distribution of intracellular hyaluronan more closely resembled microtubule staining rather than actin filaments. Hyaluronan was abundant in the perinuclear microtubule-rich areas and was present in lysosomes, other vesicular structures, and the nucleolus. Partially fragmented fluorescein-hyaluronan was preferentially translocated to the perinuclear area compared with high-molecular-weight hyaluronan. In the mitotic spindle, hyaluronan colocalized with tubulin and with the hyaladherin RHAMM, a cell surface receptor and microtubule-associated protein that interacts with dynein and maintains spindle pole stability. Internalized fluorescein-hyaluronan was also seen at the spindle. Following telophase, an abundance of hyaluronan near the midbody microtubules at the cleavage furrow was also noted. In permeabilized cells, fluorescein-hyaluronan bound to RHAMM-associated microtubules. These findings suggest novel functions for hyaluronan in cellular physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号