首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several octopine strains of Agrobacterium tumefaciens were tested for Ti plasmid (pTi) transfer after induction by 400 micrograms of octopine per ml for 24 h. The strains could be divided into two groups, transfer efficient (Trae) and transfer inefficient (Traie); the respective rates of transfer were 0.77 x 10(-2) to 1.14 x 10(-2) and 0.33 x 10(-6) to 9.8 x 10(-6) plasmid transconjugant per donor cell. Transfer efficiencies of Traie strains were greatly increased when the time of induction was 72 h. A diffusible conjugation factor (CF) that can enhance conjugal transfer of pTi in A. tumefaciens was discovered when both Trae and Traie donor strains were induced in the same plate. The evidence indicates that CF is a key factor affecting transfer efficiency of pTi but is not sufficient by itself to induce transfer. Trac mutants can produce CF constitutively, and Trae strains can produce it after induction by low octopine concentrations. The transfer efficiency of Traie strains was greatly increased by adding CF to the induction medium. The thermosensitive strain B6S, which normally cannot conjugate at temperatures above 30 degrees C, could transfer pTi efficiently at 32 and 34 degrees C in the presence of CF. Production of CF is dependent on the presence of pTi but appears to be common for different opine strains; it was first detected in octopine strains, but nopaline strains also produced the same or a similar compound. CF is very biologically active, affecting donor but not recipient bacterial cells, but CF does not promote aggregation. Data suggest that CF might be an activator or derepressor in the conjugation system of A. tumefaciens. CF is a dialyzable small molecule and is resistant to DNase, RNase, protease, and heating to 100 degrees C for 10 min, but autoclaving (121 degrees C for 15 min) and alkaline treatment removed all activity.  相似文献   

2.
Previous studies have shown that Agrobacterium tumefaciens causes tumors on plants only at temperatures below 32 degrees C, and virulence gene expression is specifically inhibited at temperatures above 32 degrees C. We show here that this effect persists even when the virA and virG loci are expressed under the control of a lac promoter whose activity is temperature independent. This finding suggests that one or more steps in the signal transduction process mediated by the VirA and VirG proteins are temperature sensitive. Both the autophosphorylation of VirA and the subsequent transfer of phosphate to VirG are shown to be sensitive to high temperatures (> 32 degrees C), and this correlates with the reduced vir gene expression observed at these temperatures. At temperatures of 32 degrees C and higher, the VirA molecule undergoes a reversible inactivation while the VirG molecule is not affected. vir gene induction is temperature sensitive in an acetosyringone-independent virA mutant background but not in a virG constitutive mutant which is virA and acetosyringone independent. These observations all support the notion that the VirA protein is responsible for the thermosensitivity of vir gene expression. However, an Agrobacterium strain containing a constitutive virG locus still cannot cause tumors on Kalanchoe plants at 32 degrees C. This strain induces normal-size tumors at temperatures up to 30 degrees C, whereas the wild-type Agrobacterium strain produces almost no tumors at 30 degrees C. These results suggest that at temperatures above 32 degrees C, the plant becomes more resistant to infection by A. tumefaciens and/or functions of some other vir gene products are lost in spite of their normal levels of expression.  相似文献   

3.
Plasmid conjugation systems are composed of two components, the DNA transfer and replication system, or Dtr, and the mating pair formation system, or Mpf. During conjugal transfer an essential factor, called the coupling protein, is thought to interface the Dtr, in the form of the relaxosome, with the Mpf, in the form of the mating bridge. These proteins, such as TraG from the IncP1 plasmid RP4 (TraG(RP4)) and TraG and VirD4 from the conjugal transfer and T-DNA transfer systems of Ti plasmids, are believed to dictate specificity of the interactions that can occur between different Dtr and Mpf components. The Ti plasmids of Agrobacterium tumefaciens do not mobilize vectors containing the oriT of RP4, but these IncP1 plasmid derivatives lack the trans-acting Dtr functions and TraG(RP4). A. tumefaciens donors transferred a chimeric plasmid that contains the oriT and Dtr genes of RP4 and the Mpf genes of pTiC58, indicating that the Ti plasmid mating bridge can interact with the RP4 relaxosome. However, the Ti plasmid did not mobilize transfer from an IncQ relaxosome. The Ti plasmid did mobilize such plasmids if TraG(RP4) was expressed in the donors. Mutations in traG(RP4) with defined effects on the RP4 transfer system exhibited similar phenotypes for Ti plasmid-mediated mobilization of the IncQ vector. When provided with VirD4, the tra system of pTiC58 mobilized plasmids from the IncQ relaxosome. However, neither TraG(RP4) nor VirD4 restored transfer to a traG mutant of the Ti plasmid. VirD4 also failed to complement a traG(RP4) mutant for transfer from the RP4 relaxosome or for RP4-mediated mobilization from the IncQ relaxosome. TraG(RP4)-mediated mobilization of the IncQ plasmid by pTiC58 did not inhibit Ti plasmid transfer, suggesting that the relaxosomes of the two plasmids do not compete for the same mating bridge. We conclude that TraG(RP4) and VirD4 couples the IncQ but not the Ti plasmid relaxosome to the Ti plasmid mating bridge. However, VirD4 cannot couple the IncP1 or the IncQ relaxosome to the RP4 mating bridge. These results support a model in which the coupling proteins specify the interactions between Dtr and Mpf components of mating systems.  相似文献   

4.
Agrobacterium tumefaciens is generally used to achieve genetic transformation of plants. The temperatures that have been used for infection with Agrobacterium in published transformation protocols differ widely and, to our knowledge, the effect of temperature on the efficiency of T-DNA transfer to plants has not been investigated systematically. Agrobacterium tumefaciens strains harbouring a binary vector with the β-glucuronidase ( uidA ) gene and either a nopaline-, an octopine- or an agropine/ succinamopine-type helper plasmid were tested in two transformation systems at temperatures between 15 and 29°C. One system involved cocultivation of Phaseolus acutifolius callus whereas in the other system Nicotiana tabacum leaves were vacuum-infiltrated. In both situations, irrespective of the type of helper plasmid, the levels of transient uidA expression decreased notably when the temperature was raised above 22°C. Expression was low at 27°C and undetectable at 29°C. We anticipate that the efficiency of many published transformation protocols can be improved by reconsidering the factor of temperature.  相似文献   

5.
During crown gall tumorigenesis, part of the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid, the T-DNA, integrates into plant DNA. Direct repeats define the left and right ends of the T-DNA, but tumorigenesis requires only the right-hand repeat. Virulence (vir) genes act in trans to mobilize the T-DNA into plant cells. Transfer of T-DNA begins when the VirD endonuclease cleaves within the right-hand border repeat. Although the T-DNA right-border repeat promotes T-DNA transmission best in its normal orientation, an inverted right border exhibits reduced but significant activity. Two models may account for this diminished tumorigenesis. The right border may function bidirectionally, with strong activity only in its wild-type orientation, or it may promote T-DNA transfer in a unidirectional manner such that, with an inverted right border, transfer proceeds around the entire Ti plasmid before reaching the T-DNA. To determine whether a substantial portion of the Ti plasmid is transferred to plant cells, as predicted by the unidirectional-transfer hypothesis, we examined T-DNAs in tumors induced by strains containing a Ti plasmid with a right border inverted with respect to the T-DNA oncogenes. These tumors contained extremely long T-DNAs corresponding to most or all of the Ti plasmid. To test whether the right border can function bidirectionally, we inserted T-DNAs with either a properly oriented or an inverted right border into a specific site in the A. tumefaciens chromosome. A border situated to transfer the oncogenes first directed T-DNA transfer even from the bacterial chromosome, whereas a border in the opposite (inverted) orientation did not transfer the oncogenes to plant cells. Our results indicate that the right-border repeat functions in a unidirectional manner.  相似文献   

6.
That gene transfer to plant cells is a temperature-sensitive process has been known for more than 50 years. Previous work indicated that this sensitivity results from the inability to assemble a functional T pilus required for T-DNA and protein transfer to recipient cells. The studies reported here extend these observations and more clearly define the molecular basis of this assembly and transfer defect. T-pilus assembly and virulence protein accumulation were monitored in Agrobacterium tumefaciens strain C58 at different temperatures ranging from 20 degrees C to growth-inhibitory 37 degrees C. Incubation at 28 degrees C but not at 26 degrees C strongly inhibited extracellular assembly of the major T-pilus component VirB2 as well as of pilus-associated protein VirB5, and the highest amounts of T pili were detected at 20 degrees C. Analysis of temperature effects on the cell-bound virulence machinery revealed three classes of virulence proteins. Whereas class I proteins (VirB2, VirB7, VirB9, and VirB10) were readily detected at 28 degrees C, class II proteins (VirB1, VirB4, VirB5, VirB6, VirB8, VirB11, VirD2, and VirE2) were only detected after cell growth below 26 degrees C. Significant levels of class III proteins (VirB3 and VirD4) were only detected at 20 degrees C and not at higher temperatures. Shift of virulence-induced agrobacteria from 20 to 28 or 37 degrees C had no immediate effect on cell-bound T pili or on stability of most virulence proteins. However, the temperature shift caused a rapid decrease in the amount of cell-bound VirB3 and VirD4, and VirB4 and VirB11 levels decreased next. To assess whether destabilization of virulence proteins constitutes a general phenomenon, levels of virulence proteins and of extracellular T pili were monitored in different A. tumefaciens and Agrobacterium vitis strains grown at 20 and 28 degrees C. Levels of many virulence proteins were strongly reduced at 28 degrees C compared to 20 degrees C, and T-pilus assembly did not occur in all strains except "temperature-resistant" Ach5 and Chry5. Virulence protein levels correlated well with bacterial virulence at elevated temperature, suggesting that degradation of a limited set of virulence proteins accounts for the temperature sensitivity of gene transfer to plants.  相似文献   

7.
8.
Agrobacterium tumefaciens uses a type IV secretion (T4S) system composed of VirB proteins and VirD4 to deliver oncogenic DNA (T-DNA) and protein substrates to susceptible plant cells during the course of infection. Here, by use of the Transfer DNA ImmunoPrecipitation (TrIP) assay, we present evidence that the mobilizable plasmid RSF1010 (IncQ) follows the same translocation pathway through the VirB/D4 secretion channel as described previously for the T-DNA. The RSF1010 transfer intermediate and the Osa protein of plasmid pSa (IncW), related in sequence to the FiwA fertility inhibition factor of plasmid RP1 (IncPalpha), render A. tumefaciens host cells nearly avirulent. By use of a semi-quantitative TrIP assay, we show that both of these 'oncogenic suppressor factors' inhibit binding of T-DNA to the VirD4 substrate receptor. Both factors also inhibit binding of the VirE2 protein substrate to VirD4, as shown by coimmunoprecipitation and bimolecular fluorescence complementation assays. Osa fused to the green fluorescent protein (GFP) also blocks T-DNA and VirE2 binding to VirD4, and Osa-GFP colocalizes with VirD4 at A. tumefaciens cell poles. RSF1010 and Osa interfere specifically with VirD4 receptor function and not with VirB channel activity, as shown by (i) TrIP and (ii) a genetic screen for effects of the oncogenic suppressors on pCloDF13 translocation through a chimeric secretion channel composed of the pCloDF13-encoded MobB receptor and VirB channel subunits. Our findings establish that a competing plasmid substrate and a plasmid fertility inhibition factor act on a common target, the T4S receptor, to inhibit docking of DNA and protein substrates to the translocation apparatus.  相似文献   

9.
Transformation of Nicotiana tabacum leaf explants was attempted with Escherichia coli as a DNA donor either alone or in combination with Agrobacterium tumefaciens. We constructed E. coli donor strains harboring either the promiscuous IncP-type or IncN-type conjugal transfer system and second plasmids containing the respective origins of transfer and plant-selectable markers. Neither of these conjugation systems was able to stably transform plant cells at detectable levels, even when VirE2 was expressed in the donor cells. However, when an E. coli strain expressing the IncN-type conjugation system was coinoculated with a disarmed A. tumefaciens strain, plant tumors arose at high frequencies. This was caused by a two-step process in which the IncN transfer system mobilized the entire shuttle plasmid from E. coli to the disarmed A. tumefaciens strain, which in turn processed the T-DNA and transferred it to recipient plant cells. The mobilizable plasmid does not require a broad-host-range replication origin for this process to occur, thus reducing its size and genetic complexity. Tumorigenesis efficiency was further enhanced by incubation of the bacterial strains on medium optimized for bacterial conjugation prior to inoculation of leaf explants. These techniques circumvent the need to construct A. tumefaciens strains containing binary vectors and could simplify the creation of transgenic plants.  相似文献   

10.
Antibiotic resistance plasmids were exogenously isolated in biparental matings with piggery manure bacteria as plasmid donors in Escherichia coli CV601 and Pseudomonas putida UWC1 recipients. Surprisingly, IncQ-like plasmids were detected by dot blot hybridization with an IncQ oriV probe in several P. putida UWC1 transconjugants. The capture of IncQ-like plasmids in biparental matings indicates not only their high prevalence in manure slurries but also the presence of efficiently mobilizing plasmids. In order to elucidate unusual hybridization data (weak or no hybridization with IncQ repB or IncQ oriT probes) four IncQ-like plasmids (pIE1107, pIE1115, pIE1120, and pIE1130), each representing a different EcoRV restriction pattern, were selected for a more thorough plasmid characterization after transfer into E. coli K-12 strain DH5alpha by transformation. The characterization of the IncQ-like plasmids revealed an astonishingly high diversity with regard to phenotypic and genotypic properties. Four different multiple antibiotic resistance patterns were found to be conferred by the IncQ-like plasmids. The plasmids could be mobilized by the RP4 derivative pTH10 into Acinetobacter sp., Ralstonia eutropha, Agrobacterium tumefaciens, and P. putida, but they showed diverse patterns of stability under nonselective growth conditions in different host backgrounds. Incompatibility testing and PCR analysis clearly revealed at least two different types of IncQ-like plasmids. PCR amplification of total DNA extracted directly from different manure samples and other environments indicated the prevalence of both types of IncQ plasmids in manure, sewage, and farm soil. These findings suggest that IncQ plasmids play an important role in disseminating antibiotic resistance genes.  相似文献   

11.
We have screened strains of Agrobacterium tumefaciens for spontaneous mutants showing constitutive transfer of the nopaline Ti plasmid pTiC58 during conjugation. The Ti plasmid derivatives obtained could be transferred not only to A. tumefaciens but also to E. coli cells. The Ti plasmid cannot survive as a freely replicating plasmid in E. coli, but it can occasionally integrate into the E. coli chromosome. However, insertion in tandem of plasmids carrying fd replication origins (pfd plasmids) into the T-DNA provides an indicator for all transfer events into E. coli cells, providing fd gene 2 protein is present in these cells. This viral protein causes the excision of one copy of the pfd plasmid and allows its propagation in the host cell. By using this specially designed Ti plasmid, which was also made constitutive in transfer functions, we found plasmid exchange among A. tumefaciens strains and between A. tumefaciens and E. coli cells to be equally efficient. A Ti plasmid with repressed transfer functions was transferred to E. coli with a rate similar to the low frequency at which it was transferred to A. tumefaciens. The expression of transfer functions of plasmid RP4 either in A. tumefaciens or in E. coli did not increase the transfer of the Ti plasmid into E. coli cells, nor did the addition of acetosyringone, an inducer of T-DNA transfer to plant cells. The results show that A. tumefaciens can transfer the Ti plasmid to E. coli with the same efficiency as within its own species. Conjugational transmission of extrachromosomal DNA like the narrow-host-range Ti plasmid may often not only occur among partners allowing propagation of the plasmid, but also on a 'try-all' basis including hosts which do not replicate the transferred DNA.  相似文献   

12.
Genetic analysis of integration mediated by single T-DNA borders.   总被引:6,自引:2,他引:4       下载免费PDF全文
Transformation of plant cells by the T-DNA of the Ti plasmid of Agrobacterium tumefaciens depends in part upon a sequence adjacent to the right T-DNA end. When this sequence is absent, the T-DNA is almost avirulent; when it is present, DNA between it and the left T-DNA border region becomes integrated in plants. To investigate further this process of DNA transfer and integration, we introduced the right border region and the nopaline synthase (nos) gene of plasmid pTiC58 into a variety of new positions around Ti plasmids. The border region functioned when separated from the remainder of the T-DNA by almost 50 kilobases. It also worked when placed outside of the T-DNA region where there were no known left-border sequences with which to interact. Indeed, the nos gene could be transferred to plants even when no other Ti plasmid sequences were present on the same plasmid. These results may indicate that the sequence requirements for the left borders are not as stringent as those for the right borders. In addition, mutants with an extra copy of the right border region within their T-DNA were found to transfer or integrate only parts of the bacterial T-DNA region. It is possible that abnormally placed T-DNA borders interfere with the normal process of DNA transfer, integration, or both.  相似文献   

13.
Candida glycerinogenes WL2002-5 has a modest sugar tolerance and an extremely high glycerol productivity. Agrobacterium tumefaciens can transfer part of its Ti plasmid, the T-DNA, into the nuclear genome of a wide variety of host cells. In this study, we constructed the plasmid pZR and transferred it into A. tumefaciens LBA4404 to form the strain LBA4404-ZR. LBA4404-ZR was cocultivated with C. glycerologenesis, and putative transformants were identified by selection for zeocin resistance. Polymerase chain reaction and Southern blot analysis confirmed that the gene zeocin was integrated into the genome of engineered C. glycerologenesis. Optimization of the transformation condition was performed in darkness at 25 degrees C on induction medium for 24 h by cocultivation of C. glycerinogenes and LBA4404-ZR with a cell ratio of 1:500-1000. The transformation efficiency reached 2 transformants per 10(4) C. glycerologenesis cells. Our results demonstrated that A. tumefaciens-mediated transformation can be used for C. glycerinogenes. This transformation system can provide the basis for research of C. glycerologenesis in the future.  相似文献   

14.
Agrobacterium tumefaciens transfers part of its tumour-inducing (Ti) plasmid, the transferred or T-DNA, to plants during tumourigenesis. This represents the only example of naturally occurring trans-kingdom transfer of genetic material. Here we report that A.tumefaciens can transfer its T-DNA not only to plant cells, but also to another eukaryote, namely the yeast Saccharomyces cerevisiae. The Ti plasmid virulence (vir) genes that mediate T-DNA transfer to plants were found to be essential for transfer to yeast as well. Transgenic S.cerevisiae strains were analysed for their T-DNA content. Results showed that T-DNA circles were formed in yeast with precise fusions between the left and right borders. Such T-DNA circles were stably maintained by the yeast if the replicator from the yeast 2 mu plasmid was present in the T-DNA. Integration of T-DNA in the S.cerevisiae genome was found to occur via homologous recombination. This contrasts with integration in the plant genome, where T-DNA integrates preferentially via illegitimate recombination. Our results thus suggest that the process of T-DNA integration is predominantly determined by host factors.  相似文献   

15.
In an attempt to elucidate the transfer and integration mechanism of Agrobacterium DNA upon crown gall induction, we translocated a borderless T-DNA to different sites of the C58 Ti plasmid. As a result of the physical linkage of the T-DNA onc genes with other Ti plasmid functions, the concerned strain retained tumor-inducing capacity. However, when the borderless T-DNA is separated on an independent replicon while all other pTi functions are provided in trans, the strain can no longer induce tumors on plants. We provide evidence that the right T-DNA border region harbors one or more in cis active functions essential in the transfer and/or stabilization of the T-DNA into plant cells. The strains used in these experiments allowed us to conclude that some function(s) of the Ti plasmid can induce plant cell proliferations independently of the T-DNA transformation event. The results described here indicate that other Ti plasmid sequences than solely the T-region can be transferred to plant cells.  相似文献   

16.
When coresident with the Ti (tumor-inducing) plasmid, the 21-kDa product of the osa gene of the plasmid pSa can suppress crown gall tumorigenesis incited by Agrobacterium tumefaciens. Neither T-DNA processing nor vir (virulence) gene induction is affected by the presence of osa in the bacterium. We used Arabidopsis thaliana root segments and tobacco leaf discs to demonstrate that Osa inhibits A. tumefaciens from transforming these plants to the stable phenotypes of tumorigenesis, kanamycin resistance, and stable β-glucuronidase (GUS) expression. When A. tumefaciens contained osa, the lack of expression of transient GUS activity in infected plant tissues, as well as the lack of systemic viral symptoms following agroinfection of Nicotiana benthamiana by tomato mottle virus, suggested that oncogenic suppression by Osa occurs before T-DNA enters the plant nucleus. The extracellular complementation of an A. tumefaciens virE2 mutant (the T-DNA donor strain) by an A. tumefaciens strain lacking T-DNA but containing a wild-type virE2 gene (the VirE2 donor strain) was blocked when osa was present in the VirE2 donor strain, but not when osa was present in the T-DNA donor strain. These data indicate that osa inhibits VirE2 protein, but not T-DNA export from A. tumefaciens. These data further suggest that VirE2 protein and T-DNA are separately exported from the bacterium. The successful infection of Datura stramonium plants and leaf discs of transgenic tobacco plants expressing VirE2 protein by an A. tumefaciens virE2 mutant carrying osa confirmed that oncogenic suppression by osa does not occur by blocking T-DNA transfer. Overexpression of virB9, virB10, and virB11 in A. tumefaciens did not overcome oncogenic suppression by osa. The finding that the expression of the osa gene by itself, rather than the formation of a conjugal intermediate with pSa, blocks transformation suggests that the mechanism of oncogenic suppression by osa may differ from that of the IncQ plasmid RSF1010.  相似文献   

17.
Agrobacterium tumefaciens transfers the T-DNA portion of its Ti plasmid to the nuclear genome of plant cells. Upon cocultivation of A. tumefaciens A348 with regenerating tobacco leaf protoplasts, six distinct single-stranded T-DNA molecules (T strands) were generated in addition to double-stranded T-DNA border cleavages which we have previously reported (K. Veluthambi, R.K. Jayaswal, and S.B. Gelvin, Proc. Natl. Acad. Sci. USA 84:1881-1885, 1987). The T region of an octopine-type Ti plasmid has four border repeats delimiting three T-DNA regions defined as T left (TL), T center (TC), and T right (TR). The six T strands generated upon induction corresponded to the TL, TC, TR, TL + TC, TC + TR, and TL + TC + TR regions, suggesting that the initiation and termination of T-strand synthesis can occur at each of the four borders. Most TL + TC + TR T-strand molecules corresponded to the top T-DNA strand, whereas the other five T strands corresponded to the bottom T-DNA strand. Generation of T strands required the virA, virG, and virD operons. Extra copies of vir genes, harbored on cosmids within derivatives of A. tumefaciens A348, enhanced production of T strands. The presence of right and left border repeats in their native orientation is important for the generation of full-length T strands. When a right border repeat was placed in the opposite orientation, single-stranded T-DNA molecules that corresponded to the top strand were generated. Deletion of overdrive, a sequence that flanks right border repeats and functions as a T-DNA transmission enhancer, reduced the level of T-strand generation. Induction of A. tumefaciens cells by regenerating tobacco protoplasts increased the copy number of the Ti plasmid relative to the bacterial chromosome.  相似文献   

18.
The transfer of DNA from Agrobacterium tumefaciens into a plant cell requires the activities of several virulence (vir) genes that reside on the tumor-inducing (Ti) plasmid. The putative transferred intermediate is a single-stranded DNA (T strand), covalently attached to the VirD2 protein and coated with the single-stranded DNA-binding protein, VirE2. The movement of this intermediate out of Agrobacterium cells and into plant cells requires the expression of the virB operon, which encodes 11 proteins that localize to the membrane system. Our earlier studies showed that the IncQ broad-host-range plasmid RSF1010, which can be transferred from Agrobacterium cells to plant cells, inhibits the transfer of T-DNA from pTiA6 in a fashion that is reversed by overexpression of virB9, virB10, and virB11. Here, we examined the specificity of this inhibition by following the transfer of other T-DNA molecules. By using extracellular complementation assays, the effects of RSF1010 on movement of either VirE2 or an uncoated T strand from A. tumefaciens were also monitored. The RSF1010 derivative plasmid pJW323 drastically inhibited the capacity of strains to serve as VirE2 donors but only partially inhibited T-strand transfer from virE2 mutants. Further, we show that all the virB genes tested are required for the movement of VirE2 and the uncoated T strand as assayed by extracellular complementation. Our results are consistent with a model in which the RSF1010 plasmid, or intermediates from it, compete with the T strand and VirE2 for a common transport site.  相似文献   

19.
The T-DNA of octopine Ti plasmid of Agrobacterium tumefaciens contains TL- and TR-DNA regions each bounded by 25 base-pair-repeats (designated A, B, C and D from left to right). Short DNA segments containing the borders B, C and D were found to function as promoter when placed in the rightward orientation upstream of promoter-less lacZ. Promoter consensus sequence of Agrobacterium were found within these border repeats and in their adjacent regions. The expression of lacZ was low when the segments contained the overdrive, a sequence known to enhance T-DNA transfer. Simultaneous overproduction of VirD1 and D2 proteins, endonuclease acting on the border repeats, interfered with the promoter functions of the border segments. In spite of their activity under these conditions, the border regions do not seem to be involved in the gene expression, because they are not followed by appropriate open reading frames. We propose that RNA polymerase of Agrobacterium competes with VirD products for T-DNA borders and thereby affects the transfer of T-DNA.  相似文献   

20.
The VirB11 ATPase is a subunit of the Agrobacterium tumefaciens transfer DNA (T-DNA) transfer system, a type IV secretion pathway required for delivery of T-DNA and effector proteins to plant cells during infection. In this study, we examined the effects of virB11 mutations on VirB protein accumulation, T-pilus production, and substrate translocation. Strains synthesizing VirB11 derivatives with mutations in the nucleoside triphosphate binding site (Walker A motif) accumulated wild-type levels of VirB proteins but failed to produce the T-pilus or export substrates at detectable levels, establishing the importance of nucleoside triphosphate binding or hydrolysis for T-pilus biogenesis. Similar findings were obtained for VirB4, a second ATPase of this transfer system. Analyses of strains expressing virB11 dominant alleles in general showed that T-pilus production is correlated with substrate translocation. Notably, strains expressing dominant alleles previously designated class II (dominant and nonfunctional) neither transferred T-DNA nor elaborated detectable levels of the T-pilus. By contrast, strains expressing most dominant alleles designated class III (dominant and functional) efficiently translocated T-DNA and synthesized abundant levels of T pilus. We did, however, identify four types of virB11 mutations or strain genotypes that selectively disrupted substrate translocation or T-pilus production: (i) virB11/virB11* merodiploid strains expressing all class II and III dominant alleles were strongly suppressed for T-DNA translocation but efficiently mobilized an IncQ plasmid to agrobacterial recipients and also elaborated abundant levels of T pilus; (ii) strains synthesizing two class III mutant proteins, VirB11, V258G and VirB11.I265T, efficiently transferred both DNA substrates but produced low and undetectable levels of T pilus, respectively; (iii) a strain synthesizing the class II mutant protein VirB11.I103T/M301L efficiently exported VirE2 but produced undetectable levels of T pilus; (iv) strains synthesizing three VirB11 derivatives with a four-residue (HMVD) insertion (L75.i4, C168.i4, and L302.i4) neither transferred T-DNA nor produced detectable levels of T pilus but efficiently transferred VirE2 to plants and the IncQ plasmid to agrobacterial recipient cells. Together, our findings support a model in which the VirB11 ATPase contributes at two levels to type IV secretion, T-pilus morphogenesis, and substrate selection. Furthermore, the contributions of VirB11 to machine assembly and substrate transfer can be uncoupled by mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号