首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effects of varying the pH of the cocultivation medium, additons of vir-inducing phenolic compounds and the strains of wild-type agrobacteria on transformation rates of a number of different varieties of Antirrhinum majus were studied. In general, optimal transformation was found with strains C58 or A281 and was favoured by low pH and the inclusion of acetosyringone in the co-cultivation medium. However, maximal transformation of the least susceptible variety was achieved at high pH and in the presence of syringaldehyde. This demonstrates the need for the optimization of a wide range of culture conditions when working with new genotypes and offers a rational approach towards the development of Agrobacterium-mediated transformation of new species or varieties.Abbreviations BAP 6-benzylaminopurine - MS Murashige and Skoog medium (Murashige and Skoog, 1962) - NOA naphthoxyacetic acid  相似文献   

2.
Transfer and integration of a defined region (T-DNA) of the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens is essential for tumor formation. We used a physical assay to study structural changes induced in Agrobacterium T-DNA by cocultivation with plant cells. We show that nicks are introduced at unique, identical locations in each of the 24-base-pair imperfect direct repeats which flank the T-DNA and present evidence that a linear, single-stranded molecule is generated. We propose that these changes result from processing of the T-DNA for transfer and that they occur by a mechanism similar to DNA processing during conjugative DNA transfer between bacteria.  相似文献   

3.
In Agrobacterium tumefaciens, a cis-active 24-base-pair sequence adjacent to the right border of the T-DNA, called overdrive, stimulates tumor formation by increasing the level of T-DNA processing. Recent results from our laboratory have suggested that the virC operon which enhances T-DNA processing probably does so because the VirC1 protein interacts with overdrive (N. Toro, A. Datta, M. Yanofsky, and E. W. Nester, Proc. Natl. Acad. Sci. USA 85:8558-8562, 1988). We report here the purification of the VirC1 protein from cells of Escherichia coli harboring a plasmid containing the coding sequences of the virC locus of the octopine Ti plasmid. By gel mobility shift and DNase I footprinting assays, we showed that this purified virC1 gene product binds to overdrive but not to the right border of T-DNA.  相似文献   

4.
Different factors involved in the early steps of the T-DNA transfer process were studied by using a -glucuronidase gene (gusA) as a reporter in Nicotiana glauca leaf disc transformation experiments. The levels of transient expression of the gusA gene in leaf discs infected with several strains or vir mutants correlated well with their virulence phenotype, except for virC mutants. The rate of T-DNA transfer was shown to be stimulated in the case of non-oncogenic strains by the co-transfer of small amounts of oncogenic genes. It was found that the location of the T-DNA in the Agrobacterium genome affected the T-DNA transfer rate especially in virC mutants. The virC mutants transferred the gusA-containing T-DNA located on a binary vector more efficiently than the oncogenic T-DNA of the Ti plasmid. Although wild-type strains induced high levels of gusA expression early after infection, the gusA expression appeared to be lost late after infection in the infected leaf discs. In contrast, in leaf discs infected by virC mutants the level of gusA expression increased steadily in time. A model explaining these results is presented.  相似文献   

5.
Agrobacterium tumefaciens-mediated genetic transformation involves transfer of a single-stranded T-DNA molecule (T strand) into the host cell, followed by its integration into the plant genome. The molecular mechanism of T-DNA integration, the culmination point of the entire transformation process, remains largely obscure. Here, we studied the roles of double-stranded breaks (DSBs) and double-stranded T-DNA intermediates in the integration process. We produced transgenic tobacco (Nicotiana tabacum) plants carrying an I-SceI endonuclease recognition site that, upon cleavage with I-SceI, generates DSB. Then, we retransformed these plants with two A. tumefaciens strains: one that allows transient expression of I-SceI to induce DSB and the other that carries a T-DNA with the I-SceI site and an integration selection marker. Integration of this latter T-DNA as full-length and I-SceI-digested molecules into the DSB site was analyzed in the resulting plants. Of 620 transgenic plants, 16 plants integrated T-DNA into DSB at their I-SceI sites; because DSB induces DNA repair, these results suggest that the invading T-DNA molecules target to the DNA repair sites for integration. Furthermore, of these 16 plants, seven plants incorporated T-DNA digested with I-SceI, which cleaves only double-stranded DNA. Thus, T-strand molecules can be converted into double-stranded intermediates before their integration into the DSB sites within the host cell genome.  相似文献   

6.
The nucleotide sequence of the tmr locus from the nopaline-type pTi T37 plasmid of Agrobacterium tumefaciens was determined. Examination of this sequence allowed us to identify an open reading frame of 720 nucleotides capable of encoding a protein with a derived molecular weight of 27025 d. Comparison of the pTi T37 tmr sequence with the published sequence of the pTi Ach5 tmr locus shows over 88% homology in the 240 bases 5' to the translational initiation codon and over 91% homology in the coding sequences. The 3' nontranslated regions show less than 50% homology as expected for the 3' regions of divergent related genes. The possible significance of areas of conserved sequences, particularly in the 5' regulatory regions, is discussed.  相似文献   

7.
The intact T-region of the B6Ti plasmid of Agrobacterium tumefaciens was stepwise cloned into a site in transposon Tn3. In this way a suitable vehicle (Tn1882) was obtained for translocating the T-region to different replicons, i.e., to other plasmids or the chromosome. The IncP plasmid R772::Tn1882 conferred tumorigenicity on Agrobacterium if the virulence genes were provided in trans in the same cell. This result showed that the T-region present on Tn1882 was transferred efficiently to plant cells. Normal tumor development also occurred if the T-region was placed in the chromosome of A. tumefaciens and an R' plasmid was present carrying virA–E or virA–F. We conclude that the plasmid location of the T-region is not a prerequisite for transfer to the plant cell. The apparently normal delivery of the T-DNA from a bacterial chromosomal location supports a model involving a processing step within Agrobacterium effecting transfer of the T-region as a separate entity.  相似文献   

8.
We analyzed 29 T-DNA inserts in transgenicArabidopsis thaliana plants for the junction of the right border sequences and the flanking plant DNA. DNA sequencing showed that in most lines the right border sequences transferred had been preserved during integration, corroborating literature data. Surprisingly, in four independent transgenic lines a complete right border repeat was present followed by binary vector sequences. Cloning of two of these T-DNA inserts by plasmid rescue showed that in these lines the transferred DNA consisted of the complete binary vector sequences in addition to the T-region. On the basis of the structure of the transferred DNA we propose that in these lines T-DNA transfer started at the left-border repeat, continued through the vector part, passed the right border repeat, and ended only after reaching again this left-border repeat.  相似文献   

9.
In octopine-type A. tumefaciens R10, transfer of chromosomal arginine degradation genes (arc genes) was observed under conditions in which Ti plasmid transfer took place. However, transconjugants that had acquired the arc genes but not the Ti plasmid were recovered. During this process, several other chromosomal genes, such as genes encoding phage resistances or genes complementing a galactose utilization mutation or a glycine-serine auxotrophy, were transferred from strain R10 to the recipient.  相似文献   

10.
Although several techniques are available for transferring the Ti plasmids from one strain of agrobacterium tumefaciens to another, there are no reproducible methods for analysis of chromosomal markers in this phytopathogen. The R plasmid, R68.45, is known to show chromosomal mobilizing ability in several bacterial genera including the closely related Rhizobia. R68.45 was transferred into the prototrophic A. tumefaciens strain 15955. Ten kanamycin-resistant transconjugant clones were tested for chromosomal mobilizing ability by mating with strain SA10, rifampin- and streptomycin-resistant histidine auxotroph of strain 15955. Of the 10 donor clones, 2 showed high chromosomal mobilizing ability. Between 1,000 and 2,000 His+ colony-forming units per ml were obtained, a value 10 to 20 times greater than can be accounted for by spontaneous reversion. Sequential recloning and matings resulted in the isolation of relatively stable donor cultures. Chromosome gene transfer is dependent upon the presence in the donor of R68.45. Donors lacking an R plasmid or harboring the closely related plasmid RP4 failed to yield His+ transconjugants. With strain SA11, a methionine auxotroph of strain SA10, coinheritance of histidine and methionine independence could be demonstrated. Approximately half of the transconjugants also inherited R68.45. These results indicate that A. tumefaciens 15955 is capable of undergoing host chromosomal genetic exchange.  相似文献   

11.
Yang L  Fu FL  Fu FL  Li WC 《遗传》2011,33(12):1327-1334
农杆菌介导的遗传转化已被广泛应用于植物转基因研究。作为外源基因的载体,农杆菌T-DNA片段在植物基因组中的整合方式,不仅影响外源基因的整合效率及稳定性,还会影响外源基因的表达特性。文章就农杆菌介导的T-DNA整合的两种主要模式、规律及相关研究手段进行综述,为农杆菌介导的转基因及T-DNA插入突变等相关研究提供借鉴。  相似文献   

12.
Methylation of the T-DNA in Agrobacterium tumefaciens and in four octopine-type (A6S/2, E9, 15955/1, 15955/01) and one nopaline-type (HT37#15) crown gall tumors was investigated using the isoschizomeric restriction endonucleases Msp I and Hpa II. T-DNA in the octopine-type Ti-plasmid pTiB6(806) was not methylated at the sequence 5'CCGG3' in Agrobacterium. With two possible exceptions, neither was the T-DNA of the nopaline-type Ti-plasmid pTiT37 methylated in the bacterium. In all tumor lines investigated, at least one copy of the T-DNA was not methylated. DNA methylation was not detected in the lines A6S/2, 15955/1, HT37#15, and the TL region of E9. DNA methylation of some copies of TR in the E9 tumor line, and possibly in the 15955/01 line, was detected. The methylation of some copies of TR in the E9 line may indicate that not all copies of TR are transcribed in this tumor.  相似文献   

13.
14.
Kumar RB  Das A 《Journal of bacteriology》2001,183(12):3636-3641
The VirB8 protein of Agrobacterium tumefaciens is essential for DNA transfer to plants. VirB8, a 237-residue polypeptide, is an integral membrane protein with a short N-terminal cytoplasmic domain. It interacts with two transport pore proteins, VirB9 and VirB10, in addition to itself. To study the role of these interactions in DNA transfer and to identify essential amino acids of VirB8, we introduced random mutations in virB8 by the mutagenic PCR method. The putative mutants were tested for VirB8 function by the ability to complement a virB8 deletion mutant in tumor formation assays. After multiple rounds of screening 13 mutants that failed to complement the virB8 deletion mutation were identified. Analysis of the mutant strains by DNA sequence analysis, Western blot assays, and reconstruction of new point mutations led to the identification of five amino acid residues that are essential for VirB8 function. The substitution of glycine-78 to serine, serine-87 to leucine, alanine-100 to valine, arginine-107 to proline or alanine, and threonine-192 to methionine led to the loss of VirB8 activity. When introduced into the wild-type strain, virB8(S87L) partially suppressed the tumor forming ability of the wild-type protein. Analysis of protein-protein interaction by the yeast two-hybrid assay indicated that VirB8(R107P) is defective in interactions with both VirB9 and VirB10. A second mutant VirB8(S87L) is defective in interaction with VirB9.  相似文献   

15.
Single-stranded DNA-protein complex (T-complex) is proposed to mediate T-DNA transfer from Agrobacterium to plant cells. A novel model for transfer is presented which incorporates features of both bacterial conjugation and viral infection. Specific protein components of the T-complex, its ultrastructure and possible functions in the plant cell are discussed.  相似文献   

16.
In this article it is shown that the T-DNA of Agrobacterium tumefaciens contains besides the well-known cyt and aux genes another gene with an oncogenic effect in plants. The gene in question is called 6b and causes the formation of small tumors in plant species such as Nicotiana glauca and Kalanchoe tubiflora.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号