首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The restoration and management of shallow, pond-like systems are hindered by limitations in the applicability of the well-known models describing the relationship between nutrients and lake phytoplankton biomass in higher ranges of nutrient concentration. Trophic models for naturally eutrophic small, shallow, endorheic lakes have not yet been developed, even though these are the most frequent standing waters in continental lowlands. The aim of this study was to identify variables that can be considered as main drivers of phytoplankton biomass and to build a predictive model. The influence of potential drivers of phytoplankton biomass (nutrients, other chemical variables, land use, lake use and lake depth) from 24 shallow eutrophic lakes was tested using data in the Pannonian ecoregion (Hungary and Romania). By incorporating lake depth, TP, TN and lake use as independent and Chl-a as dependent variables into different models (multiple regression model, GLM and multilayer perception model) predictive models were built. These models explained >50% of the variance. Although phytoplankton biomass in small, shallow, enriched lakes is strongly influenced by stochastic effects, our results suggest that phytoplankton biomass can be predicted by applying a multiple stressor approach, and that the model results can be used for management purposes.  相似文献   

2.
In shallow, wind exposed lakes, the light conditions, the cycling of nutrients, heavy metals and organic micro-pollutants and changes in the local composition of the sediment top layer can be dominated by resuspension/erosion of bottom sediment and sedimentation of suspended solids. A 2 dimensional model for Sediment Transport, Resuspension and Sedimentation in Shallow lakes (STRESS-2d), based on an existing transport model, is discussed. In the model, mass balance equations for the water compartment and the bottom sediment are solved numerically. Up to 7 sediment fractions can be taken into account, each having a specific set of resuspension/erosion and sedimentation parameter values. Several options for modelling the changes in the bottom sediment composition are available.A simulation experiment for Lake Veluwe (The Netherlands), in which model options with and without the distinction of sediment fractions were used, showed that using sediment fractions to account for the variability in the sediment composition leads to an improvement of the model results, particularly the simulated phosphorus sediment-water exchange fluxes. For Lake Ketel (The Netherlands) two options for modelling changes in the bottom sediment composition are compared. It is shown that an option in which a thin water-sediment layer on top of the more consolidated bottom sediment is simulated provides an improvement in the simulation of the suspended solids concentration.  相似文献   

3.
Despite the recognition that viruses are ubiquitous components of aquatic ecosystems, the number of studies on viral abundance and the ecological role of viruses in sediments is scarce. In this investigation, the interactions between viruses and bacteria were studied in the oxygenated silty sediment layer of a mesotrophic oxbow lake. A long-term study (13 months) and a diel study revealed that viruses are a numerically important and dynamic component of the microbial community. The abundance and decay rates ranged from 4.3 x 10(9) to 7.2 x 10(9) particles ml of wet sediment(-1) and from undetectable to 22.2 x 10(7) particles ml(-1) h(-1), respectively, and on average the values were 2 orders of magnitude higher than the values for the overlying water. In contrast to our expectations, viruses did not contribute significantly to the bacterial mortality in the sediment, since on average only 6% (range, 0 to 25%) of the bacterial secondary production was controlled by viruses. The low impact of viruses on the bacterial community may be associated with the quantitatively low viral burden that benthic bacteria have to cope with compared to the viral burden with which bacterial assemblages in the water column are confronted. The virus-to-bacterium ratio of the sediment varied between 0.9 and 3.2, compared to a range of 5.0 to 12.4 obtained for the water column. We speculate that despite high numbers of potential hosts, the possibility of encountering a host cell is limited by the physical conditions in the sediment, which is therefore not a favorable environment for viral proliferation. Our data suggest that viruses do not play an important role in the processing and transfer of bacterial carbon in the oxygenated sediment layer of the environment investigated.  相似文献   

4.
The diel activity levels and spatial distribution of roach Rutilus rutilus differed markedly between two shallow lakes of different environmental state. The movements of roach (12–25 cm L T), with surgically implanted mini‐radio transmitters, were monitored regularly during several 48 h tracking sessions in a clearwater and in a turbid lake. In both lakes, the roach in general were most active during dawn and dusk and least active during the night. Activity level in midsummer was lowest around noon in the clear lake and high around noon in the turbid lake. In summer, roach in the clear lake stayed passively in a restricted area of water lilies during the day and moved into the central part of the lake during the night. In the turbid lake, roach were dispersed all over the lake during the day and moved close to the shoreline at night. Predator : prey fish ratios did not differ in the two lakes, however the observed behaviour of roach in the clearwater lake may be explained by a larger predation pressure from fish and birds, both being favoured in the clear water.  相似文献   

5.
The effect of fluctuations in water level on phytoplankton development (abundance, biomass, size structure, taxonomic composition, species diversity and rate of community compositional change) in three vegetated lakes of the Paraná River floodplain (27° 27′?S; 58° 55′?W) were studied. Between September 1995 and June 1996 there were two inputs of lotic water. Ordering of physical and chemical parameters (Principal Component Analysis) allowed the differentiation of two phases: I) without lotic influence (limnophase) and II) with lotic influence (potamophase). Two-hundred fifty-eight algal taxa were identified, of which Euglenophyceae showed the highest number of taxa (65% of total). Small Chlorophyceae and Cryptophyceae (C-strategists) predominated in density in both periods. During potamophase, the input of nutrients from a flood event produced an increase in algal biomass and a shift in phytoplankton composition from a Chlorophyceae (C-strategists), to a Cyanophyceae and Euglenophyceae (S-strategists), dominated comunity. Bacillariophyceae, Chrysophyceae, Dinophyceae and Xanthophyceae were best represented during limnophase. All phytoplankton attributes showed significant differences between phases (limnophase vs potamophase) but not among lakes. These results support the hypothesis that hydrology (floods) clearly exerts an overall impact on the phytoplankton community composition in lakes of the Paraná River floodplain. Hydrology effects the lake water chemistry, conditioned by the isolation time prior to a flood, the horizontal dragging and exchange of algae during floods, and the water residence time and aquatic vegetation coverage.  相似文献   

6.
Fruiting and deblossomed plants of strawberry ( Fragaria × ananassa ) were exposed to 92 ppb ozone or filtered air in open-top chambers for 69 d. Flower and fruit production, relative growth rate of leaf area, leaf gas exchange and plant biomass were investigated. Ozone caused an initial acceleration in inflorescence production, which was followed by a reduction in inflorescence production, fruit set, and, later, individual fruit weight, although total fruit yield was not affected before the end of the fumigation period. Ozone accelerated leaf senescence and had a greater negative effect on the rate of photosynthesis in older than in younger leaves in fruiting and deblossomed plants, but the response of net photosynthesis to ozone did not differ between the two groups of plants. Relative growth rate of leaf area was the first parameter to be reduced by ozone fumigation, with the effect being significant in fruiting, but not in deblossomed, plants. Final above-ground biomass was also significantly decreased by ozone in fruiting plants, but not in deblossomed plants. Root and crown biomass were not significantly affected by ozone fumigation in either fruiting or deblossomed plants.  相似文献   

7.
Recently, it has been shown that ratios of chlorophyll a toparticulate phosphorus (Chl a/PP) and chlorophyll a to particulatenitrogen (Chl a/PN) were significantly higher in eutrophic thanoligo/mesotrophic waters in 17 lakes on the central volcanicplateau, North Island, New Zealand. This difference was thoughtto be due to an increase in the chlorophyll a content of phytoplanktonin these eutrophic lakes. Corresponding measurements of chlorophylla and phytoplankton cell volume made during this study do notsupport this hypothesis. However, ratios of chlorophyll a toadenosine triphosphate and estimates of percentage phytoplanktonbiomass were significantly higher (P<0.05) in our eutrophicthan oligo/mesotrophic samples, suggesting that Chl a/PP andChl a/PN may be high in eutrophic waters simply because phytoplanktoncomprise more of the total microbial biomass. This hypothesisis supported by a strong linear relationship (r=0.88, P<0.001)between Chl a/PP and percentage phytoplankton biomass in sixof our study lakes where corresponding measurements were made.  相似文献   

8.
SUMMARY 1. In a comparative study, we examined the potential for fish to structure planktonic food webs in shallow mesotrophic to hypereutrophic Northeast Brazilian reservoirs. The food webs were dominated by three guilds of fish (facultative piscivores, generalist planktivores and omnivores), small herbivorous zooplankton and bloom‐forming cyanobacteria, with few littoral macrophytes. 2. A principal component's analysis on data from 13 reservoirs (27 sampling dates in 1995–99) revealed that euphotic depth, the relative density of phytoplankton (i.e. the percentage of overall phytoplankton density) represented by cyanobacteria, and the relative biomass of fish (i.e. percentage of overall biomass) represented by omnivores and facultative piscivores, explained most of the variance in the data. Physico‐chemical conditions, lake morphometry and rainfall were secondary factors. 3. Phytoplankton was related to fish guild structure. Chlorophyll concentration increased with total phosphorus and the relative biomass of omnivorous fish, decreased with the relative biomass of facultative piscivores, but was unrelated to the biomass and mean body size of herbivorous zooplankton. Chlorophyll concentration and the densities of filamentous and colonial cyanobacteria decreased with the ratio of the biomass of facultative piscivores to that of omnivores (FP : OM). 4. We propose two complementary mechanisms for the observed relationships between fish and phytoplankton. At a low biomass of facultative piscivores, juvenile zooplanktivorous fishes may induce a trophic cascade on zooplankton in the littoral zone. Regardless of piscivore biomass, piscivores and omnivores may regulate phytoplankton via multichannel omnivory because of the predominance of omnivorous or detritivorous foraging behaviour. 5. Manipulative experiments are needed to explore further whether, depending on priorities in the use of the reservoir, fisheries management could alter the FP : OM ratio either to enhance fish yields or to reduce phytoplankton densities and cyanobacterial blooms.  相似文献   

9.
Lars Leonardson 《Oecologia》1984,63(3):398-404
Summary Phytoplankton net carbon uptake and nitrogen fixation were studied in two shallow, eutrophic lakes in South Sweden. Ranges of diurnal net carbon uptake were estimated by subtracting 24-h respiration rates corresponding to 5–20% of P max, respectively, from daytime carbon uptake values. total nitrogen requirement of the phytoplankton assemblage was determined from the diurnal net carbon uptake, assuming a phytoplankton C:N ratio of 9.5:1. Nitrogen supplied by nitrogen fixation only occasionally corresponded to the demands of the total phytoplankton assemblage. When heterocystous algae made up a substantial proportion (10%) of the total phytoplankton biomass, nitrogen fixation could meet the requirements of heterocystous blue-green algae on c. 50% of the sampling occasions. Nitrogen deficiencies in heterocystous algae were most probably balanced by the simultaneous or sequential assimilation of dissolved inorganic nitrogen. It was concluded that uptake of ammonium or nitrate, regenerated from lake seston and sediment, is the main process by which growth of phytoplankton is maintained during summer in the lake ecosystems studied.  相似文献   

10.

Floodplain lakes are good metacommunity systems to study the environmental and spatial processes structuring local assemblages. They are more connected during high-water periods and are more isolated during low-water periods. We evaluated the effects of lake spatial patterning and water and sediment conditions on Unionida species assemblages. Moran Eigenvector Maps were used to generate spatial variables representing spatial patterns at different scales. We sampled 35 lakes from the Pantanal floodplain, Brazil. To understand the effects of environmental and spatial variables, we performed Redundancy Analyses and variation partitioning to separate environmental and spatial pattern effects. Environmental variables explained almost twice the variation in the Pantanal mussel assemblages than did spatial variables. Unionida species presence was driven mainly by variations in sediment coarse sand and silt contents. The weak spatial patterns observed may be related to increased connectivity between lakes during floods, which facilitates mussel host fish dispersal. Mussel abundances were driven mainly by organic matter availability, but varied between species. Changes in lake connectivity can affect the regional sediment dynamics and affect mussel assemblages.

  相似文献   

11.
12.
1. Seasonal relationships between macrophyte and phytoplankton populations may alter considerably as lakes undergo eutrophication. Understanding of these changes may be key to the interpretation of ecological processes operating over longer (decadal‐centennial) timescales. 2. We explore the seasonal dynamics of macrophytes (measured twice in June and August) and phytoplankton (measured monthly May–September) populations in 39 shallow lakes (29 in the U.K. and 10 in Denmark) covering broad gradients for nutrients and plant abundance. 3. Three site groups were identified based on macrophyte seasonality; 16 lakes where macrophyte abundance was perennially low and the water generally turbid (‘turbid lakes’); 7 where macrophyte abundance was high in June but low in August (‘crashing’ lakes); and 12 where macrophyte abundance was high in both June and August (‘stable’ lakes). The seasonal behaviour of the crashing and turbid lakes was extremely similar with a consistent increase in nutrient concentrations and chlorophyll‐a over May–September. By contrast in the stable lakes, seasonal changes were dampened with chlorophyll‐a consistently low (<10–15 μg L?1) over the entire summer. The crashing lakes were dominated by one or a combination of Potamogeton pusillus, Potamogeton pectinatus and Zannichellia palustris, whereas Ceratophyllum demersum and Chara spp. were more abundant in the stable lakes. 4. A long‐term loss of macrophyte species diversity has occurred in many shallow lakes affected by eutrophication. One common pathway is from a species‐rich plant community with charophytes to a species‐poor community dominated by P. pusillus, P. pectinatus and Z. palustris. Such compositional changes may often be accompanied by a substantial reduction in the seasonal duration of plant dominance and a greater tendency for incursions by phytoplankton. We hypothesise a slow‐enacting (10–100 s years) feedback loop in nutrient‐enriched shallow lakes whereby increases in algal abundance are associated with losses of macrophyte species and hence different plant seasonal strategies. In turn such changes may favour increased phytoplankton production thus placing further pressure on remaining macrophytes. This study blurs the distinction between so‐called turbid phytoplankton‐dominated and clear plant‐dominated shallow lakes and suggests that plant loss from them may be a gradual process.  相似文献   

13.
Inhibition of phytoplankton by allelochemicals released by submerged macrophytes is supposed to be one of the mechanisms that contribute to the stabilisation of clear-water states in shallow lakes. The relevance of this process at ecosystem level, however, is debated because in situ evidence is difficult to achieve. Our literature review indicates that allelopathically active species such as Myriophyllum, Ceratophyllum, Elodea and Najas or certain charophytes are among the most frequent submerged macrophytes in temperate shallow lakes. The most common experimental approach for allelopathic interference between macrophytes and phytoplankton has been the use of plant extracts or purified plant compounds. Final evidence, however, requires combination with more realistic in situ experiments. Such investigations have successfully been performed with selected species. In situ allelopathic activity is also influenced by the fact that phytoplankton species exhibit differential sensitivity against allelochemicals both between and within major taxonomic groups such as diatoms, cyanobacteria and chlorophytes. In general, epiphytic species apparently are less sensitive towards allelochemicals than phytoplankton despite living closely attached to the plants and being of key importance for macrophyte growth due to their shading. Light and nutrient availability potentially influence the sensitivity of target algae and cyanobacteria. Whether or not additional stressors such as nutrient limitation enhance or dampen allelopathic interactions still has to be clarified. We strongly propose allelopathy as an important mechanism in the interaction between submerged macrophytes and phytoplankton in shallow lakes based on the frequent occurrence of active species and the knowledge of potential target species. The role of allelopathy interfering with epiphyton development is less well understood. Including further levels of complexity, such as nutrient interference, grazing and climate, will extend this ecosystem-based view of in situ allelopathy.  相似文献   

14.
We hypothesized that solid tumors rarely occur in patients with hydatid disease. We obtained the serum of 14 patients diagnosed with hydatid disease, the serum of 10 patients who did not have a history of hydatid disease, and the hydatid cyst fluid from six patients. These sera and fluid samples were added at different concentrations to NCI-H209/An1 human lung small cell carcinoma cells and L929 mouse fibroblasts as a control group. Sera of patients with hydatid diseases had cytotoxic effects on NCI-H209/An1 cells, but they did not have cytotoxic effects on fibroblast cells. Sera from healthy subjects did not have a cytotoxic effect on the tumor cell line or control fibroblasts. Cyst fluid, also, did not have toxic effects on the NCI-H209/An1 cell line, but was toxic to fibroblasts up to a 1:32 dilution. Sera from patients with hydatid disease had cytotoxic effects on human small cell lung cancer cells in vitro.  相似文献   

15.
1. The effect of total nitrogen (TN) and phosphorus (TP) loading on trophic structure and water clarity was studied during summer in 24 field enclosures fixed in, and kept open to, the sediment in a shallow lake. The experiment involved a control treatment and five treatments to which nutrients were added: (i) high phosphorus, (ii) moderate nitrogen, (iii) high nitrogen, (iv) high phosphorus and moderate nitrogen and (v) high phosphorus and high nitrogen. To reduce zooplankton grazers, 1+ fish (Perca fluviatilis L.) were stocked in all enclosures at a density of 3.7 individuals m?2. 2. With the addition of phosphorus, chlorophyll a and the total biovolume of phytoplankton rose significantly at moderate and high nitrogen. Cyanobacteria or chlorophytes dominated in all enclosures to which we added phosphorus as well as in the high nitrogen treatment, while cryptophytes dominated in the moderate nitrogen enclosures and the controls. 3. At the end of the experiment, the biomass of the submerged macrophytes Elodea canadensis and Potamogeton sp. was significantly lower in the dual treatments (TN, TP) than in single nutrient treatments and controls and the water clarity declined. The shift to a turbid state with low plant coverage occurred at TN >2 mg N L?1 and TP >0.13–0.2 mg P L?1. These results concur with a survey of Danish shallow lakes, showing that high macrophyte coverage occurred only when summer mean TN was below 2 mg N L?1, irrespective of the concentration of TP, which ranged between 0.03 and 1.2 mg P L?1. 4. Zooplankton biomass and the zooplankton : phytoplankton biomass ratio, and probably also the grazing pressure on phytoplankton, remained overall low in all treatments, reflecting the high fish abundance chosen for the experiment. We saw no response to nutrition addition in total zooplankton biomass, indicating that the loss of plants and a shift to the turbid state did not result from changes in zooplankton grazing. Shading by phytoplankton and periphyton was probably the key factor. 5. Nitrogen may play a far more important role than previously appreciated in the loss of submerged macrophytes at increased nutrient loading and for the delay in the re‐establishment of the nutrient loading reduction. We cannot yet specify, however, a threshold value for N that would cause a shift to a turbid state as it may vary with fish density and climatic conditions. However, the focus should be widened to use control of both N and P in the restoration of eutrophic shallow lakes.  相似文献   

16.
This study investigated the interaction between two pest biological control agents, the parasitoid wasp Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) and the entomopathogen Bacillus thuringiensis (Bacillales: Bacillacea) (Bt). The aim of this study was to evaluate if the presence of Bt (formulated products Agree®, Dipel® and HD1 and HD11 strains) interferes in the oviposition preference of T. pretiosum to eggs of Helicoverpa zea (Lepidoptera: Noctuidae). Using an olfactometry test, the eggs of H. zea were bathed with the commercial formulations, with the Bt suspensions or distilled water, and offered to the parasitoid wasps in order to evaluate parasitism. The results showed that H. zea eggs sprayed with commercial formulations and Bt strains did not interfere in the choice made by the parasitoid. The parasitoid wasp is not able to distinguish between eggs with or without B. thuringiensis treatment, independently of strains suspension or commercial formulations. Therefore, these two control agents may be used together without negative interaction.  相似文献   

17.
Short-term changes in phytoplankton and zooplankton biomass have occurred 1–3 times every summer for the past 5 years in the shallow and hypertrophic Lake Søbygård, Denmark. These changes markedly affected lake water characteristics as well as the sediment/water interaction. Thus during a collapse of the phytoplankton biomass in 1985, lasting for about 2 weeks, the lake water became almost anoxic, followed by rapid increase in nitrogen and phosphorus at rates of 100–400 mg N M–2 day–1 and 100–200 mg P m–1 day–1. Average external loading during this period was about 350 mg N m–2 day–1 and 5 mg P m–2 day–1, respectively.Due to high phytoplankton biomass and subsequently a high sedimentation and recycling of nutrients, gross release rates of phosphorus and nitrogen were several times higher than net release rates. The net summer sediment release of phosphorus was usually about 40 mg P m–2 day–1, corresponding to a 2–3 fold increase in the net phosphorus release during the collapse. The nitrogen and phosphorus increase during the collapse is considered to be due primarily to a decreased sedimentation because of low algal biomass. The nutrient interactions between sediment and lake water during phytoplankton collapse, therefore, were changed from being dominated by both a large input and a large sedimentation of nutrients to a dominance of only a large input. Nitrogen was derived from both the inlet and sediment, whereas phosphorus was preferentially derived from the sediment. Different temperature levels may be a main reason for the different release rates from year to year.  相似文献   

18.
Like large carnivores, hunters both kill and scare ungulates, and thus might indirectly affect plant performance through trophic cascades. In this study, we hypothesized that intensive hunting and enduring fear of humans have caused moose and other forest ungulates to partly avoid areas near human infrastructure (perceived hunting risk), with positive cascading effects on recruitment of trees. Using data from the Norwegian forest inventory, we found decreasing browsing pressure and increasing tree recruitment in areas close to roads and houses, where ungulates are more likely to encounter humans. However, although browsing and recruitment were negatively related, reduced browsing was only responsible for a small proportion of the higher tree recruitment near human infrastructure. We suggest that the apparently weak cascading effect occurs because the recorded browsing pressure only partly reflects the long‐term browsing intensity close to humans. Accordingly, tree recruitment was also related to the density of small trees 5–10 years earlier, which was higher close to human infrastructure. Hence, if small tree density is a product of the browsing pressure in the past, the cascading effect is probably stronger than our estimates suggest. Reduced browsing near roads and houses is most in line with risk avoidance driven by fear of humans (behaviorally mediated), and not because of excessive hunting and local reduction in ungulate density (density mediated).  相似文献   

19.
20.
Dogma for the past three decades has dictated that parathyroid hormone (PTH) has no direct effect on intestine with regard to calcium or phosphate absorption, but rather that PTH acts to promote the synthesis of a hormonally active form of vitamin D, namely 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. However, diverse laboratories have each provided some evidence to suggest PTH does indeed have a direct effect on intestine. We will briefly review the evidence for biological effects, biochemical effects, and the presence of intestinal receptors for PTH, and conclude with the implications for biomedical research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号